a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models Logo
NPSMEFTd6MFV Class Reference

#include <NPSMEFTd6MFV.h>

+ Inheritance diagram for NPSMEFTd6MFV:

Detailed Description

Definition at line 14 of file NPSMEFTd6MFV.h.

Public Member Functions

 NPSMEFTd6MFV ()
 
virtual bool PostUpdate ()
 The post-update method for NPSMEFTd6General. More...
 
- Public Member Functions inherited from NPSMEFTd6General
virtual const double A_f (const Particle f) const
 The left-right asymmetry in \(e^+e^-\to Z\to f \bar{f}\) at the \(Z\)-pole, \(\mathcal{A}_f\). More...
 
virtual const double AFB (const Particle f) const
 The forward-backward asymmetry in \(e^+e^-\to Z\to f \bar{f}\) at the \(Z\)-pole, \(A^f_{FB}\). More...
 
virtual const double alphaMz () const
 The electromagnetic coupling at the \(Z\)-mass scale. More...
 
virtual const double aPskPol (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 the angular parameter \(a\) from \(\mu_{e^+e^- \to ZH}\) (arXiv:1708.09079 [hep-ph]). More...
 
virtual const double bPskPol (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 the angular parameter \(b\) from \(\mu_{e^+e^- \to ZH}\) (arXiv:1708.09079 [hep-ph]). More...
 
virtual const double Br_H_exo () const
 The branching ratio of the of the Higgs into exotic particles. More...
 
virtual const double Br_H_inv () const
 The branching ratio of the of the Higgs into invisible particles. More...
 
virtual const double Br_H_inv_NP () const
 The branching ratio of the of the Higgs into invisible particles (only invisible new particles). More...
 
virtual const double BrH2d2dRatio () const
 The ratio of the Br \((H\to 2d2d)\) in the current model and in the Standard Model. More...
 
virtual const double BrH2e2muRatio () const
 The ratio of the Br \((H\to 2e 2\mu)\) in the current model and in the Standard Model. More...
 
virtual const double BrH2e2vRatio () const
 The ratio of the Br \((H\to 2e2v)\) in the current model and in the Standard Model. More...
 
virtual const double BrH2evRatio () const
 The ratio of the Br \((H\to 2ev)\) in the current model and in the Standard Model. More...
 
virtual const double BrH2L2dRatio () const
 The ratio of the Br \((H\to 2L2d)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
virtual const double BrH2L2LRatio () const
 The ratio of the Br \((H\to 2L2L')\) ( \(L,L'=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
virtual const double BrH2L2uRatio () const
 The ratio of the Br \((H\to 2L2u)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
virtual const double BrH2L2v2Ratio () const
 The ratio of the Br \((H\to 2L2v)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. More...
 
virtual const double BrH2L2vRatio () const
 The ratio of the Br \((H\to 2L2v)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
virtual const double BrH2l2vRatio () const
 The ratio of the Br \((H\to 2l2v)\) ( \(l=e,\mu\)) in the current model and in the Standard Model. More...
 
virtual const double BrH2Lv2Ratio () const
 The ratio of the Br \((H\to 2Lv)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. More...
 
virtual const double BrH2LvRatio () const
 The ratio of the Br \((H\to 2Lv)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
virtual const double BrH2mu2vRatio () const
 The ratio of the Br \((H\to 2\mu 2v)\) in the current model and in the Standard Model. More...
 
virtual const double BrH2muvRatio () const
 The ratio of the Br \((H\to 2ev)\) in the current model and in the Standard Model. More...
 
virtual const double BrH2u2dRatio () const
 The ratio of the Br \((H\to 2u2d)\) in the current model and in the Standard Model. More...
 
virtual const double BrH2u2uRatio () const
 The ratio of the Br \((H\to 2u2u)\) in the current model and in the Standard Model. More...
 
virtual const double BrH2udRatio () const
 The ratio of the Br \((H\to 2ud)\) in the current model and in the Standard Model. More...
 
virtual const double BrH2v2dRatio () const
 The ratio of the Br \((H\to 2v2d)\) in the current model and in the Standard Model. More...
 
virtual const double BrH2v2uRatio () const
 The ratio of the Br \((H\to 2v2u)\) in the current model and in the Standard Model. More...
 
virtual const double BrH2v2vRatio () const
 The ratio of the Br \((H\to 2v2v)\) in the current model and in the Standard Model. More...
 
virtual const double BrH4dRatio () const
 The ratio of the Br \((H\to 4d)\) in the current model and in the Standard Model. More...
 
virtual const double BrH4eRatio () const
 The ratio of the Br \((H\to 4e)\) in the current model and in the Standard Model. More...
 
virtual const double BrH4fCCRatio () const
 The ratio of the Br \((H\to 4f, CC)\) in the current model and in the Standard Model. More...
 
virtual const double BrH4fNCRatio () const
 The ratio of the Br \((H\to 4f, NC)\) in the current model and in the Standard Model. More...
 
virtual const double BrH4fRatio () const
 The ratio of the Br \((H\to 4f)\) in the current model and in the Standard Model. More...
 
virtual const double BrH4L2Ratio () const
 The ratio of the Br \((H\to 4L)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. More...
 
virtual const double BrH4LRatio () const
 The ratio of the Br \((H\to 4L)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
virtual const double BrH4lRatio () const
 The ratio of the Br \((H\to 4l)\) ( \(l=e,\mu\)) in the current model and in the Standard Model. More...
 
virtual const double BrH4muRatio () const
 The ratio of the Br \((H\to 4\mu)\) in the current model and in the Standard Model. More...
 
virtual const double BrH4uRatio () const
 The ratio of the Br \((H\to 4u)\) in the current model and in the Standard Model. More...
 
virtual const double BrH4vRatio () const
 The ratio of the Br \((H\to 4v)\) in the current model and in the Standard Model. More...
 
virtual const double BrHbbRatio () const
 The ratio of the Br \((H\to b\bar{b})\) in the current model and in the Standard Model. More...
 
virtual const double BrHccRatio () const
 The ratio of the Br \((H\to c\bar{c})\) in the current model and in the Standard Model. More...
 
virtual const double BrHevmuvRatio () const
 The ratio of the Br \((H\to e\nu \mu\nu)\) in the current model and in the Standard Model. More...
 
virtual const double BrHgagaRatio () const
 The ratio of the Br \((H\to \gamma\gamma)\) in the current model and in the Standard Model. More...
 
virtual const double BrHggRatio () const
 The ratio of the Br \((H\to gg)\) in the current model and in the Standard Model. More...
 
virtual const double BrHll_vvorjjRatio () const
 The ratio of the Br \((H\to l l \nu\nu, l l j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. More...
 
virtual const double BrHlv_lvorjjRatio () const
 The ratio of the Br \((H\to l \nu l \nu, l \nu j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. More...
 
virtual const double BrHlvjjRatio () const
 The ratio of the Br \((H\to l \nu j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. More...
 
virtual const double BrHLvudRatio () const
 The ratio of the Br \((H\to Lvud)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
virtual const double BrHLvvLRatio () const
 The ratio of the Br \((H\to LvvL)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
virtual const double BrHmumuRatio () const
 The ratio of the Br \((H\to \mu^+\mu^-)\) in the current model and in the Standard Model. More...
 
virtual const double BrHssRatio () const
 The ratio of the Br \((H\to s\bar{s})\) in the current model and in the Standard Model. More...
 
virtual const double BrHtautauRatio () const
 The ratio of the Br \((H\to \tau^+\tau^-)\) in the current model and in the Standard Model. More...
 
virtual const double BrHtoinvRatio () const
 The ratio of the Br \((H\to invisible)\) in the current model and in the Standard Model. More...
 
virtual const double BrHudduRatio () const
 The ratio of the Br \((H\to uddu)\) in the current model and in the Standard Model. More...
 
virtual const double BrHvisRatio () const
 The ratio of the Br \((H\to visible)\) in the current model and in the Standard Model. More...
 
virtual const double BrHVVRatio () const
 The ratio of the Br \((H\to VV)\) in the current model and in the Standard Model. More...
 
virtual const double BrHWffRatio () const
 The ratio of the Br \((H\to W f f)\), with \(f\) any fermion, in the current model and in the Standard Model. More...
 
virtual const double BrHWjjRatio () const
 The ratio of the Br \((H\to W j j)\) in the current model and in the Standard Model. More...
 
virtual const double BrHWlvRatio () const
 The ratio of the Br \((H\to W l\nu)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. More...
 
virtual const double BrHWW2l2vRatio () const
 The ratio of the Br \((H\to WW^*\to l\nu l\nu)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. More...
 
virtual const double BrHWW4fRatio () const
 The ratio of the Br \((H\to WW^*\to 4f)\), with \(f\) any fermion, in the current model and in the Standard Model. More...
 
virtual const double BrHWW4jRatio () const
 The ratio of the Br \((H\to WW^*\to 4j)\) in the current model and in the Standard Model. More...
 
virtual const double BrHWWRatio () const
 The ratio of the Br \((H\to WW)\) in the current model and in the Standard Model. More...
 
virtual const double BrHZddRatio () const
 The ratio of the Br \((H\to Z d d)\) ( \(d=d,s,b \)) in the current model and in the Standard Model. More...
 
virtual const double BrHZffRatio () const
 The ratio of the Br \((H\to Zff)\), with \(f\) any fermion, in the current model and in the Standard Model. More...
 
virtual const double BrHZgaeeRatio () const
 The ratio of the Br \((H\to Z\gamma\to ee\gamma)\) in the current model and in the Standard Model. More...
 
virtual const double BrHZgallRatio () const
 The ratio of the Br \((H\to Z\gamma\to ll\gamma)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. More...
 
virtual const double BrHZgamumuRatio () const
 The ratio of the Br \((H\to Z\gamma\to \mu\mu\gamma)\) in the current model and in the Standard Model. More...
 
virtual const double BrHZgaRatio () const
 The ratio of the Br \((H\to Z\gamma)\) in the current model and in the Standard Model. More...
 
virtual const double BrHZllRatio () const
 The ratio of the Br \((H\to Zll)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. More...
 
virtual const double BrHZuuRatio () const
 The ratio of the Br \((H\to Z u u)\) ( \(u=u,c \)) in the current model and in the Standard Model. More...
 
virtual const double BrHZvvRatio () const
 The ratio of the Br \((H\to Z\nu\nu)\) in the current model and in the Standard Model. More...
 
virtual const double BrHZZ2e2muRatio () const
 The ratio of the Br \((H\to ZZ* \to 2e 2\mu)\) in the current model and in the Standard Model. More...
 
virtual const double BrHZZ4dRatio () const
 The ratio of the Br \((H\to ZZ* \to 4 d)\) ( \(d=d,s,b \)) in the current model and in the Standard Model. More...
 
virtual const double BrHZZ4eRatio () const
 The ratio of the Br \((H\to ZZ* \to 4e)\) in the current model and in the Standard Model. More...
 
virtual const double BrHZZ4fRatio () const
 The ratio of the Br \((H\to ZZ* \to 4f)\), with \(f\) any fermion, in the current model and in the Standard Model. More...
 
virtual const double BrHZZ4lRatio () const
 The ratio of the Br \((H\to ZZ* \to 4l)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. More...
 
virtual const double BrHZZ4muRatio () const
 The ratio of the Br \((H\to ZZ* \to 4\mu)\) in the current model and in the Standard Model. More...
 
virtual const double BrHZZ4uRatio () const
 The ratio of the Br \((H\to ZZ* \to 4 u)\) ( \(u=u,c \)) in the current model and in the Standard Model. More...
 
virtual const double BrHZZ4vRatio () const
 The ratio of the Br \((H\to ZZ* \to 4\nu)\) in the current model and in the Standard Model. More...
 
virtual const double BrHZZRatio () const
 The ratio of the Br \((H\to ZZ)\) in the current model and in the Standard Model. More...
 
virtual const double BrW (const Particle fi, const Particle fj) const
 The branching ratio of the \(W\) boson decaying into a SM fermion pair, \(Br(W\to f_i f_j)\). More...
 
virtual const double cbW_TWG (const double mu) const
 
const double CeeLL_bottom (const double mu) const
 
const double CeeLL_charm (const double mu) const
 
const double CeeLL_down (const double mu) const
 
const double CeeLL_e (const double mu) const
 
const double CeeLL_mu (const double mu) const
 
const double CeeLL_strange (const double mu) const
 
const double CeeLL_tau (const double mu) const
 
const double CeeLL_top (const double mu) const
 
const double CeeLL_up (const double mu) const
 
const double CeeLR_bottom (const double mu) const
 
const double CeeLR_charm (const double mu) const
 
const double CeeLR_down (const double mu) const
 
const double CeeLR_e (const double mu) const
 
const double CeeLR_mu (const double mu) const
 
const double CeeLR_strange (const double mu) const
 
const double CeeLR_tau (const double mu) const
 
const double CeeLR_top (const double mu) const
 
const double CeeLR_up (const double mu) const
 
const double CeeRL_bottom (const double mu) const
 
const double CeeRL_charm (const double mu) const
 
const double CeeRL_down (const double mu) const
 
const double CeeRL_e (const double mu) const
 
const double CeeRL_mu (const double mu) const
 
const double CeeRL_strange (const double mu) const
 
const double CeeRL_tau (const double mu) const
 
const double CeeRL_top (const double mu) const
 
const double CeeRL_up (const double mu) const
 
const double CeeRR_bottom (const double mu) const
 
const double CeeRR_charm (const double mu) const
 
const double CeeRR_down (const double mu) const
 
const double CeeRR_e (const double mu) const
 
const double CeeRR_mu (const double mu) const
 
const double CeeRR_strange (const double mu) const
 
const double CeeRR_tau (const double mu) const
 
const double CeeRR_top (const double mu) const
 
const double CeeRR_up (const double mu) const
 
virtual const double CEWHd11 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{Hd})_{11}\). More...
 
virtual const double CEWHd22 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{Hd})_{22}\). More...
 
virtual const double CEWHd33 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{Hd})_{33}\). More...
 
virtual const double CEWHe11 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{He})_{11}\). More...
 
virtual const double CEWHe22 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{He})_{22}\). More...
 
virtual const double CEWHe33 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{He})_{33}\). More...
 
virtual const double CEWHL111 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HL}^{(1)})_{11}\). More...
 
virtual const double CEWHL122 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HL}^{(1)})_{22}\). More...
 
virtual const double CEWHL133 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HL}^{(1)})_{33}\). More...
 
virtual const double CEWHL311 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HL}^{(3)})_{11}\). More...
 
virtual const double CEWHL322 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HL}^{(3)})_{22}\). More...
 
virtual const double CEWHL333 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HL}^{(3)})_{33}\). More...
 
virtual const double CEWHQ111 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HQ}^{(1)})_{11}\). More...
 
virtual const double CEWHQ122 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HQ}^{(1)})_{22}\). More...
 
virtual const double CEWHQ133 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HQ}^{(1)})_{33}\). More...
 
virtual const double CEWHQ311 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HQ}^{(3)})_{11}\). More...
 
virtual const double CEWHQ322 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HQ}^{(3)})_{22}\). More...
 
virtual const double CEWHQ333 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HQ}^{(3)})_{33}\). More...
 
virtual const double CEWHQd33 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{HQ}^{(d)})_{33}\). More...
 
virtual const double CEWHQu33 (const double mu) const
 Combination of coefficients of the Warsaw basis not constrained by EWPO (at LO) \((\hat{C}_{HQ}^{(u)})_{33}\). More...
 
virtual const double CEWHu11 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{Hu})_{11}\). More...
 
virtual const double CEWHu22 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{Hu})_{22}\). More...
 
virtual const double CEWHu33 (const double mu) const
 Combination of coefficients of the Warsaw basis constrained by EWPO \((\hat{C}_{Hu})_{33}\). More...
 
virtual const double cgaga_HB (const double mu) const
 The Higgs-basis coupling \(c_{\gamma\gamma}\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double cgg_HB (const double mu) const
 The Higgs-basis coupling \(c_{gg}\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double cggEff_HB (const double mu) const
 The effective Higgs-basis coupling \(c_{gg}^{Eff}\). (Similar to cgg_HB but including modifications of SM loops.) (See arXiv: 1505.00046 [hep-ph] document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double cHb_TWG (const double mu) const
 
virtual const double cHQ3_TWG (const double mu) const
 
virtual const double cHQm_TWG (const double mu) const
 
virtual const double cHQp_TWG (const double mu) const
 
virtual const double cHt_TWG (const double mu) const
 
virtual const double cHtb_TWG (const double mu) const
 
virtual const double computeGammaTotalRatio () const
 The ratio of the \(\Gamma(H)\) in the current model and in the Standard Model. More...
 
virtual const double cQd1_TWG (const double mu) const
 
virtual const double cQd8_TWG (const double mu) const
 
virtual const double cQe_TWG (const double mu) const
 
virtual const double cQl3_TWG (const double mu) const
 
virtual const double cQlM_TWG (const double mu) const
 
virtual const double cQlP_TWG (const double mu) const
 
virtual const double cQq11_TWG (const double mu) const
 
virtual const double cQq18_TWG (const double mu) const
 
virtual const double cQQ1_TWG (const double mu) const
 
virtual const double cQq31_TWG (const double mu) const
 
virtual const double cQq38_TWG (const double mu) const
 
virtual const double cQQ8_TWG (const double mu) const
 
virtual const double cQt1_TWG (const double mu) const
 
virtual const double cQt8_TWG (const double mu) const
 
virtual const double cQu1_TWG (const double mu) const
 
virtual const double cQu8_TWG (const double mu) const
 
virtual const double ctd1_TWG (const double mu) const
 
virtual const double ctd8_TWG (const double mu) const
 
virtual const double cte_TWG (const double mu) const
 
virtual const double ctG_TWG (const double mu) const
 
virtual const double ctH_TWG (const double mu) const
 
virtual const double ctl_TWG (const double mu) const
 
virtual const double ctlS_TWG (const double mu) const
 
virtual const double ctlT_TWG (const double mu) const
 
virtual const double ctq1_TWG (const double mu) const
 
virtual const double ctq8_TWG (const double mu) const
 
virtual const double ctt1_TWG (const double mu) const
 
virtual const double ctu1_TWG (const double mu) const
 
virtual const double ctu8_TWG (const double mu) const
 
virtual const double ctW_TWG (const double mu) const
 
virtual const double ctZ_TWG (const double mu) const
 
virtual const double cZBox_HB (const double mu) const
 The Higgs-basis coupling \(c_{z\Box}\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double cZga_HB (const double mu) const
 The Higgs-basis coupling \(c_{z\gamma}\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double cZZ_HB (const double mu) const
 The Higgs-basis coupling \(c_{zz}\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double del_A_mu (const double mu) const
 Correction to photon WF. More...
 
virtual const double del_e_mu (const double mu) const
 Correction to electric charge. More...
 
virtual const double del_sW2_mu (const double mu) const
 Correction to (sin squared of) weak mixing angle. More...
 
virtual const double del_Z_mu (const double mu) const
 Correction to Z WF. More...
 
virtual const double del_ZA_mu (const double mu) const
 Correction to Z-A mixing. More...
 
virtual const double delQ_gNC (const double mu) const
 Separate, charge-proportional, indirect correction to EW neutral currents. More...
 
virtual const double delta2sBRH3 (const double C1prod, const double C1Hxx) const
 Quadratic contribution from the Higgs self-couplings modifications to the signal strength for \(\sigma \times BR(H\to xx)\) in the current model. More...
 
virtual const double delta2sH3 (const double C1) const
 Quadratic contribution from the Higgs self-couplings modifications to the signal strength for an observable \(\sigma\) in the current model. More...
 
virtual const double delta_AFB_ee (const double pol_e, const double pol_p, const double s) const
 
virtual const double delta_AFB_f (const Particle f, const double pol_e, const double pol_p, const double s) const
 
virtual const double delta_alrmoller (const double q2, const double y) const
 The computation of the parity violating asymmetry in Moller scattering. More...
 
virtual const double delta_amuon () const
 The computation of the anomalous magnetic moment of the muon \(a_\mu=(g_\mu-2)/2\). More...
 
virtual const double delta_Dsigma_f (const Particle f, const double pol_e, const double pol_p, const double s, const double cos) const
 
virtual const double delta_gAnue () const
 The computation of the correction to the effective (muon) neutrino-electron vector coupling: delta_gAnue. More...
 
virtual const double delta_gLnuN2 () const
 The computation of the correction to the effective neutrino nucleon LH coupling: delta_gLnuN2. More...
 
virtual const double delta_gRnuN2 () const
 The computation of the correction to the effective neutrino nucleon RH coupling: delta_gRnuN2. More...
 
virtual const double delta_gVnue () const
 The computation of the correction to the effective (muon) neutrino-electron vector coupling: delta_gVnue. More...
 
virtual const double delta_mubbH_1 (const double sqrt_s) const
 The SMEFT linear correction to the ratio \(\mu_{bbH}\) between the bbH production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_mubbH_2 (const double sqrt_s) const
 The SMEFT quadratic correction to the ratio \(\mu_{bbH}\) between the bbH production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muggH_1 (const double sqrt_s) const
 The SMEFT linear correction to the ratio \(\mu_{ggH}\) between the gluon-gluon fusion Higgs production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muggH_2 (const double sqrt_s) const
 The SMEFT quadratic correction to the ratio \(\mu_{ggH}\) between the gluon-gluon fusion Higgs production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_mutH_1 (const double sqrt_s) const
 The SMEFT linear correction to the ratio \(\mu_{tH}\) between the t-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_mutH_2 (const double sqrt_s) const
 The SMEFT quadratic correction to the ratio \(\mu_{tH}\) between the t-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muttH_1 (const double sqrt_s) const
 The SMEFT linear correction to the ratio \(\mu_{ttH}\) between the t-tbar-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muttH_2 (const double sqrt_s) const
 The SMEFT quadratic correction to the ratio \(\mu_{ttH}\) between the t-tbar-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muVBF_1 (const double sqrt_s) const
 The SMEFT linear correction to the ratio \(\mu_{VBF}\) between the vector-boson fusion Higgs production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muVBF_2 (const double sqrt_s) const
 The SMEFT quadratic correction to the ratio \(\mu_{VBF}\) between the vector-boson fusion Higgs production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muVH_1 (const double sqrt_s) const
 The SMEFT linear correction to the ratio \(\mu_{VH}\) between the Z-Higgs and W-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muVH_2 (const double sqrt_s) const
 The SMEFT quadratic correction to the ratio \(\mu_{VH}\) between the Z-Higgs and W-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muWH_1 (const double sqrt_s) const
 The SMEFT linear correction to the ratio \(\mu_{WH}\) between the W-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muWH_2 (const double sqrt_s) const
 The SMEFT quadratic correction to the ratio \(\mu_{WH}\) between the W-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muZH_1 (const double sqrt_s) const
 The SMEFT linear correction to the ratio \(\mu_{ZH}\) between the Z-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_muZH_2 (const double sqrt_s) const
 The SMEFT quadratic correction to the ratio \(\mu_{ZH}\) between the Z-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double delta_Qwemoller (const double q2, const double y) const
 The computation of the electron's weak charge. More...
 
virtual const double delta_Qwn () const
 The computation of the neutron weak charge: Qwn. More...
 
virtual const double delta_Qwp () const
 The computation of the proton weak charge: Qwp. More...
 
virtual const double delta_sigma_ee (const double pol_e, const double pol_p, const double s, const double cosmin, const double cosmax) const
 
virtual const double delta_sigma_f (const Particle f, const double pol_e, const double pol_p, const double s, const double cosmin, const double cosmax) const
 
virtual const double delta_sigma_had (const double pol_e, const double pol_p, const double s, const double cosmin, const double cosmax) const
 
virtual const double delta_sigmaTot_ee (const double pol_e, const double pol_p, const double s) const
 
virtual const double delta_sigmaTot_f (const Particle f, const double pol_e, const double pol_p, const double s) const
 
virtual const double delta_TauLFU_gmuge () const
 The computation of the correction to the LFU ratio \(g_\mu/ g_e \). More...
 
virtual const double delta_TauLFU_gtauge () const
 The computation of the correction to the LFU ratio \(g_\tau/ g_e \). More...
 
virtual const double delta_TauLFU_gtaugmu () const
 The computation of the correction to the LFU ratio \(g_\tau/ g_\mu \). More...
 
virtual const double delta_TauLFU_gtaugmuK () const
 The computation of the correction to the LFU ratio \(\left(g_\tau/ g_\mu\right)_K \). More...
 
virtual const double delta_TauLFU_gtaugmuPi () const
 The computation of the correction to the LFU ratio \(\left(g_\tau/ g_\mu\right)_\pi \). More...
 
virtual const double deltaa0 () const
 The relative correction to the electromagnetic constant at zero momentum, \(\delta \alpha(0)/\alpha(0)\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaa02 () const
 The relative correction to the electromagnetic constant at zero momentum, \((\delta \alpha(0)/\alpha(0))^2\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaA_f (const Particle f) const
 The new physics contribution to the left-right asymmetry in \(e^+e^-\to Z\to f \bar{f}\) at the \(Z\)-pole, \(\delta \mathcal{A}_f\). More...
 
virtual const double deltaAFB (const Particle f) const
 The new physics contribution to the forward-backward asymmetry in \(e^+e^-\to Z\to f \bar{f}\) at the \(Z\)-pole, \(\delta A^f_{FB}\). More...
 
virtual const double deltaaMZ () const
 The relative correction to the electromagnetic constant at the Z pole, \(\delta \alpha(M_Z^2)/\alpha(M_Z^2)\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaaMZ2 () const
 The relative correction to the electromagnetic constant at the Z pole, \((\delta \alpha(M_Z^2)/\alpha(M_Z^2))^2\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaaSMZ () const
 The relative correction to the strong coupling constant at the Z pole, \(\delta \alpha_S(M_Z^2)/\alpha_S(M_Z^2)\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaaSMZ2 () const
 The relative correction to the strong coupling constant at the Z pole, \((\delta \alpha_S(M_Z^2)/\alpha_S(M_Z^2))^2\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltacZ_HB (const double mu) const
 The Higgs-basis coupling \(\delta c_z\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double deltadxsdcoseeWWlvjjLEP2 (const double sqrt_s, const int bin) const
 The new physics contribution to the differential cross section in pb for \(e^+ e^- \to W^+ W^- \to lv jj \), with \( l= e,\mu \) for the 4 \( cos{\theta}\) bins defined in arXiv: 1606.06693 [hep-ph]. for the C.O.M. energies of 182.6 and 205.9 GeV. From arXiv: 1606.06693 [hep-ph]. More...
 
virtual const double deltaeNP (const double mu) const
 The new physics relative contribution to the EW coupling constant \(e\). More...
 
virtual const double deltaG1_hWW () const
 The new physics contribution to the coupling of the effective interaction \(H W_{\mu\nu}^\dagger W^{\mu\nu}\). More...
 
virtual const double deltaG1_hWW_mu (const double mu) const
 The new physics contribution to the coupling of the effective interaction \(H W_{\mu\nu}^\dagger W^{\mu\nu}\). More...
 
virtual const double deltaG1_hZA () const
 The new physics contribution to the coupling of the effective interaction \(H Z_{\mu\nu} F^{\mu\nu}\). More...
 
virtual const double deltaG1_hZA_mu (const double mu) const
 The new physics contribution to the coupling of the effective interaction \(H Z_{\mu\nu} F^{\mu\nu}\). More...
 
virtual const double deltaG1_hZARatio () const
 The full new physics contribution to the coupling of the effective interaction \(H Z_{\mu\nu} F^{A \mu\nu}\), including new local terms and modifications on the SM-loops. Normalized to the SM value. More...
 
virtual const double deltaG1_hZARatio_mu (const double mu) const
 The full new physics contribution to the coupling of the effective interaction \(H Z_{\mu\nu} F^{A \mu\nu}\), including new local terms and modifications on the SM-loops. Normalized to the SM value. More...
 
virtual const double deltaG1_hZZ () const
 The new physics contribution to the coupling of the effective interaction \(H Z_{\mu\nu} Z^{\mu\nu}\). More...
 
virtual const double deltaG1_hZZ_mu (const double mu) const
 The new physics contribution to the coupling of the effective interaction \(H Z_{\mu\nu} Z^{\mu\nu}\). More...
 
virtual const double deltag1gaNP (const double mu) const
 The new physics contribution to the anomalous triple gauge coupling \(g_{1,\gamma}\). More...
 
virtual const double deltag1ZNP (const double mu) const
 The new physics contribution to the anomalous triple gauge coupling \(g_{1,Z}\). More...
 
virtual const double deltag1ZNPEff () const
 The new physics contribution to the effective anomalous triple gauge coupling \(g_{1,Z}^{Eff}\) from arXiv: 1708.09079 [hep-ph]. More...
 
virtual const double deltaG2_hWW () const
 The new physics contribution to the coupling of the effective interaction \(H W_{\nu}^\dagger \partial^\mu W^{\mu\nu}\). More...
 
virtual const double deltaG2_hWW_mu (const double mu) const
 The new physics contribution to the coupling of the effective interaction \(H W_{\nu}^\dagger \partial^\mu W^{\mu\nu}\). More...
 
virtual const double deltaG2_hZA () const
 The new physics contribution to the coupling of the effective interaction \(H Z_{\nu} \partial^\mu F^{\mu\nu}\). More...
 
virtual const double deltaG2_hZA_mu (const double mu) const
 The new physics contribution to the coupling of the effective interaction \(H Z_{\nu} \partial^\mu F^{\mu\nu}\). More...
 
virtual const double deltaG2_hZZ () const
 The new physics contribution to the coupling of the effective interaction \(H Z_{\nu} \partial^\mu Z^{\mu\nu}\). More...
 
virtual const double deltaG2_hZZ_mu (const double mu) const
 The new physics contribution to the coupling of the effective interaction \(H Z_{\nu} \partial^\mu Z^{\mu\nu}\). More...
 
virtual const double deltaG3_hWW () const
 The new physics contribution to the coupling of the effective interaction \(H W_{\mu}^\dagger W^{\mu}\). More...
 
virtual const double deltaG3_hWW_mu (const double mu) const
 The new physics contribution to the coupling of the effective interaction \(H W_{\mu}^\dagger W^{\mu}\). More...
 
virtual const double deltaG3_hZZ () const
 The new physics contribution to the coupling of the effective interaction \(H Z_{\mu} Z^{\mu}\). More...
 
virtual const double deltaG3_hZZ_mu (const double mu) const
 The new physics contribution to the coupling of the effective interaction \(H Z_{\mu} Z^{\mu}\). More...
 
const double deltag3G () const
 The new physics contribution to the coupling of the effective interaction \(f_{ABC} G_{\mu\nu}^A G_{\nu\rho}^B G_{\rho\mu}^C\). More...
 
gslpp::complex deltaG_Aff (const Particle p) const
 The new physics contribution to the coupling of the effective interaction \(A_{\mu\nu} \bar{f}\sigma^{\mu\nu} f\). More...
 
gslpp::complex deltaG_Gff (const Particle p) const
 The new physics contribution to the coupling of the effective interaction \(G_{\mu\nu}^A \bar{f}\sigma^{\mu\nu} T_A f\). More...
 
virtual const double deltaG_hAA () const
 The new physics contribution to the coupling of the effective interaction \(H F_{\mu\nu} F^{\mu\nu}\). More...
 
virtual const double deltaG_hAA_mu (const double mu) const
 The new physics contribution to the coupling of the effective interaction \(H F_{\mu\nu} F^{\mu\nu}\). More...
 
virtual const double deltaG_hAARatio () const
 The full new physics contribution to the coupling of the effective interaction \(H F_{\mu\nu} F^{\mu\nu}\), including new local terms and modifications on the SM-loops. Normalized to the SM value. More...
 
virtual const double deltaG_hAARatio_mu (const double mu) const
 The full new physics contribution to the coupling of the effective interaction \(H F_{\mu\nu} F^{\mu\nu}\), including new local terms and modifications on the SM-loops. Normalized to the SM value. More...
 
gslpp::complex deltaG_hAff (const Particle p) const
 The new physics contribution to the coupling of the effective interaction \(H A_{\mu\nu} \bar{f}\sigma^{\mu\nu} f\). More...
 
virtual gslpp::complex deltaG_hff (const Particle p) const
 The new physics contribution to the coupling of the effective interaction \(H f\bar{f}\). More...
 
virtual gslpp::complex deltaG_hff_mu (const Particle p, const double mu) const
 The new physics contribution to the coupling of the effective interaction \(H f\bar{f}\). More...
 
gslpp::complex deltaG_hGff (const Particle p) const
 The new physics contribution to the coupling of the effective interaction \(H G_{\mu\nu} \bar{f}\sigma^{\mu\nu} f\). More...
 
virtual const double deltaG_hgg () const
 The new physics contribution to the coupling of the effective interaction \(H G_{\mu\nu}^AG^{A \mu\nu}\). More...
 
virtual const double deltaG_hgg_mu (const double mu) const
 The new physics contribution to the coupling of the effective interaction \(H G_{\mu\nu}^AG^{A \mu\nu}\). More...
 
virtual const double deltaG_hggRatio () const
 The full new physics contribution to the coupling of the effective interaction \(H G_{\mu\nu}^AG^{A \mu\nu}\), including new local terms and modifications on the SM-loops. Normalized to the SM value. More...
 
virtual const double deltaG_hggRatio_mu (const double mu) const
 The full new physics contribution to the coupling of the effective interaction \(H G_{\mu\nu}^AG^{A \mu\nu}\), including new local terms and modifications on the SM-loops. Normalized to the SM value. More...
 
virtual const double deltaG_hhhRatio () const
 The new physics contribution to the Higgs self-coupling \( H H H\). Normalized to the SM value. More...
 
virtual const double deltaG_hhhRatio_mu (const double mu) const
 The new physics contribution to the Higgs self-coupling \( H H H\). Normalized to the SM value. More...
 
gslpp::complex deltaG_hZff (const Particle p) const
 The new physics contribution to the coupling of the effective interaction \(H Z_{\mu\nu} \bar{f}\sigma^{\mu\nu} f\). More...
 
gslpp::complex deltaG_Zff (const Particle p) const
 The new physics contribution to the coupling of the effective interaction \(Z_{\mu\nu} \bar{f}\sigma^{\mu\nu} f\). More...
 
virtual const double deltaGA_f (const Particle p) const
 New physics contribution to the neutral-current axial-vector coupling \(g_A^f\). More...
 
virtual const double deltaGamma_W () const
 The new physics contribution to the total decay width of the \(W\) boson, \(\delta \Gamma_W\). More...
 
virtual const double deltaGamma_Wff (const Particle fi, const Particle fj) const
 The new physics contribution to the decay width of the \(W\) boson into a given fermion pair, \(\delta \Gamma_Z^{f}\). More...
 
virtual const double deltaGamma_Z () const
 The new physics contribution to the total decay width of the \(Z\) boson, \(\delta \Gamma_Z\). More...
 
virtual const double deltaGamma_Zf (const Particle f) const
 The new physics contribution to the decay width of the \(Z\) boson into a given fermion pair, \(\delta \Gamma_Z^{f}\). More...
 
const double deltaGammaH2d2dRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2d2d)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2d2dRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2d2d)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2e2muRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2e 2\mu)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2e2muRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2e 2\mu)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2e2vRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2e2v)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2e2vRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2e2v)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2evRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2ev)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2evRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2ev)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2L2dRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2L2d)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2L2dRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2L2d)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2L2LRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2L2L')\) ( \(L,L'=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2L2LRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2L2L')\) ( \(L,L'=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2L2uRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2L2u)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2L2uRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2L2u)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2L2v2Ratio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2L2v)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2L2v2Ratio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2L2v)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2L2vRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2L2v)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2l2vRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2l2v)\) ( \(l=e,\mu\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2L2vRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2L2v)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2l2vRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2l2v)\) ( \(l=e,\mu\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2Lv2Ratio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2Lv)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2Lv2Ratio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2Lv)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2LvRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2Lv)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2LvRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2Lv)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2mu2vRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2\mu 2v)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2mu2vRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2\mu 2v)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2muvRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2\mu v)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2muvRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2\mu v)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2u2dRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2u2d)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2u2dRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2u2d)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2u2uRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2u2u)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2u2uRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2u2u)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2udRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2ud)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2udRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2ud)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2v2dRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2v2d)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2v2dRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2v2d)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2v2uRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2v2u)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2v2uRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2v2u)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2v2vRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2v2v)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH2v2vRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 2v2v)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4dRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4d)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4dRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4d)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4eRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4e)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4eRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4e)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4fCCRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4f, CC)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4fCCRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4f, CC)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4fNCRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4f, NC)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4fNCRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4f, NC)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4fRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4f)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4fRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4f)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4L2Ratio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4L)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4L2Ratio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4L)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4LRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4L)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4lRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4l)\) ( \(l=e,\mu\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4LRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4L)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4lRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4l)\) ( \(l=e,\mu\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4muRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4\mu)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4muRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4\mu)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4uRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4u)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4uRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4u)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4vRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4v)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaH4vRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to 4v)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHbbRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to bb)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHbbRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to bb)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHccRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to cc)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHccRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to cc)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHevmuvRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to e\nu \mu\nu)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHevmuvRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to e\nu \mu\nu)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHffRatio1 (const double mf, const double CifH) const
 The ratio of the \(\Gamma(H\to ff)\) in the current model and in the Standard Model. More...
 
const double deltaGammaHffRatio2 (const double mf, const double CifH) const
 The \(\mathcal{O}(\Lambda^{-4})\) new physics contribution to the ratio of the \(\Gamma(H\to ff)\) in the current model and in the Standard Model at order Lambd. More...
 
const double deltaGammaHgagaRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to \gamma\gamma)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHgagaRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to \gamma\gamma)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHggRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to gg)\) in the current model and in the Standard Model. Only terms that are linear in the effective Lagrangian coefficients. More...
 
const double deltaGammaHggRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to gg)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHll_vvorjjRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to l l \nu\nu, l l j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHll_vvorjjRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to l l \nu\nu, l l j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHlv_lvorjjRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to l \nu l \nu, l \nu j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHlv_lvorjjRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to l \nu l \nu, l \nu j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHlvjjRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to l \nu j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHlvjjRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to l \nu j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHLvudRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Lvud)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHLvudRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Lvud)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHLvvLRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to LvvL)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHLvvLRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to LvvL)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHmumuRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to \mu\mu)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHmumuRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to \mu\mu)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHssRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ss)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHssRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ss)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHtautauRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to \tau\tau)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHtautauRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to \tau\tau)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHudduRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to uddu)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHudduRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to uddu)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWffRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to W f f)\), with \(f\) any fermion, in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWffRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to W f f)\), with \(f\) any fermion, in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWjjRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to W j j)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWjjRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to W j j)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWlvRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Wl\nu)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWlvRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Wl\nu)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWW2l2vRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to WW^*\to l\nu l\nu)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWW2l2vRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to WW^*\to l\nu l\nu)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWW4fRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to WW^*\to 4f)\), with \(f\) any fermion, in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWW4fRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to WW^*\to 4f)\), with \(f\) any fermion, in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWW4jRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to WW^*\to 4j)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWW4jRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to WW^*\to 4j)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWWRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to WW)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHWWRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to WW)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZddRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z d d)\) ( \(d=d,s,b \)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZddRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z d d)\) ( \(d=d,s,b \)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZeeRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Zee)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZeeRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Zee)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZffRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z ff)\), with \(f\) any fermion, in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZffRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z ff)\), with \(f\) any fermion, in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZgaRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z\gamma)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZgaRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z\gamma)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZllRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Zll)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZllRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Zll)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZmumuRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z\mu\mu)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZmumuRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z\mu\mu)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZuuRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z u u)\) ( \(u=u,c \)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZuuRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z u u)\) ( \(u=u,c \)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZvvRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z\nu\nu)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZvvRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to Z\nu\nu)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ2e2muRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 2e2\mu)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ2e2muRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 2e2\mu)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4dRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4 d)\) ( \(d=d,s,b \)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4dRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4 d)\) ( \(d=d,s,b \)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4eRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4e)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4eRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4e)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4fRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4f)\), with \(f\) any fermion, in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4fRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4f)\), with \(f\) any fermion, in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4lRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4l)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4lRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4l)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4muRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4\mu)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4muRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4\mu)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4uRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4 u)\) ( \(u=u,c \)) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4uRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4 u)\) ( \(u=u,c \)) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4vRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4\nu)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZ4vRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ* \to 4\nu)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ)\) in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) More...
 
const double deltaGammaHZZRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H\to ZZ)\) in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) More...
 
virtual const double deltaGammaTotalRatio1 () const
 The new physics contribution to the ratio of the \(\Gamma(H)\) in the current model and in the Standard Model. Only terms that are linear in the effective Lagrangian coefficients. More...
 
virtual const double deltaGammaTotalRatio1noError () const
 The new physics contribution to the ratio of the \(\Gamma(H)\) in the current model and in the Standard Model. Only terms that are linear in the effective Lagrangian coefficients. Neglecting SM theory errors. More...
 
virtual const double deltaGammaTotalRatio2 () const
 The new physics contribution to the ratio of the \(\Gamma(H)\) in the current model and in the Standard Model. Only terms that are quadratic in the effective Lagrangian coefficients. More...
 
virtual const double DeltaGF () const
 New physics contribution to the Fermi constant. More...
 
const double deltaGL_f (const Particle p) const
 New physics contribution to the neutral-current left-handed coupling \(g_L^f\). More...
 
const double deltaGL_f_mu (const Particle p, const double mu) const
 New physics contribution to the neutral-current left-handed coupling \(g_L^f\). More...
 
virtual gslpp::complex deltaGL_Wff (const Particle pbar, const Particle p) const
 New physics contribution to the charged current coupling \(W_\mu \bar{f_L}\gamma^mu f_L\). More...
 
virtual gslpp::complex deltaGL_Wff_mu (const Particle pbar, const Particle p, const double mu) const
 New physics contribution to the charged current coupling \(W_\mu \bar{f_L}\gamma^mu f_L\). More...
 
gslpp::complex deltaGL_Wffh (const Particle pbar, const Particle p) const
 The new physics contribution to the coupling of the effective interaction \(H W_\mu \bar{f_L}\gamma^mu f_L\). More...
 
const double deltaGL_Zffh (const Particle p) const
 The new physics contribution to the coupling of the effective interaction \(H Z_\mu \bar{f_L}\gamma^mu f_L\). More...
 
virtual const double deltaGmu () const
 The relative correction to the muon decay constant, \(\delta G_\mu/G_\mu\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaGmu2 () const
 The relative correction to the muon decay constant, \((\delta G_\mu/G_\mu)^2\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
const double deltaGR_f (const Particle p) const
 New physics contribution to the neutral-current right-handed coupling \(g_R^f\). More...
 
const double deltaGR_f_mu (const Particle p, const double mu) const
 New physics contribution to the neutral-current right-handed coupling \(g_R^f\). More...
 
virtual gslpp::complex deltaGR_Wff (const Particle pbar, const Particle p) const
 New physics contribution to the charged current coupling \(W_\mu \bar{f_R}\gamma^mu f_R\). More...
 
virtual gslpp::complex deltaGR_Wff_mu (const Particle pbar, const Particle p, const double mu) const
 New physics contribution to the charged current coupling \(W_\mu \bar{f_R}\gamma^mu f_R\). More...
 
gslpp::complex deltaGR_Wffh (const Particle pbar, const Particle p) const
 The new physics contribution to the coupling of the effective interaction \(H W_\mu \bar{f_R}\gamma^mu f_R\). More...
 
const double deltaGR_Zffh (const Particle p) const
 The new physics contribution to the coupling of the effective interaction \(H Z_\mu \bar{f_R}\gamma^mu f_R\). More...
 
virtual const double deltaGV_f (const Particle p) const
 New physics contribution to the neutral-current vector coupling \(g_V^f\). More...
 
virtual const double deltaGwd6 () const
 The relative NP corrections to the width of the \(W\) boson, \(\delta \Gamma_W/\Gamma_W\). More...
 
virtual const double deltaGwd62 () const
 The relative NP corrections to the width of the \(W\) boson squared, \((\delta \Gamma_W/\Gamma_W)^2\). More...
 
virtual const double deltaGzd6 () const
 The relative NP corrections to the width of the \(Z\) boson, \(\delta \Gamma_Z/\Gamma_Z\). More...
 
virtual const double deltaGzd62 () const
 The relative NP corrections to the width of the \(Z\) boson squared, \((\delta \Gamma_Z/\Gamma_Z)^2\). More...
 
virtual const double deltaH3L1 (double C1) const
 The coefficient of the 1-loop linear term in the Higgs selfcoupling. More...
 
virtual const double deltaH3L2 (double C1) const
 The coefficient of the 1-loop quadratic term in the Higgs selfcoupling. More...
 
virtual const double deltaKgammaNP (const double mu) const
 The new physics contribution to the anomalous triple gauge coupling \(\kappa_{\gamma}\). More...
 
virtual const double deltaKgammaNPEff () const
 The new physics contribution to the effective anomalous triple gauge coupling \(\kappa_{\gamma}^{Eff}\) from arXiv: 1708.09079 [hep-ph]. More...
 
virtual const double deltaKZNP (const double mu) const
 The new physics contribution to the anomalous triple gauge coupling \(\kappa_{Z}\). More...
 
virtual const double deltamb () const
 The relative correction to the mass of the \(b\) quark, \(\delta m_b/m_b\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltamb2 () const
 The relative correction to the mass of the \(b\) quark squared, \((\delta m_b/m_b)^2\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltamc () const
 The relative correction to the mass of the \(c\) quark, \(\delta m_c/m_c\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltamc2 () const
 The relative correction to the mass of the \(c\) quark squared, \((\delta m_c/m_c)^2\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaMh () const
 The relative correction to the mass of the \(H\) boson, \(\delta M_H/M_H\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaMh2 () const
 The relative correction to the mass of the \(H\) boson squared, \((\delta M_H/M_H)^2\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
const double deltaMLL2_f (const Particle f, const double s, const double t) const
 
const double deltaMLR2_f (const Particle f, const double s) const
 
const double deltaMLR2t_e (const double s, const double t) const
 
const double deltaMRL2_f (const Particle f, const double s) const
 
const double deltaMRL2t_e (const double s, const double t) const
 
const double deltaMRR2_f (const Particle f, const double s, const double t) const
 
virtual const double deltamt () const
 The relative correction to the mass of the \(t\) quark, \(\delta m_t/m_t\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltamt2 () const
 The relative correction to the mass of the \(t\) quark squared, \((\delta m_t/m_t)^2\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltamtau () const
 The relative correction to the mass of the \(\tau\) lepton, \(\delta m_\tau/m_\tau\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltamtau2 () const
 The relative correction to the mass of the \(\tau\) lepton squared, \((\delta m_\tau/m_\tau)^2\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaMw () const
 The relative correction to the mass of the \(W\) boson, \(\delta M_W/M_W\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaMw2 () const
 The relative correction to the mass of the \(W\) boson squared, \((\delta M_W/M_W)^2\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaMwd6 () const
 The relative NP corrections to the mass of the \(W\) boson, \(\delta M_W/M_W\). More...
 
virtual const double deltaMwd62 () const
 The relative NP corrections to the mass of the \(W\) boson squared, \((\delta M_W/M_W)^2\). More...
 
virtual const double deltaMz () const
 The relative correction to the mass of the \(Z\) boson, \(\delta M_Z/M_Z\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double deltaMz2 () const
 The relative correction to the mass of the \(Z\) boson squared, \((\delta M_Z/M_Z)^2\), with respect to ref. point used in the SM calculation of Higgs observables. More...
 
virtual const double DeltaOalphtoW (const double dOSMdalpha, const double mu) const
 Difference in prediction in \(\alpha\) scheme and W mass scheme, computed from observable in \(\alpha\) scheme. Difference at tree level. More...
 
virtual const double DeltaOWtoalph (const double dOSMdMW, const double mu) const
 Difference in prediction in \(\alpha\) scheme and W mass scheme, computed from observable in W mass scheme. Difference at tree level. More...
 
virtual const double deltaR0_f (const Particle f) const
 The new physics contribution to the ratio \(R_\ell^0=\Gamma_{\mathrm{had}}/\Gamma_\ell\), \(R_q^0=\Gamma_q/\Gamma_{\mathrm{had}}\) and \(R_\nu^0=\Gamma_\nu/\Gamma_{\mathrm{had}}\), for charged leptons, quarks and neutrinos, respectively. More...
 
virtual const double deltaSigmaHadron () const
 The new physics contribution to the cross section for the process \(e^+ e^-\to Z\to \mathrm{hadrons}\) at the \(Z\) pole, \(\delta \sigma_h^0\). More...
 
virtual const double deltaxseeWW4fLEP2 (const double sqrt_s, const int fstate) const
 The new physics contribution to the cross section in pb for \(e^+ e^- \to W^+ W^- \to 4f \), with \( 4f = 0 (jjjj), 1 (e v jj), 2 (mu v jj), 3 (tau v jj), 4 (e v e v), 5 (mu v mu v), 6 (tau v tau v), 7 (e v mu v), 8 (e v tau v), 9 (mu v tau v), 10 (l v jj), 11 (l v l v) \) the different fermion final states for C.O.M. energies in 188-208 GeV. From arXiv: 1606.06693 [hep-ph]. More...
 
virtual const double deltaxseeWWtotLEP2 (const double sqrt_s) const
 The new physics contribution to the total cross section in pb for \(e^+ e^- \to W^+ W^-\), summing over all final states for C.O.M. energies in 188-208 GeV. From arXiv: 1606.06693 [hep-ph]. More...
 
virtual const double deltayb_HB (const double mu) const
 The Higgs-basis coupling \(\delta y_b\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double deltayc_HB (const double mu) const
 The Higgs-basis coupling \(\delta y_c\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double deltaymu_HB (const double mu) const
 The Higgs-basis coupling \(\delta y_\mu\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double deltays_HB (const double mu) const
 The Higgs-basis coupling \(\delta y_s\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double deltayt_HB (const double mu) const
 The Higgs-basis coupling \(\delta y_t\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double deltaytau_HB (const double mu) const
 The Higgs-basis coupling \(\delta y_\tau\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double delU_gCC (const double mu) const
 Universal indirect correction to EW charged currents. More...
 
virtual const double delU_gNC (const double mu) const
 Universal indirect correction to EW neutral currents. More...
 
virtual const double dxsdcoseeWWlvjjLEP2 (const double sqrt_s, const int bin) const
 The differential cross section in pb for \(e^+ e^- \to W^+ W^- \to lv jj \), with \( l= e,\mu \) for the 4 \( cos{\theta}\) bins defined in arXiv: 1606.06693 [hep-ph]. for the C.O.M. energies of 182.6 and 205.9 GeV. From arXiv: 1606.06693 [hep-ph]. More...
 
virtual const double dxseeWWdcos (const double sqrt_s, const double cos) const
 The differential distribution for \(e^+ e^- \to W^+ W^- \to jj \ell \nu\), with \(\ell= e, \mu\), as a function of the \(W\) polar angle. More...
 
virtual const double dxseeWWdcosBin (const double sqrt_s, const double cos1, const double cos2) const
 The integral of differential distribution for \(e^+ e^- \to W^+ W^- \to jj \ell \nu\), with \(\ell= e, \mu\) in a given bin of the \(W\) polar angle. More...
 
virtual const double Gamma_Z () const
 The total decay width of the \(Z\) boson, \(\Gamma_Z\). More...
 
virtual const double Gamma_Zf (const Particle f) const
 The decay width of the \(Z\) boson into a given fermion pair, \(\Gamma_Z^{f}\). More...
 
const double GammaH2d2dRatio () const
 The ratio of the \(\Gamma(H\to 2d2d)\) in the current model and in the Standard Model. More...
 
const double GammaH2e2muRatio () const
 The ratio of the \(\Gamma(H\to 2e 2\mu)\) in the current model and in the Standard Model. More...
 
const double GammaH2e2vRatio () const
 The ratio of the \(\Gamma(H\to 2e2v)\) in the current model and in the Standard Model. More...
 
const double GammaH2evRatio () const
 The ratio of the \(\Gamma(H\to 2ev)\) in the current model and in the Standard Model. More...
 
const double GammaH2L2dRatio () const
 The ratio of the \(\Gamma(H\to 2L2d)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
const double GammaH2L2LRatio () const
 The ratio of the \(\Gamma(H\to 2L2L')\) ( \(L,L'=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
const double GammaH2L2uRatio () const
 The ratio of the \(\Gamma(H\to 2L2u)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
const double GammaH2L2v2Ratio () const
 The ratio of the \(\Gamma(H\to 2L2v)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. More...
 
const double GammaH2L2vRatio () const
 The ratio of the \(\Gamma(H\to 2L2v)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
const double GammaH2l2vRatio () const
 The ratio of the \(\Gamma(H\to 2l2v)\) ( \(l=e,\mu\)) in the current model and in the Standard Model. More...
 
const double GammaH2Lv2Ratio () const
 The ratio of the \(\Gamma(H\to 2Lv)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. More...
 
const double GammaH2LvRatio () const
 The ratio of the \(\Gamma(H\to 2Lv)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
const double GammaH2mu2vRatio () const
 The ratio of the \(\Gamma(H\to 2\mu 2v)\) in the current model and in the Standard Model. More...
 
const double GammaH2muvRatio () const
 The ratio of the \(\Gamma(H\to 2\mu v)\) in the current model and in the Standard Model. More...
 
const double GammaH2u2dRatio () const
 The ratio of the \(\Gamma(H\to 2u2d)\) in the current model and in the Standard Model. More...
 
const double GammaH2u2uRatio () const
 The ratio of the \(\Gamma(H\to 2u2u)\) in the current model and in the Standard Model. More...
 
const double GammaH2udRatio () const
 The ratio of the \(\Gamma(H\to 2ud)\) in the current model and in the Standard Model. More...
 
const double GammaH2v2dRatio () const
 The ratio of the \(\Gamma(H\to 2v2d)\) in the current model and in the Standard Model. More...
 
const double GammaH2v2uRatio () const
 The ratio of the \(\Gamma(H\to 2v2u)\) in the current model and in the Standard Model. More...
 
const double GammaH2v2vRatio () const
 The ratio of the \(\Gamma(H\to 2v2v)\) in the current model and in the Standard Model. More...
 
const double GammaH4dRatio () const
 The ratio of the \(\Gamma(H\to 4d)\) in the current model and in the Standard Model. More...
 
const double GammaH4eRatio () const
 The ratio of the \(\Gamma(H\to 4e)\) in the current model and in the Standard Model. More...
 
const double GammaH4fCCRatio () const
 The ratio of the \(\Gamma(H\to 4f)\) via CC in the current model and in the Standard Model. More...
 
const double GammaH4fNCRatio () const
 The ratio of the \(\Gamma(H\to 4f)\) via NC in the current model and in the Standard Model. More...
 
const double GammaH4fRatio () const
 The ratio of the \(\Gamma(H\to 4f)\) in the current model and in the Standard Model. More...
 
const double GammaH4L2Ratio () const
 The ratio of the \(\Gamma(H\to 4L)\) ( \(L=e,\mu\)) in the current model and in the Standard Model. More...
 
const double GammaH4LRatio () const
 The ratio of the \(\Gamma(H\to 4L)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
const double GammaH4lRatio () const
 The ratio of the \(\Gamma(H\to 4l)\) ( \(l=e,\mu\)) in the current model and in the Standard Model. More...
 
const double GammaH4muRatio () const
 The ratio of the \(\Gamma(H\to 4\mu)\) in the current model and in the Standard Model. More...
 
const double GammaH4uRatio () const
 The ratio of the \(\Gamma(H\to 4u)\) in the current model and in the Standard Model. More...
 
const double GammaH4vRatio () const
 The ratio of the \(\Gamma(H\to 4v)\) in the current model and in the Standard Model. More...
 
const double GammaHbbRatio () const
 The ratio of the \(\Gamma(H\to bb)\) in the current model and in the Standard Model. More...
 
const double GammaHccRatio () const
 The ratio of the \(\Gamma(H\to cc)\) in the current model and in the Standard Model. More...
 
const double GammaHevmuvRatio () const
 The ratio of the \(\Gamma(H\to e\nu \mu\nu)\) in the current model and in the Standard Model. More...
 
const double GammaHgagaRatio () const
 The ratio of the \(\Gamma(H\to \gamma\gamma)\) in the current model and in the Standard Model. More...
 
const double GammaHggRatio () const
 The ratio of the \(\Gamma(H\to gg)\) in the current model and in the Standard Model. More...
 
const double GammaHll_vvorjjRatio () const
 The ratio of the \(\Gamma(H\to l l \nu\nu, l l j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. More...
 
const double GammaHlv_lvorjjRatio () const
 The ratio of the \(\Gamma(H\to l \nu l \nu, l \nu j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. More...
 
const double GammaHlvjjRatio () const
 The ratio of the \(\Gamma(H\to l l j j)\) ( \(l=e,\mu@f,~~j\not=b$) in the current model and in the Standard Model. @return \)\Gamma(H\to l l j j) \(/\)\Gamma(H\to l l j j)_{\mathrm{SM}} \( */ const double GammaHlljjRatio() const; /** @brief The new physics contribution to the ratio of the \)\Gamma(H\to l l j j) \( (\)l=e,\mu,~~j\not=b \() in the current model and in the Standard Model. (Only terms that are linear in the effective Lagrangian coefficients.) @return \)\delta \Gamma(H\to l l j j) \(/\)\Gamma(H\to l l j j)_{\mathrm{SM}} \( */ const double deltaGammaHlljjRatio1() const; /** @brief The new physics contribution to the ratio of the \)\Gamma(H\to l l j j) \( (\)l=e,\mu,~~j\not=b \() in the current model and in the Standard Model. (Only terms that are quadratic in the effective Lagrangian coefficients.) @return \)\delta \Gamma(H\to l l j j) \(/\)\Gamma(H\to l l j j)_{\mathrm{SM}} \( */ const double deltaGammaHlljjRatio2() const; /** @brief The ratio of the Br\)(H\to l l j j) \( (\)l=e,\mu,~~j\not=b \() in the current model and in the Standard Model. @return Br\)(H\to l l j j) \(/Br\)(H\to l l j j)_{\mathrm{SM}} \( */ virtual const double BrHlljjRatio() const; /** @brief The ratio of the \)\Gamma(H\to l \nu j j) \( (\)l=e,\mu@f,~~j\not=b$) in the current model and in the Standard Model. More...
 
const double GammaHLvudRatio () const
 The ratio of the \(\Gamma(H\to Lvud)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
const double GammaHLvvLRatio () const
 The ratio of the \(\Gamma(H\to LvvL)\) ( \(L=e,\mu,\tau\)) in the current model and in the Standard Model. More...
 
const double GammaHmumuRatio () const
 The ratio of the \(\Gamma(H\to \mu\mu)\) in the current model and in the Standard Model. More...
 
const double GammaHssRatio () const
 The ratio of the \(\Gamma(H\to ss)\) in the current model and in the Standard Model. More...
 
const double GammaHtautauRatio () const
 The ratio of the \(\Gamma(H\to \tau\tau)\) in the current model and in the Standard Model. More...
 
const double GammaHudduRatio () const
 The ratio of the \(\Gamma(H\to uddu)\) in the current model and in the Standard Model. More...
 
const double GammaHWffRatio () const
 The ratio of the \(\Gamma(H\to W f f)\), with \(f\) any fermion, in the current model and in the Standard Model. More...
 
const double GammaHWjjRatio () const
 The ratio of the \(\Gamma(H\to W j j)\) in the current model and in the Standard Model. More...
 
const double GammaHWlvRatio () const
 The ratio of the \(\Gamma(H\to W l\nu)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. More...
 
const double GammaHWW2l2vRatio () const
 The ratio of the \(\Gamma(H\to WW^*\to l\nu l\nu)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. More...
 
const double GammaHWW4fRatio () const
 The ratio of the \(\Gamma(H\to WW^*\to 4f)\), with \(f\) any fermion, in the current model and in the Standard Model. More...
 
const double GammaHWW4jRatio () const
 The ratio of the \(\Gamma(H\to WW^*\to 4j)\) in the current model and in the Standard Model. More...
 
const double GammaHWWRatio () const
 The ratio of the \(\Gamma(H\to WW)\) in the current model and in the Standard Model. More...
 
const double GammaHZddRatio () const
 The ratio of the \(\Gamma(H\to Zd d)\) ( \(d=d,s,b \)) in the current model and in the Standard Model. More...
 
const double GammaHZeeRatio () const
 The ratio of the \(\Gamma(H\to Zee)\) in the current model and in the Standard Model. More...
 
const double GammaHZffRatio () const
 The ratio of the \(\Gamma(H\to Zff)\), with \(f\) any fermion, in the current model and in the Standard Model. More...
 
const double GammaHZgaRatio () const
 The ratio of the \(\Gamma(H\to Z\gamma)\) in the current model and in the Standard Model. More...
 
const double GammaHZllRatio () const
 The ratio of the \(\Gamma(H\to Zll)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. More...
 
const double GammaHZmumuRatio () const
 The ratio of the \(\Gamma(H\to Z\mu\mu)\) in the current model and in the Standard Model. More...
 
const double GammaHZuuRatio () const
 The ratio of the \(\Gamma(H\to Zu u)\) ( \(u=u,c \)) in the current model and in the Standard Model. More...
 
const double GammaHZvvRatio () const
 The ratio of the \(\Gamma(H\to Z\nu\nu)\) in the current model and in the Standard Model. More...
 
const double GammaHZZ2e2muRatio () const
 The ratio of the \(\Gamma(H\to ZZ* \to 2e2\mu)\) in the current model and in the Standard Model. More...
 
const double GammaHZZ4dRatio () const
 The ratio of the \(\Gamma(H\to ZZ* \to 4 d)\) ( \(d=d,s,b \)) in the current model and in the Standard Model. More...
 
const double GammaHZZ4eRatio () const
 The ratio of the \(\Gamma(H\to ZZ* \to 4e)\) in the current model and in the Standard Model. More...
 
const double GammaHZZ4fRatio () const
 The ratio of the \(\Gamma(H\to ZZ* \to 4f)\), with \(f\) any fermion, in the current model and in the Standard Model. More...
 
const double GammaHZZ4lRatio () const
 The ratio of the \(\Gamma(H\to ZZ* \to 4l)\) ( \(l=e,\mu \)) in the current model and in the Standard Model. More...
 
const double GammaHZZ4muRatio () const
 The ratio of the \(\Gamma(H\to ZZ* \to 4\mu)\) in the current model and in the Standard Model. More...
 
const double GammaHZZ4uRatio () const
 The ratio of the \(\Gamma(H\to ZZ* \to 4 u)\) ( \(u=u,c \)) in the current model and in the Standard Model. More...
 
const double GammaHZZ4vRatio () const
 The ratio of the \(\Gamma(H\to ZZ* \to 4\nu)\) in the current model and in the Standard Model. More...
 
const double GammaHZZRatio () const
 The ratio of the \(\Gamma(H\to ZZ)\) in the current model and in the Standard Model. More...
 
virtual const double GammaW () const
 The total width of the \(W\) boson, \(\Gamma_W\). More...
 
virtual const double GammaW (const Particle fi, const Particle fj) const
 A partial decay width of the \(W\) boson decay into a SM fermion pair. More...
 
void GenerateSMInitialConditions ()
 Generates the initial condition for the Standard Model parameters. More...
 
double getCG_LNP () const
 Return CG_LNP. More...
 
double getLambda_NP () const
 Return Lambda_NP. More...
 
virtual NPSMEFTd6GeneralMatchinggetMatching () const
 A method to get the Matching object for this model. More...
 
virtual const double IctW_TWG (const double mu) const
 
virtual const double IctZ_TWG (const double mu) const
 
virtual bool Init (const std::map< std::string, double > &DPars)
 A method to initialize the model parameters. More...
 
virtual const double intDMLL2eus2 (const double s, const double t0, const double t1) const
 
virtual const double intDMLR2etildest2 (const double s, const double t0, const double t1) const
 
virtual const double intDMLR2ets2 (const double s, const double t0, const double t1) const
 
virtual const double intDMRL2etildest2 (const double s, const double t0, const double t1) const
 
virtual const double intDMRL2ets2 (const double s, const double t0, const double t1) const
 
virtual const double intDMRR2eus2 (const double s, const double t0, const double t1) const
 
virtual const double kappaAeff () const
 The effective coupling \(\kappa_{A,eff}=\sqrt{\Gamma_{HAA}/\Gamma_{HAA}^{SM}}\). More...
 
virtual const double kappabeff () const
 The effective coupling \(\kappa_{b,eff}=\sqrt{\Gamma_{Hbb}/\Gamma_{Hbb}^{SM}}\). More...
 
virtual const double kappaceff () const
 The effective coupling \(\kappa_{c,eff}=\sqrt{\Gamma_{Hcc}/\Gamma_{Hcc}^{SM}}\). More...
 
virtual const double kappaGeff () const
 The effective coupling \(\kappa_{G,eff}=\sqrt{\Gamma_{HGG}/\Gamma_{HGG}^{SM}}\). More...
 
virtual const double kappamueff () const
 The effective coupling \(\kappa_{\mu,eff}=\sqrt{\Gamma_{H\mu\mu}/\Gamma_{H\mu\mu}^{SM}}\). More...
 
virtual const double kappaseff () const
 The effective coupling \(\kappa_{s,eff}=\sqrt{\Gamma_{Hss}/\Gamma_{Hss}^{SM}}\). More...
 
virtual const double kappataueff () const
 The effective coupling \(\kappa_{\tau,eff}=\sqrt{\Gamma_{H\tau\tau}/\Gamma_{H\tau\tau}^{SM}}\). More...
 
virtual const double kappaW4feff () const
 The effective coupling \(\kappa_{W4f,eff}=\sqrt{\Gamma_{H4f, CC}/\Gamma_{H4f, CC}^{SM}}\). More...
 
virtual const double kappaWeff () const
 The effective coupling \(\kappa_{W,eff}=\sqrt{\Gamma_{HWW}/\Gamma_{HWW}^{SM}}\). More...
 
virtual const double kappaZ4feff () const
 The effective coupling \(\kappa_{Z4f,eff}=\sqrt{\Gamma_{H4f, NC}/\Gamma_{H4f, NC}^{SM}}\). More...
 
virtual const double kappaZAeff () const
 The effective coupling \(\kappa_{ZA,eff}=\sqrt{\Gamma_{HZA}/\Gamma_{HZA}^{SM}}\). More...
 
virtual const double kappaZeff () const
 The effective coupling \(\kappa_{Z,eff}=\sqrt{\Gamma_{HZZ}/\Gamma_{HZZ}^{SM}}\). More...
 
virtual const double lambdaZNP (const double mu) const
 The new physics contribution to the anomalous triple gauge coupling \(\lambda_{Z}\). More...
 
virtual const double lambz_HB (const double mu) const
 The Higgs-basis coupling \(\lambda_{z}\). (See LHCHXSWG-INT-2015-001 document.) Note that the Lagrangian definition of the Higgs-basis parameters coincides with the one of some of the \(g_i, \delta g_i\) couplings defined above. In the Higgs basis, however, one uses the freedom to perform certain field redefinitions and operations to demand that the mass eigenstate Lagrangian has specific features. (See pag. 5,6 in the reference.) Therefore, the actual expression in terms of dim 6 coefficients may differ from the one for \(g_i, \delta g_i\). More...
 
virtual const double mubbH (const double sqrt_s) const
 The ratio \(\mu_{bbH}\) between the bbH production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeHee (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{e^+e^- \to He^+e^-}\) between the \( e^+e^- \to H e^+e^- \) associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeHvv (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{e^+e^- \to H\nu\bar{\nu}}\) between the \( e^+e^- \to H\nu\bar{\nu} \) associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueettH (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{eettH}\) between the \( e^{+}e^{-}\to t\bar{t} H \) production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeWBF (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{eeWBF}\) between the \( e^{+}e^{-}\to \nu\bar{\nu} H \) production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeWW (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{eeWW}\) between the \( e^{+}e^{-}\to W^{+}W^{-} \) production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeZBF (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{eeZBF}\) between the \( e^{+}e^{-}\to e^{+}e^{-} H \) production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeZH (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{eeZH}\) between the \(e^{+}e^{-}\to ZH\) associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeZHGen (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{eeZH}\) between the \( e^{+}e^{-}\to ZH \) associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeZHPol (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{eeZH}\) between the \( e^{+}e^{-}\to ZH \) associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeZllH (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{eeZH, Z \to e^+ e^-, \mu^+ \mu^-}\) between the \( e^{+}e^{-}\to ZH, Z \to e^+ e^-, \mu^+ \mu^- \) associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeZllHPol (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{eeZH, Z \to e^+ e^-, \mu^+ \mu^-}\) between the \( e^{+}e^{-}\to ZH, Z \to e^+ e^-, \mu^+ \mu^- \) associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeZqqH (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{eeZH, Z \to q \bar{q}}\) between the \( e^{+}e^{-}\to ZH, Z \to q \bar{q} \) associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double mueeZqqHPol (const double sqrt_s, const double Pol_em, const double Pol_ep) const
 The ratio \(\mu_{eeZH, Z \to q \bar{q}}\) between the \( e^{+}e^{-}\to ZH, Z \to q \bar{q} \) associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double muepWBF (const double sqrt_s) const
 The ratio \(\mu_{epWBF}\) between the \( e^{-} p\to \nu j H \) production cross-section in the current model and in the Standard Model. More...
 
virtual const double muepZBF (const double sqrt_s) const
 The ratio \(\mu_{epZBF}\) between the \( e^{-} p\to e^{-} j H \) production cross-section in the current model and in the Standard Model. More...
 
virtual const double muggH (const double sqrt_s) const
 The ratio \(\mu_{ggH}\) between the gluon-gluon fusion Higgs production cross-section in the current model and in the Standard Model. More...
 
virtual const double muggHbb (const double sqrt_s) const
 The ratio \(\mu_{ggH,bb}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muggHgaga (const double sqrt_s) const
 The ratio \(\mu_{ggH,\gamma\gamma}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muggHH (const double sqrt_s) const
 The ratio \(\mu_{ggHH}\) between the gluon-gluon fusion di-Higgs production cross-section in the current model and in the Standard Model. (From arXiv: 1502.00539 [hpe-ph].) More...
 
virtual const double muggHmumu (const double sqrt_s) const
 The ratio \(\mu_{ggH,\mu\mu}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muggHpttH (const double sqrt_s) const
 The ratio \(\mu_{ggH+ttH}\) between the sum of gluon-gluon fusion and t-tbar-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double muggHtautau (const double sqrt_s) const
 The ratio \(\mu_{ggH,\tau\tau}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muggHWW (const double sqrt_s) const
 The ratio \(\mu_{ggH,WW}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muggHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{ggH,WW\to 2l2\nu}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muggHZga (const double sqrt_s) const
 The ratio \(\mu_{ggH,Z\gamma}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muggHZZ (const double sqrt_s) const
 The ratio \(\mu_{ggH,ZZ}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muggHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{ggH,ZZ\to 4l}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double mummH (const double sqrt_s) const
 The ratio \(\mu_{\mu\mu H}\) between the \(\sigma(\mu \mu \to H)}\) production cross-section in the current model and in the Standard Model. More...
 
virtual const double mummHmm (const double sqrt_s) const
 The ratio \(\mu_{\mu\mu H\mu\mu}\) between the \(\sigma(\mu \mu \to H \mu \mu)}\) production cross-section in the current model and in the Standard Model. More...
 
virtual const double mummHNWA (const double sqrt_s) const
 The ratio \(\mu_{\mu\mu H}\) between the \(\sigma(\mu \mu \to H)}\) production cross-section in the current model and in the Standard Model, in the narrow width approximation. More...
 
virtual const double mummHvv (const double sqrt_s) const
 The ratio \(\mu_{\mu\mu H\nu\nu}\) between the \(\sigma(\mu \mu \to H \nu \nu)}\) production cross-section in the current model and in the Standard Model. More...
 
virtual const double mummttH (const double sqrt_s) const
 The ratio \(\mu_{\mu\mu ttH}\) between the \(\sigma(\mu \mu \to t\bar{t} H )}\) production cross-section in the current model and in the Standard Model. More...
 
virtual const double mummZH (const double sqrt_s) const
 The ratio \(\mu_{\mu\mu ZH}\) between the \(\sigma(\mu \mu \to Z H)}\) production cross-section in the current model and in the Standard Model. More...
 
virtual const double mupTVppWZ (const double sqrt_s, const double pTV1, const double pTV2) const
 The number of events in \( p p \to WZ\) in a given \(p_{TV}\) bin, normalized to the SM prediction. From arXiv: 1712.01310 [hep-ph] and private communication. Implemented only in NPSMEFTd6General class. More...
 
virtual const double mutH (const double sqrt_s) const
 The ratio \(\mu_{tH}\) between the t-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double mutHq (const double sqrt_s) const
 The ratio \(\mu_{tHq}\) between the t-q-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double muTHUggHbb (const double sqrt_s) const
 The ratio \(\mu_{ggH,bb}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muTHUggHgaga (const double sqrt_s) const
 The ratio \(\mu_{ggH,\gamma\gamma}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muTHUggHmumu (const double sqrt_s) const
 The ratio \(\mu_{ggH,\mu\mu}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUggHtautau (const double sqrt_s) const
 The ratio \(\mu_{ggH,\tau\tau}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muTHUggHWW (const double sqrt_s) const
 The ratio \(\mu_{ggH,WW}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUggHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{ggH,WW\to 2l2\nu}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUggHZga (const double sqrt_s) const
 The ratio \(\mu_{ggH,Z\gamma}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muTHUggHZgamumu (const double sqrt_s) const
 The ratio \(\mu_{ggH,Z\gamma\to \gamma 2\mu}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(Z \gamma\to \gamma 2\mu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUggHZZ (const double sqrt_s) const
 The ratio \(\mu_{ggH,ZZ}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUggHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{ggH,ZZ\to 4l}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double muTHUggHZZ4mu (const double sqrt_s) const
 The ratio \(\mu_{ggH,ZZ\to 4\mu}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into \(Z Z^*\to 4\mu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUttHbb (const double sqrt_s) const
 The ratio \(\mu_{ttH,bb}\) between the ttH production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muTHUttHgaga (const double sqrt_s) const
 The ratio \(\mu_{ttH,\gamma\gamma}\) between the ttH production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muTHUttHmumu (const double sqrt_s) const
 The ratio \(\mu_{ttH,\mu\mu}\) between the ttH production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUttHtautau (const double sqrt_s) const
 The ratio \(\mu_{ttH,\tau\tau}\) between the ttH production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muTHUttHWW (const double sqrt_s) const
 The ratio \(\mu_{ttH,WW}\) between the ttH production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUttHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{ttH,WW\to 2l2\nu}\) between the ttH production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUttHZga (const double sqrt_s) const
 The ratio \(\mu_{ttH,Z\gamma}\) between the ttH production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muTHUttHZZ (const double sqrt_s) const
 The ratio \(\mu_{ttH,ZZ}\) between the ttH production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUttHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{ttH,ZZ\to 4l}\) between the ttH production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVBFBRinv (const double sqrt_s) const
 The ratio \(\mu_{VBF}\) between the VBF production cross-section in the current model and in the Standard Model, multiplied by the total (SM+new physics) invisible decay branching ratio. More...
 
virtual const double muTHUVBFHbb (const double sqrt_s) const
 The ratio \(\mu_{VBF,bb}\) between the VBF Higgs production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVBFHgaga (const double sqrt_s) const
 The ratio \(\mu_{VBF,\gamma\gamma}\) between the VBF Higgs production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muTHUVBFHinv (const double sqrt_s) const
 The ratio \(\mu_{VBF,inv}\) between the VBF production cross-section with subsequent decay into invisible states in the current model and in the Standard Model. More...
 
virtual const double muTHUVBFHmumu (const double sqrt_s) const
 The ratio \(\mu_{VBF,\mu\mu}\) between the VBF Higgs production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVBFHtautau (const double sqrt_s) const
 The ratio \(\mu_{VBF,\tau\tau}\) between the VBF Higgs production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVBFHWW (const double sqrt_s) const
 The ratio \(\mu_{VBF,WW}\) between the VBF Higgs production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVBFHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{VBF,WW\to 2l2\nu}\) between the VBF Higgs production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVBFHZga (const double sqrt_s) const
 The ratio \(\mu_{VBF,Z\gamma}\) between the VBF Higgs production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVBFHZZ (const double sqrt_s) const
 The ratio \(\mu_{VBF,ZZ}\) between the VBF Higgs production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVBFHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{VBF,ZZ\to 4l}\) between the VBF Higgs production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVHbb (const double sqrt_s) const
 The ratio \(\mu_{VH,bb}\) between the VH production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVHBRinv (const double sqrt_s) const
 The ratio \(\mu_{VH}\) between the VH production cross-section in the current model and in the Standard Model, multiplied by the total (SM+new physics) invisible decay branching ratio. More...
 
virtual const double muTHUVHgaga (const double sqrt_s) const
 The ratio \(\mu_{VH,\gamma\gamma}\) between the VH production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muTHUVHinv (const double sqrt_s) const
 The ratio \(\mu_{VH,inv}\) between the VH production cross-section with subsequent decay into invisible states in the current model and in the Standard Model. More...
 
virtual const double muTHUVHmumu (const double sqrt_s) const
 The ratio \(\mu_{VH,\mu\mu}\) between the VH production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVHtautau (const double sqrt_s) const
 The ratio \(\mu_{VH,\tau\tau}\) between the VH production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVHWW (const double sqrt_s) const
 The ratio \(\mu_{VH,WW}\) between the VH production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{VH,WW\to 2l2\nu}\) between the VH production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVHZga (const double sqrt_s) const
 The ratio \(\mu_{VH,Z\gamma}\) between the VH production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVHZZ (const double sqrt_s) const
 The ratio \(\mu_{VH,ZZ}\) between the VH production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUVHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{VH,ZZ\to 4l}\) between the VH production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double muTHUWHbb (const double sqrt_s) const
 The ratio \(\mu_{WH,bb}\) between the WH production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muTHUWHgaga (const double sqrt_s) const
 The ratio \(\mu_{WH,\gamma\gamma}\) between the WH production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muTHUWHmumu (const double sqrt_s) const
 The ratio \(\mu_{WH,\mu\mu}\) between the WH production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUWHtautau (const double sqrt_s) const
 The ratio \(\mu_{WH,\tau\tau}\) between the WH production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muTHUWHWW (const double sqrt_s) const
 The ratio \(\mu_{WH,WW}\) between the WH production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUWHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{WH,WW\to 2l2\nu}\) between the WH production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUWHZga (const double sqrt_s) const
 The ratio \(\mu_{WH,Z\gamma}\) between the WH production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muTHUWHZZ (const double sqrt_s) const
 The ratio \(\mu_{WH,ZZ}\) between the WH production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUWHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{WH,ZZ\to 4l}\) between the WH production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double muTHUZHbb (const double sqrt_s) const
 The ratio \(\mu_{ZH,bb}\) between the ZH production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muTHUZHgaga (const double sqrt_s) const
 The ratio \(\mu_{ZH,\gamma\gamma}\) between the ZH production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muTHUZHmumu (const double sqrt_s) const
 The ratio \(\mu_{ZH,\mu\mu}\) between the ZH production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUZHtautau (const double sqrt_s) const
 The ratio \(\mu_{ZH,\tau\tau}\) between the ZH production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muTHUZHWW (const double sqrt_s) const
 The ratio \(\mu_{ZH,WW}\) between the ZH production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUZHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{ZH,WW\to 2l2\nu}\) between the ZH production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muTHUZHZga (const double sqrt_s) const
 The ratio \(\mu_{ZH,Z\gamma}\) between the ZH production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muTHUZHZZ (const double sqrt_s) const
 The ratio \(\mu_{ZH,ZZ}\) between the ZH production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muTHUZHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{ZH,ZZ\to 4l}\) between the ZH production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double muttH (const double sqrt_s) const
 The ratio \(\mu_{ttH}\) between the t-tbar-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double muttHbb (const double sqrt_s) const
 The ratio \(\mu_{ttH,bb}\) between the ttH production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muttHgaga (const double sqrt_s) const
 The ratio \(\mu_{ttH,\gamma\gamma}\) between the ttH production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muttHgagaZeeboost (const double sqrt_s) const
 The ratio \(\sigma(ttH)/\sigma(ttZ)\) in the \(H\to b\bar{b}\), \(Z\to e^+e^-\) channel channel in the current model and in the Standard Model. More...
 
virtual const double muttHmumu (const double sqrt_s) const
 The ratio \(\mu_{ttH,\mu\mu}\) between the ttH production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muttHtautau (const double sqrt_s) const
 The ratio \(\mu_{ttH,\tau\tau}\) between the ttH production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muttHWW (const double sqrt_s) const
 The ratio \(\mu_{ttH,WW}\) between the ttH production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muttHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{ttH,WW\to 2l2\nu}\) between the ttH production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muttHZbbboost (const double sqrt_s) const
 The ratio \(\sigma(ttH)/\sigma(ttZ)\) in the \(H,Z\to b\bar{b}\) channel in the current model and in the Standard Model. More...
 
virtual const double muttHZga (const double sqrt_s) const
 The ratio \(\mu_{ttH,Z\gamma}\) between the ttH production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muttHZZ (const double sqrt_s) const
 The ratio \(\mu_{ttH,ZZ}\) between the ttH production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muttHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{ttH,ZZ\to 4l}\) between the ttH production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double muVBF (const double sqrt_s) const
 The ratio \(\mu_{VBF}\) between the vector-boson fusion Higgs production cross-section in the current model and in the Standard Model. More...
 
virtual const double muVBFgamma (const double sqrt_s) const
 The ratio \(\mu_{VBF+\gamma}\) between the vector-boson fusion Higgs production cross-section in association with a hard photon in the current model and in the Standard Model. More...
 
virtual const double muVBFHbb (const double sqrt_s) const
 The ratio \(\mu_{VBF,bb}\) between the VBF Higgs production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muVBFHgaga (const double sqrt_s) const
 The ratio \(\mu_{VBF,\gamma\gamma}\) between the VBF Higgs production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muVBFHmumu (const double sqrt_s) const
 The ratio \(\mu_{VBF,\mu\mu}\) between the VBF Higgs production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muVBFHtautau (const double sqrt_s) const
 The ratio \(\mu_{VBF,\tau\tau}\) between the VBF Higgs production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muVBFHWW (const double sqrt_s) const
 The ratio \(\mu_{VBF,WW}\) between the VBF Higgs production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muVBFHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{VBF,WW\to 2l2\nu}\) between the VBF Higgs production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muVBFHZga (const double sqrt_s) const
 The ratio \(\mu_{VBF,Z\gamma}\) between the VBF Higgs production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muVBFHZZ (const double sqrt_s) const
 The ratio \(\mu_{VBF,ZZ}\) between the VBF Higgs production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muVBFHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{VBF,ZZ\to 4l}\) between the VBF Higgs production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double muVBFpVH (const double sqrt_s) const
 The ratio \(\mu_{VBF+VH}\) between the sum of VBF and WH+ZH associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double muVH (const double sqrt_s) const
 The ratio \(\mu_{VH}\) between the WH+ZH associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double muVHbb (const double sqrt_s) const
 The ratio \(\mu_{VH,bb}\) between the VH production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muVHgaga (const double sqrt_s) const
 The ratio \(\mu_{VH,\gamma\gamma}\) between the VH production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muVHmumu (const double sqrt_s) const
 The ratio \(\mu_{VH,\mu\mu}\) between the VH production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muVHpT250 (const double sqrt_s) const
 The ratio \(\mu_{VH}\) between the WH+ZH associated production cross-section in the current model and in the Standard Model, with \(p_{T,H}>250\) GeV. More...
 
virtual const double muVHtautau (const double sqrt_s) const
 The ratio \(\mu_{VH,\tau\tau}\) between the VH production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muVHWW (const double sqrt_s) const
 The ratio \(\mu_{VH,WW}\) between the VH production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muVHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{VH,WW\to 2l2\nu}\) between the VH production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muVHZga (const double sqrt_s) const
 The ratio \(\mu_{VH,Z\gamma}\) between the VH production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muVHZZ (const double sqrt_s) const
 The ratio \(\mu_{VH,ZZ}\) between the VH production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muVHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{VH,ZZ\to 4l}\) between the VH production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double muWH (const double sqrt_s) const
 The ratio \(\mu_{WH}\) between the W-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double muWHbb (const double sqrt_s) const
 The ratio \(\mu_{WH,bb}\) between the WH production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muWHgaga (const double sqrt_s) const
 The ratio \(\mu_{WH,\gamma\gamma}\) between the WH production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muWHmumu (const double sqrt_s) const
 The ratio \(\mu_{WH,\mu\mu}\) between the WH production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muWHpT250 (const double sqrt_s) const
 The ratio \(\mu_{WH}\) between the W-Higgs associated production cross-section in the current model and in the Standard Model, with \(p_{T,H}>250\) GeV. More...
 
virtual const double muWHtautau (const double sqrt_s) const
 The ratio \(\mu_{WH,\tau\tau}\) between the WH production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muWHWW (const double sqrt_s) const
 The ratio \(\mu_{WH,WW}\) between the WH production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muWHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{WH,WW\to 2l2\nu}\) between the WH production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muWHZga (const double sqrt_s) const
 The ratio \(\mu_{WH,Z\gamma}\) between the WH production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muWHZZ (const double sqrt_s) const
 The ratio \(\mu_{WH,ZZ}\) between the WH production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muWHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{WH,ZZ\to 4l}\) between the WH production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double muZH (const double sqrt_s) const
 The ratio \(\mu_{ZH}\) between the Z-Higgs associated production cross-section in the current model and in the Standard Model. More...
 
virtual const double muZHbb (const double sqrt_s) const
 The ratio \(\mu_{ZH,bb}\) between the ZH production cross-section with subsequent decay into \(bb\) in the current model and in the Standard Model. More...
 
virtual const double muZHgaga (const double sqrt_s) const
 The ratio \(\mu_{ZH,\gamma\gamma}\) between the ZH production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. More...
 
virtual const double muZHmumu (const double sqrt_s) const
 The ratio \(\mu_{ZH,\mu\mu}\) between the ZH production cross-section with subsequent decay into \(\mu\mu\) in the current model and in the Standard Model. More...
 
virtual const double muZHpT250 (const double sqrt_s) const
 The ratio \(\mu_{ZH}\) between the Z-Higgs associated production cross-section in the current model and in the Standard Model, with \(p_{T,H}>250\) GeV. More...
 
virtual const double muZHtautau (const double sqrt_s) const
 The ratio \(\mu_{ZH,\tau\tau}\) between the ZH production cross-section with subsequent decay into \(\tau\tau\) in the current model and in the Standard Model. More...
 
virtual const double muZHWW (const double sqrt_s) const
 The ratio \(\mu_{ZH,WW}\) between the ZH production cross-section with subsequent decay into \(W W^*\) in the current model and in the Standard Model. More...
 
virtual const double muZHWW2l2v (const double sqrt_s) const
 The ratio \(\mu_{ZH,WW\to 2l2\nu}\) between the ZH production cross-section with subsequent decay into \(W W^*\to 2l2\nu\) in the current model and in the Standard Model. More...
 
virtual const double muZHZga (const double sqrt_s) const
 The ratio \(\mu_{ZH,Z\gamma}\) between the ZH production cross-section with subsequent decay into \(Z \gamma\) in the current model and in the Standard Model. More...
 
virtual const double muZHZZ (const double sqrt_s) const
 The ratio \(\mu_{ZH,ZZ}\) between the ZH production cross-section with subsequent decay into \(Z Z^*\) in the current model and in the Standard Model. More...
 
virtual const double muZHZZ4l (const double sqrt_s) const
 The ratio \(\mu_{ZH,ZZ\to 4l}\) between the ZH production cross-section with subsequent decay into \(Z Z^*\to 4l\) in the current model and in the Standard Model. More...
 
virtual const double Mw () const
 The mass of the \(W\) boson, \(M_W\). More...
 
 NPSMEFTd6General ()
 Constructor. More...
 
virtual const double obliqueS () const
 The oblique parameter \(S\). (Simplified implementation. Contribution only from \(O_{HWB}\).) More...
 
virtual const double obliqueT () const
 The oblique parameter \(T\). (Simplified implementation. Contribution only from \(O_{HD}\).) More...
 
virtual const double obliqueU () const
 The oblique parameter \(U\). More...
 
virtual const double obliqueW () const
 The oblique parameter \(W\). (Simplified implementation. Contribution only from \(O_{2W}\).) More...
 
virtual const double obliqueY () const
 The oblique parameter \(Y\). (Simplified implementation. Contribution only from \(O_{2B}\).) More...
 
virtual const double ppZHprobe (const double sqrt_s) const
 The direction constrained by \( p p \to Z H\) in the boosted regime, \(g_p^Z\). From arXiv:1807.01796 and the contribution to FCC CDR Vol 1. Implemented only in NPSMEFTd6General class. More...
 
virtual bool PreUpdate ()
 The pre-update method for NPSMEFTd6General. More...
 
virtual const double R0_f (const Particle f) const
 The ratio \(R_\ell^0=\Gamma_{\mathrm{had}}/\Gamma_\ell\), \(R_q^0=\Gamma_q/\Gamma_{\mathrm{had}}\) and \(R_\nu^0=\Gamma_\nu/\Gamma_{\mathrm{had}}\), for charged leptons, quarks and neutrinos, respectively. More...
 
virtual const double RWc () const
 The ratio \(R_{W,c)=\Gamma(W\to c + X)/\Gamma(W\to had)\). More...
 
virtual const double RWlilj (const Particle li, const Particle lj) const
 The lepton universality ratio \(R_{W,l_i/l_j)=\Gamma(W\to l_i \nu_i)/\Gamma(W\to l_j \nu_j)\). More...
 
virtual const double RZlilj (const Particle li, const Particle lj) const
 The lepton universality ratio \(R_{Z,l_i/l_j)=\Gamma(Z\to l_i^+ l_i^-)/\Gamma(Z\to l_j^+ l_j^-)\). More...
 
virtual bool setFlag (const std::string name, const bool value)
 A method to check if all the mandatory parameters for NPSMEFTd6General have been provided in model initialization. More...
 
virtual bool setFlagStr (const std::string name, const std::string value)
 A method to set a flag of NPSMEFTd6General. More...
 
virtual const double sigma0_had () const
 The cross section for the process \(e^+ e^-\to Z\to \mathrm{hadrons}\) at the \(Z\) pole, \(\sigma_h^0\). More...
 
virtual const double STXS0_qqH (const double sqrt_s) const
 The STXS0 bin \(pp \to H qq\). More...
 
virtual const double STXS12_BrH4lRatio () const
 The STXS BR \( H \to 4l \), \(l=e,\mu\). More...
 
virtual const double STXS12_BrHbbRatio () const
 The STXS BR \( H \to bb \). More...
 
virtual const double STXS12_BrHevmuvRatio () const
 The STXS BR \( H \to e\nu \mu\nu \). More...
 
virtual const double STXS12_BrHgagaRatio () const
 The STXS BR \( H \to \gamma \gamma \). More...
 
virtual const double STXS12_ggH_mjj0_350_pTH0_60_Nj1 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j \geq 1,~m_{jj}[GeV]<350,~p_{TH} [GeV]<60\). More...
 
virtual const double STXS12_ggH_mjj0_350_pTH0_60_Nj2 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j \geq 2,~m_{jj}[GeV]<350,~p_{TH} [GeV]<60\). More...
 
virtual const double STXS12_ggH_mjj0_350_pTH120_200_Nj2 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j \geq 2,~m_{jj}[GeV]<350,~120<p_{TH} [GeV]<200\). More...
 
virtual const double STXS12_ggH_mjj0_350_pTH60_120_Nj2 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j \geq 2,~m_{jj}[GeV]<350,~60<p_{TH} [GeV]<120\). More...
 
virtual const double STXS12_ggH_mjj350_700_pTH0_200_Nj2 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j \geq 2,~350<m_{jj}[GeV]<700,~<p_{TH} [GeV]<200\). More...
 
virtual const double STXS12_ggH_mjj350_700_pTH0_200_ptHjj0_25_Nj2 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j \geq 2,~350<m_{jj}[GeV]<700,~p_{TH} [GeV]<200,~p_{THjj}[GeV]<25\). More...
 
virtual const double STXS12_ggH_mjj350_700_pTH0_200_ptHjj25_Inf_Nj2 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j \geq 2,~350<m_{jj}[GeV]<700,~p_{TH} [GeV]<200,~25<p_{THjj}[GeV]\). More...
 
virtual const double STXS12_ggH_mjj700_Inf_pTH0_200_Nj2 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j \geq 2,~700<m_{jj}[GeV],~p_{TH} [GeV]<200\). More...
 
virtual const double STXS12_ggH_mjj700_Inf_pTH0_200_ptHjj0_25_Nj2 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j \geq 2,~700<m_{jj}[GeV],~p_{TH} [GeV]<200,~p_{THjj}[GeV]<25\). More...
 
virtual const double STXS12_ggH_mjj700_Inf_pTH0_200_ptHjj25_Inf_Nj2 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j \geq 2,~700<m_{jj}[GeV],~p_{TH} [GeV]<200,~25<p_{THjj}[GeV]\). More...
 
virtual const double STXS12_ggH_pTH0_10_Nj0 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j=0,~p_{TH} [GeV]<10\). More...
 
virtual const double STXS12_ggH_pTH0_60_Nj1 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j = 1,~p_{TH} [GeV]<60\). More...
 
virtual const double STXS12_ggH_pTH10_200_Nj0 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j=0,~p_{TH} [GeV]<10\). More...
 
virtual const double STXS12_ggH_pTH10_Inf_Nj0 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j=0,~10<p_{TH} [GeV]\). More...
 
virtual const double STXS12_ggH_pTH120_200_Nj1 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j = 1,~120<p_{TH} [GeV]<200\). More...
 
virtual const double STXS12_ggH_pTH200_300 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(,200<~p_{TH} [GeV]<300\). More...
 
virtual const double STXS12_ggH_pTH200_300_Nj01 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j\leq 1,~200<p_{TH} [GeV]<300\). More...
 
virtual const double STXS12_ggH_pTH300_450 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(,300<~p_{TH} [GeV]<450\). More...
 
virtual const double STXS12_ggH_pTH300_450_Nj01 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j\leq 1,~300<p_{TH} [GeV]<450\). More...
 
virtual const double STXS12_ggH_pTH450_650 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(450<~p_{TH} [GeV]<650\). More...
 
virtual const double STXS12_ggH_pTH450_650_Nj01 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j\leq 1,~450<p_{TH} [GeV]<650\). More...
 
virtual const double STXS12_ggH_pTH450_Inf (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(,450<~p_{TH} [GeV]\). More...
 
virtual const double STXS12_ggH_pTH60_120_Nj1 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j = 1,~60<p_{TH} [GeV]<120\). More...
 
virtual const double STXS12_ggH_pTH650_Inf (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(~p_{TH} [GeV]>650\). More...
 
virtual const double STXS12_ggH_pTH650_Inf_Nj01 (const double sqrt_s) const
 The STXS bin \(gg \to H\), \(N_j\leq 1,650<p_{TH} [GeV]\). More...
 
virtual const double STXS12_ggHll_pTV0_75 (const double sqrt_s) const
 The STXS bin \(gg \to H\ell\ell\), \(p_{TV}[GeV]<75\). More...
 
virtual const double STXS12_ggHll_pTV150_250_Nj0 (const double sqrt_s) const
 The STXS bin \(gg \to H\ell\ell\), \(N_j = 0,~150<p_{TV}[GeV]<250\). More...
 
virtual const double STXS12_ggHll_pTV150_250_Nj1 (const double sqrt_s) const
 The STXS bin \(gg \to H\ell\ell\), \(N_j = 1,~150<p_{TV}[GeV]<250\). More...
 
virtual const double STXS12_ggHll_pTV250_Inf (const double sqrt_s) const
 The STXS bin \(gg \to H\ell\ell\), \(250 < p_{TV}[GeV]\). More...
 
virtual const double STXS12_ggHll_pTV75_150 (const double sqrt_s) const
 The STXS bin \(gg \to H\ell\ell\), \(75<p_{TV}[GeV]<150\). More...
 
virtual const double STXS12_qqHll_pTV0_150 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\ell\), \(0<p_{TV}<150[GeV]\). More...
 
virtual const double STXS12_qqHll_pTV0_75 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\ell\), \(p_{TV}[GeV]<75\). More...
 
virtual const double STXS12_qqHll_pTV150_250_Nj0 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\ell\), \(N_j = 0,~150<p_{TV}[GeV]<250\). More...
 
virtual const double STXS12_qqHll_pTV150_250_Nj1 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\ell\), \(N_j \geq 1,~150<p_{TV}[GeV]<250\). More...
 
virtual const double STXS12_qqHll_pTV250_400 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\ell\), \(250<p_{TV}<400[GeV]\). More...
 
virtual const double STXS12_qqHll_pTV250_Inf (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\ell\), \(250<p_{TV}[GeV]\). More...
 
virtual const double STXS12_qqHll_pTV400_Inf (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\ell\), \(400<p_{TV}[GeV]\). More...
 
virtual const double STXS12_qqHll_pTV75_150 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\ell\), \(75<p_{TV}[GeV]<150\). More...
 
virtual const double STXS12_qqHlv_pTV0_150 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\nu\), \(0<p_{TV}<150[GeV]\). More...
 
virtual const double STXS12_qqHlv_pTV0_75 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\nu\), \(p_{TV}[GeV]<75\). More...
 
virtual const double STXS12_qqHlv_pTV150_250_Nj0 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\nu\), \(N_j = 0,~150<p_{TV}[GeV]<250\). More...
 
virtual const double STXS12_qqHlv_pTV150_250_Nj1 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\nu\), \(N_j \geq 1,~150<p_{TV}[GeV]<250\). More...
 
virtual const double STXS12_qqHlv_pTV250_400 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\nu\), \(250<p_{TV}<400[GeV]\). More...
 
virtual const double STXS12_qqHlv_pTV250_Inf (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\nu\), \(250<p_{TV}[GeV]\). More...
 
virtual const double STXS12_qqHlv_pTV400_Inf (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\nu\), \(400<p_{TV}[GeV]\). More...
 
virtual const double STXS12_qqHlv_pTV75_150 (const double sqrt_s) const
 The STXS bin \(qq \to H\ell\nu\), \(75<p_{TV}[GeV]<150\). More...
 
virtual const double STXS12_qqHqq_mjj0_60_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~m_{jj}[GeV]<60\). More...
 
virtual const double STXS12_qqHqq_mjj1000_1500_pTH0_200_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~1000<m_{jj}[GeV]<1500,~p_{TH}[GeV]<200\). More...
 
virtual const double STXS12_qqHqq_mjj1000_Inf_pTH200_Inf_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~1000<m_{jj}[GeV],~p_{TH}[GeV]>200\). More...
 
virtual const double STXS12_qqHqq_mjj120_350_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~120<m_{jj}[GeV]<350\). More...
 
virtual const double STXS12_qqHqq_mjj1500_Inf_pTH0_200_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~1500<m_{jj}[GeV],~p_{TH}[GeV]<200\). More...
 
virtual const double STXS12_qqHqq_mjj350_1000_pTH200_Inf_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~350<m_{jj}[GeV]<1000,~p_{TH}[GeV]>200\). More...
 
virtual const double STXS12_qqHqq_mjj350_700_pTH0_200_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~350<m_{jj}[GeV]<700,~p_{TH}[GeV]<200\). More...
 
virtual const double STXS12_qqHqq_mjj350_700_pTH0_200_pTHjj0_25_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~350<m_{jj}[GeV]<700,~p_{TH}[GeV]<200,~p_{THjj}[GeV]<25\). More...
 
virtual const double STXS12_qqHqq_mjj350_700_pTH0_200_pTHjj25_Inf_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~350<m_{jj}[GeV]<700,~p_{TH}[GeV]<200,~25<p_{THjj}[GeV]\). More...
 
virtual const double STXS12_qqHqq_mjj350_Inf_pTH200_Inf_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~350<m_{jj}[GeV],~200<p_{TH}[GeV]\). More...
 
virtual const double STXS12_qqHqq_mjj60_120_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~60<m_{jj}[GeV]<120\). More...
 
virtual const double STXS12_qqHqq_mjj700_1000_pTH0_200_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~700<m_{jj}[GeV]<1000,~p_{TH}[GeV]<200\). More...
 
virtual const double STXS12_qqHqq_mjj700_Inf_pTH0_200_pTHjj0_25_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~700<m_{jj}[GeV],~p_{TH}[GeV]<200,~p_{THjj}[GeV]<25\). More...
 
virtual const double STXS12_qqHqq_mjj700_Inf_pTH0_200_pTHjj25_Inf_Nj2 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j \geq 2,~700<m_{jj}[GeV],~p_{TH}[GeV]<200,~25<p_{THjj}[GeV]\). More...
 
virtual const double STXS12_qqHqq_Nj0 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j = 0\). More...
 
virtual const double STXS12_qqHqq_Nj1 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j = 1\). More...
 
virtual const double STXS12_qqHqq_VH_veto_Nj01 (const double sqrt_s) const
 The STXS bin \(qq \to Hqq\), \(N_j = 0,1\) VH-veto Ref. 2402.05742. More...
 
virtual const double STXS12_tH (const double sqrt_s) const
 The STXS bin \(pp \to tH\). More...
 
virtual const double STXS12_ttH_pTH0_60 (const double sqrt_s) const
 The STXS bin \(pp \to ttH\), \(p_{TH}[GeV]<60\). More...
 
virtual const double STXS12_ttH_pTH120_200 (const double sqrt_s) const
 The STXS bin \(pp \to ttH\), \(120<p_{TH}[GeV]<200\). More...
 
virtual const double STXS12_ttH_pTH200_300 (const double sqrt_s) const
 The STXS bin \(pp \to ttH\), \(200<p_{TH}[GeV]<300\). More...
 
virtual const double STXS12_ttH_pTH300_450 (const double sqrt_s) const
 The STXS bin \(pp \to ttH\), \(300<p_{TH}[GeV]<450\). More...
 
virtual const double STXS12_ttH_pTH300_Inf (const double sqrt_s) const
 The STXS bin \(pp \to ttH\), \(300<p_{TH}[GeV]\). More...
 
virtual const double STXS12_ttH_pTH450_Inf (const double sqrt_s) const
 The STXS bin \(pp \to ttH\), \(450<p_{TH}[GeV]\). More...
 
virtual const double STXS12_ttH_pTH60_120 (const double sqrt_s) const
 The STXS bin \(pp \to ttH\), \(60<p_{TH}[GeV]<120\). More...
 
virtual const double STXS_ggH0j (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_ggH1j_pTH_0_60 (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_ggH1j_pTH_120_200 (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_ggH1j_pTH_200 (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_ggH1j_pTH_60_120 (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_ggH2j_pTH_0_200 (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_ggH2j_pTH_0_60 (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_ggH2j_pTH_120_200 (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_ggH2j_pTH_200 (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_ggH2j_pTH_60_120 (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_ggH_VBFtopo_j3 (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_ggH_VBFtopo_j3v (const double sqrt_s) const
 The STXS bin \(gg \to H\). More...
 
virtual const double STXS_qqHll_pTV_0_150 (const double sqrt_s) const
 The STXS bin \(qq \to H \ell \ell\). More...
 
virtual const double STXS_qqHll_pTV_150_250 (const double sqrt_s) const
 The STXS bin \(qq \to H \ell \ell\). More...
 
virtual const double STXS_qqHll_pTV_150_250_0j (const double sqrt_s) const
 The STXS bin \(qq \to H \ell \ell\). More...
 
virtual const double STXS_qqHll_pTV_150_250_1j (const double sqrt_s) const
 The STXS bin \(qq \to H \ell \ell\). More...
 
virtual const double STXS_qqHll_pTV_250 (const double sqrt_s) const
 The STXS bin \(qq \to H \ell \ell\). More...
 
virtual const double STXS_qqHlv_pTV_0_150 (const double sqrt_s) const
 The STXS bin \(qq \to H \ell \nu\). More...
 
virtual const double STXS_qqHlv_pTV_0_250 (const double sqrt_s) const
 The STXS bin \(qq \to H \ell \nu\). More...
 
virtual const double STXS_qqHlv_pTV_150_250_0j (const double sqrt_s) const
 The STXS bin \(qq \to H \ell \nu\). More...
 
virtual const double STXS_qqHlv_pTV_150_250_1j (const double sqrt_s) const
 The STXS bin \(qq \to H \ell \nu\). More...
 
virtual const double STXS_qqHlv_pTV_250 (const double sqrt_s) const
 The STXS bin \(qq \to H \ell \nu\). More...
 
virtual const double STXS_qqHqq_nonVHtopo (const double sqrt_s) const
 The STXS bin \(qq \to H qq\). More...
 
virtual const double STXS_qqHqq_pTj_200 (const double sqrt_s) const
 The STXS bin \(qq \to H qq\). More...
 
virtual const double STXS_qqHqq_Rest (const double sqrt_s) const
 The STXS bin \(qq \to H qq\). More...
 
virtual const double STXS_qqHqq_VBFtopo_j3 (const double sqrt_s) const
 The STXS bin \(qq \to H qq\). More...
 
virtual const double STXS_qqHqq_VBFtopo_j3v (const double sqrt_s) const
 The STXS bin \(qq \to H qq\). More...
 
virtual const double STXS_qqHqq_VBFtopo_Rest (const double sqrt_s) const
 The STXS bin \(qq \to H qq\). More...
 
virtual const double STXS_qqHqq_VHtopo (const double sqrt_s) const
 The STXS bin \(qq \to H qq\). More...
 
virtual const double STXS_ttHtH (const double sqrt_s) const
 The STXS bin \( ttH + tH \). More...
 
virtual const double STXS_WHqqHqq_pTj1_200 (const double sqrt_s) const
 The STXS bin \( qq \to WH \to H qq \). More...
 
virtual const double STXS_WHqqHqq_Rest (const double sqrt_s) const
 The STXS bin \( qq \to WH \to H qq \). More...
 
virtual const double STXS_WHqqHqq_VBFtopo_j3 (const double sqrt_s) const
 The STXS bin \( qq \to WH \to H qq \). More...
 
virtual const double STXS_WHqqHqq_VBFtopo_j3v (const double sqrt_s) const
 The STXS bin \( qq \to WH \to H qq \). More...
 
virtual const double STXS_WHqqHqq_VH2j (const double sqrt_s) const
 The STXS bin \( qq \to WH \to H qq \). More...
 
virtual const double STXS_ZHqqHqq_pTj1_200 (const double sqrt_s) const
 The STXS bin \( qq \to ZH \to H qq \). More...
 
virtual const double STXS_ZHqqHqq_Rest (const double sqrt_s) const
 The STXS bin \( qq \to ZH \to H qq \). More...
 
virtual const double STXS_ZHqqHqq_VBFtopo_j3 (const double sqrt_s) const
 The STXS bin \( qq \to ZH \to H qq \). More...
 
virtual const double STXS_ZHqqHqq_VBFtopo_j3v (const double sqrt_s) const
 The STXS bin \( qq \to ZH \to H qq \). More...
 
virtual const double STXS_ZHqqHqq_VH2j (const double sqrt_s) const
 The STXS bin \( qq \to ZH \to H qq \). More...
 
const double tovers2 (const double cosmin, const double cosmax) const
 
const double uovers2 (const double cosmin, const double cosmax) const
 
virtual const double xseeWW (const double sqrt_s) const
 Total \(e^+ e^- \to W^+ W^- \to jj \ell \nu\) cross section in pb, with \(\ell= e, \mu\). More...
 
virtual const double xseeWW4fLEP2 (const double sqrt_s, const int fstate) const
 The cross section in pb for \(e^+ e^- \to W^+ W^- \to 4f \), with \( 4f = 0 (jjjj), 1 (e v jj), 2 (mu v jj), 3 (tau v jj), 4 (e v e v), 5 (mu v mu v), 6 (tau v tau v), 7 (e v mu v), 8 (e v tau v), 9 (mu v tau v), 10 (l v jj), 11 (l v l v) \) the different fermion final states for C.O.M. energies in 188-208 GeV. From arXiv: 1606.06693 [hep-ph]. More...
 
virtual const double xseeWWtotLEP2 (const double sqrt_s) const
 The total cross section in pb for \(e^+ e^- \to W^+ W^-\), summing over all final states for C.O.M. energies in 188-208 GeV. From arXiv: 1606.06693 [hep-ph]. More...
 
- Public Member Functions inherited from NPbase
virtual const double BR_Zf (const Particle f) const
 The Branching ratio of the \(Z\) boson into a given fermion pair, \(BR_Z^{f}\). More...
 
virtual const double BrHlljjRatio () const
 The ratio of the Br \((H\to l l j j)\) ( \(l=e,\mu,~~j\not=b\)) in the current model and in the Standard Model. More...
 
virtual const double C1eeHvv (const double sqrt_s) const
 The C1 value controlling linear corrections from the Higgs self-coupling to single-Higgs processes for ZH. More...
 
virtual const double C1eettH (const double sqrt_s) const
 The C1 value controlling linear corrections from the Higgs self-coupling to single-Higgs processes for ZH. More...
 
virtual const double C1eeWBF (const double sqrt_s) const
 The C1 value controlling linear corrections from the Higgs self-coupling to single-Higgs processes for ZH. More...
 
virtual const double C1eeZBF (const double sqrt_s) const
 The C1 value controlling linear corrections from the Higgs self-coupling to single-Higgs processes for ZH. More...
 
virtual const double C1eeZH (const double sqrt_s) const
 The C1 value controlling linear corrections from the Higgs self-coupling to single-Higgs processes for ZH. More...
 
virtual const double cbminuscc () const
 
virtual const double cbminusctau () const
 
virtual const double ccminusctau () const
 
virtual const double cgaplusct () const
 
virtual const double cgminuscga () const
 
virtual const double cgplusct () const
 
virtual const double cVpluscb () const
 
virtual const double cVplusctau () const
 
virtual const double deltaA_f_2 (const Particle f) const
 The \(\mathcal{O}(\Lambda^{-4})\) new physics contribution to the left-right asymmetry in \(e^+e^-\to Z\to f \bar{f}\) at the \(Z\)-pole, \(\Delta \mathcal{A}_f^{(2)}\). More...
 
virtual const double deltaAFB_2 (const Particle f) const
 The \(\mathcal{O}(\Lambda^{-4})\) new physics to the forward-backward asymmetry in \(e^+e^-\to Z\to f \bar{f}\) at the \(Z\)-pole, \(\Delta A^f_{FB}\). More...
 
virtual const double deltaGA_f_2 (const Particle f) const
 
virtual const double deltaGamma_Z_2 () const
 The \(\mathcal{O}(\Lambda^{-4})\) new physics contribution to the total decay width of the \(Z\) boson, \(\Delta \Gamma_Z^{(2)}\). More...
 
virtual const double deltaGamma_Zf_2 (const Particle f) const
 The \(\mathcal{O}(\Lambda^{-4})\) new physics contribution to the decay width of the \(Z\) boson into a given fermion pair, \(\Delta \Gamma_{Z,f}^{(2)}\). More...
 
virtual const double deltaGamma_Zhad () const
 The new physics contribution to the hadronic decay width of the \(Z\) boson, \(\delta \Gamma_{Z,had}\). More...
 
virtual const double deltaGamma_Zhad_2 () const
 The \(\mathcal{O}(\Lambda^{-4})\) new physics contribution to the hadronic decay width of the \(Z\) boson, \(\Delta \Gamma_{Z,had}^{(2)}\). More...
 
const double deltaGL_f_mu (const Particle p, const double mu) const
 New physics contribution to the neutral-current left-handed coupling \(g_L^f\). More...
 
const double deltaGR_f_mu (const Particle p, const double mu) const
 New physics contribution to the neutral-current right-handed coupling \(g_R^f\). More...
 
virtual const double deltaGV_f_2 (const Particle f) const
 
virtual const double deltaN_nu () const
 The new physics contribution to the number of neutrinos dervied from the \(Z\) pole measurements. More...
 
virtual const double deltaR0_f_2 (const Particle f) const
 The \(\mathcal{O}(\Lambda^{-4})\) new physics contribution to the ratio \(R_\ell^0=\Gamma_{\mathrm{had}}/\Gamma_\ell\), \(R_q^0=\Gamma_q/\Gamma_{\mathrm{had}}\) and \(R_\nu^0=\Gamma_\nu/\Gamma_{\mathrm{had}}\), for charged leptons, quarks and neutrinos: More...
 
virtual const double deltaR_inv () const
 The new physics contribution to the ratio of invisible and leptonic (electron) decay widths of the \(Z\) boson, \(\delta R_{inv}\). More...
 
virtual const double deltaRuc () const
 The new physics contribution to the ratio of the \(Z\to u\bar{u} + Z\to c\bar{c}\) width to the \(Z\)-boson hadronic width: More...
 
virtual const double deltaRuc_2 () const
 The \(\mathcal{O}(1/\Lambda^4)\) new physics contribution to the ratio of the \(Z\to u\bar{u} + Z\to c\bar{c}\) width to the \(Z\)-boson hadronic width: More...
 
virtual const double deltaSigmaHadron_2 () const
 The \(\mathcal{O}(\Lambda^{-4})\) new physics contribution to the cross section for the process \(e^+ e^-\to Z\to \mathrm{hadrons}\) at the \(Z\) pole, \(\Delta \sigma_h^{0,(2)}\). More...
 
virtual const double deltaSin2thetaEff_e () const
 The new physics contribution to the effective electron/leptonic weak angle \(\delta \sin^2\theta_{\rm eff}^{\rm lept}\) at the \(Z\) pole. More...
 
virtual const double deltaSin2thetaEff_e_2 () const
 The \(\mathcal{O}(\Lambda^{-4})\) new physics contribution to the effective electron weak angle \(\Delta \sin^2\theta_{eff,e}^{(2)}\) at the \(Z\) pole. More...
 
virtual const double deltaSin2thetaEff_mu () const
 The new physics contribution to the effective muonic weak angle \(\delta \sin^2\theta_{\rm eff}^{\mu\mu}\) at the \(Z\) pole. More...
 
virtual const double deltaSin2thetaEff_mu_2 () const
 The \(\mathcal{O}(\Lambda^{-4})\) new physics contribution to the effective muonic weak angle \(\Delta \sin^2\theta_{eff, \mu}^{(2)}\) at the \(Z\) pole. More...
 
virtual const double deltaxseeWWhadLEP2 (const double sqrt_s) const
 The new physics contribution to the cross section in pb for \(e^+ e^- \to W^+ W^- \to j j j j\), summing over all final states for C.O.M. energies in 188-208 GeV. From arXiv: 1606.06693 [hep-ph]. Defined only for the NPSMEFTd6 class. More...
 
virtual const double deltaxseeWWleptLEP2 (const double sqrt_s) const
 The new physics contribution to the cross section in pb for \(e^+ e^- \to W^+ W^- \to \ell \nu \ell \nu\), summing over all final states for C.O.M. energies in 188-208 GeV. From arXiv: 1606.06693 [hep-ph]. Defined only for the NPSMEFTd6 class. More...
 
virtual const double deltaxseeWWsemilLEP2 (const double sqrt_s) const
 The new physics contribution to the cross section in pb for \(e^+ e^- \to W^+ W^- \to \ell \nu j j\), summing over all final states for C.O.M. energies in 188-208 GeV. From arXiv: 1606.06693 [hep-ph]. Defined only for the NPSMEFTd6 class. More...
 
virtual const gslpp::complex gA_f (const Particle f) const
 The total (SM+NP) contribution to the neutral-current axial-vector coupling \(g_A^f\). More...
 
virtual const double Gamma_had () const
 The hadronic decay width of the \(Z\) boson, \(\Gamma_{Z,had}\). More...
 
virtual const StandardModelgetTrueSM () const
 A method to return a StandardModel object from NPbase. More...
 
virtual const gslpp::complex gV_f (const Particle f) const
 The total (SM+NP) contribution to the neutral-current vector coupling \(g_V^f\). More...
 
virtual const gslpp::complex kappaZ_f (const Particle f) const
 The effective neutral-current coupling \(\kappa_Z^f\) including SM plus NP contributions. More...
 
virtual const double muggHgagaInt (const double sqrt_s) const
 The ratio \(\mu_{ggH,\gamma\gamma}\) between the gluon-gluon fusion Higgs production cross-section with subsequent decay into 2 photons in the current model and in the Standard Model. Includes interference effects with the background, following arXiv:1704.08259. More...
 
virtual const double muggHpbbH_Hgaga (const double sqrt_s) const
 
virtual const double muggHpbbH_Htautau (const double sqrt_s) const
 
virtual const double muggHpbbH_HWW (const double sqrt_s) const
 
virtual const double muggHpbbH_HZZ (const double sqrt_s) const
 
virtual const double muggHpttHptHpbbH_Hmumu (const double sqrt_s) const
 
virtual const double muggHpttHptHpbbH_HZga (const double sqrt_s) const
 
virtual const double muggHpVBFpbbH_Hbb (const double sqrt_s) const
 
virtual const double muppHmumu (const double sqrt_s) const
 
virtual const double muppHZga (const double sqrt_s) const
 
virtual const double mutHgaga (const double sqrt_s) const
 
virtual const double muttHptH_Hbb (const double sqrt_s) const
 
virtual const double muttHptH_Hgaga (const double sqrt_s) const
 
virtual const double muttHptH_Hmumu (const double sqrt_s) const
 
virtual const double muttHptH_Htautau (const double sqrt_s) const
 
virtual const double muttHptH_HWW (const double sqrt_s) const
 
virtual const double muttHptH_HZZ (const double sqrt_s) const
 
virtual const double muVBFpVH_Hmumu (const double sqrt_s) const
 
virtual const double muVBFpVH_HZga (const double sqrt_s) const
 
virtual const double muVHcc (const double sqrt_s) const
 
virtual const double N_nu () const
 The number of neutrinos dervied from the \(Z\) pole measurements, \(N_{\nu}\). More...
 
 NPbase ()
 The default constructor. More...
 
virtual const double R_inv () const
 The ratio of the invisible and leptonic (electron) decay widths of the \(Z\) boson, \(R_{inv}\). More...
 
virtual const gslpp::complex rhoZ_f (const Particle f) const
 The effective neutral-current coupling \(\rho_Z^f\) including SM plus NP contributions. More...
 
virtual const double Ruc () const
 The ratio of the \(Z\to u\bar{u} + Z\to c\bar{c}\) width to the \(Z\)-boson hadronic width. More...
 
virtual const double sin2thetaEff (const Particle f) const
 The leptonic effective weak mixing angle \(\sin^2\theta_{\rm eff}^{\rm lept}\) at the the \(Z\) pole. More...
 
virtual bool Update (const std::map< std::string, double > &DPars)
 The update method for NPbase. More...
 
virtual const double UpperLimitZgammaA (const double sqrt_s) const
 
virtual const double UpperLimitZgammaA13 (const double sqrt_s) const
 
virtual const double UpperLimitZgammaC (const double sqrt_s) const
 
virtual const double UpperLimitZgammaC13 (const double sqrt_s) const
 
virtual const double xseeWWhadLEP2 (const double sqrt_s) const
 The cross section in pb for \(e^+ e^- \to W^+ W^- \to j j j j\), summing over all final states for C.O.M. energies in 188-208 GeV. From arXiv: 1606.06693 [hep-ph]. Defined only for the NPSMEFTd6 class. More...
 
virtual const double xseeWWleptLEP2 (const double sqrt_s) const
 The cross section in pb for \(e^+ e^- \to W^+ W^- \to \ell \nu \ell \nu\), summing over all final states for C.O.M. energies in 188-208 GeV. From arXiv: 1606.06693 [hep-ph]. Defined only for the NPSMEFTd6 class. More...
 
virtual const double xseeWWsemilLEP2 (const double sqrt_s) const
 The cross section in pb for \(e^+ e^- \to W^+ W^- \to \ell \nu j j\), summing over all final states for C.O.M. energies in 188-208 GeV. From arXiv: 1606.06693 [hep-ph]. Defined only for the NPSMEFTd6 class. More...
 
- Public Member Functions inherited from StandardModel
gslpp::complex AH_f (const double tau) const
 Fermionic loop function entering in the calculation of the effective \(Hgg\) and \(H\gamma\gamma\) couplings. More...
 
gslpp::complex AH_W (const double tau) const
 W loop function entering in the calculation of the effective \(H\gamma\gamma\) coupling. More...
 
gslpp::complex AHZga_f (const double tau, const double lambda) const
 Fermionic loop function entering in the calculation of the effective \(HZ\gamma\) coupling. More...
 
gslpp::complex AHZga_W (const double tau, const double lambda) const
 W loop function entering in the calculation of the effective \(HZ\gamma\) coupling. More...
 
const double Ale (double mu, orders order, bool Nf_thr=true) const
 The running electromagnetic coupling \(\alpha_e(\mu)\) in the \(\overline{MS}\) scheme. More...
 
const double ale_OS (const double mu, orders order=FULLNLO) const
 The running electromagnetic coupling \(\alpha(\mu)\) in the on-shell scheme. More...
 
virtual const double alrmoller (const double q2, const double y) const
 The computation of the parity violating asymmetry in Moller scattering. More...
 
const double Als (const double mu, const int Nf_in, const orders order=FULLNLO) const
 Computes the running strong coupling \(\alpha_s(\mu)\) with \(N_f\) active flavours in the \(\overline{\mathrm{MS}}\) scheme. In the cases of LO, NLO and FULLNLO, the coupling is computed with AlsWithInit(). On the other hand, in the cases of NNLO and FULLNNLO, the coupling is computed with AlsWithLambda(). More...
 
const double Als (const double mu, const orders order, const bool Nf_thr, const bool qed_flag) const
 The running QCD coupling \(\alpha(\mu)\) in the \(\overline{MS}\) scheme including QED corrections. More...
 
const double Als (const double mu, const orders order=FULLNLO, const bool Nf_thr=true) const
 
const double Alstilde5 (const double mu) const
 The value of \(\frac{\alpha_s^{\mathrm{FULLNLO}}}{4\pi}\) at any scale \(\mu\) with the number of flavours \(n_f = 4\) and full EW corrections. More...
 
virtual const double amuon () const
 The computation of the anomalous magnetic moment of the muon \(a_\mu=(g_\mu-2)/2\). More...
 
const double Beta_e (int nm, unsigned int nf) const
 QED beta function coefficients - eq. (36) hep-ph/0512066. More...
 
const double Beta_s (int nm, unsigned int nf) const
 QCD beta function coefficients including QED corrections - eq. (36) hep-ph/0512066. More...
 
virtual const double BrHtobb () const
 The Br \((H\to b \bar{b})\) in the Standard Model. More...
 
virtual const double BrHtocc () const
 The Br \((H\to c \bar{c})\) in the Standard Model. More...
 
virtual const double BrHtogaga () const
 The Br \((H\to \gamma \gamma)\) in the Standard Model. More...
 
virtual const double BrHtogg () const
 The Br \(\(H\to gg)\) in the Standard Model. More...
 
virtual const double BrHtomumu () const
 The Br \((H\to \mu^+ \mu^-)\) in the Standard Model. More...
 
virtual const double BrHtoss () const
 The Br \((H\to s \bar{s})\) in the Standard Model. More...
 
virtual const double BrHtotautau () const
 The Br \((H\to \tau^+ \tau^-)\) in the Standard Model. More...
 
virtual const double BrHtoWWstar () const
 The Br \((H\to W W^*)\) in the Standard Model. More...
 
virtual const double BrHtoZga () const
 The Br \((H\to Z \gamma)\) in the Standard Model. More...
 
virtual const double BrHtoZZstar () const
 The Br \((H\to Z Z^*)\) in the Standard Model. More...
 
const double c02 () const
 The square of the cosine of the weak mixing angle \(c_0^2\) defined without weak radiative corrections. More...
 
virtual bool CheckFlags () const
 A method to check the sanity of the set of model flags. More...
 
virtual bool CheckParameters (const std::map< std::string, double > &DPars)
 A method to check if all the mandatory parameters for StandardModel have been provided in model initialization. More...
 
bool checkSMparamsForEWPO ()
 A method to check whether the parameters relevant to the EWPO are updated. More...
 
const double computeBrHto4f () const
 The Br \((H\to 4f)\) in the Standard Model. More...
 
const double computeBrHto4l2 () const
 The Br \((H\to 4l)\) \(l=e,\mu\) in the Standard Model. More...
 
const double computeBrHto4l3 () const
 The Br \((H\to 4l)\) \(l=e,\mu,\tau\) in the Standard Model. More...
 
const double computeBrHto4q () const
 The Br \((H\to 4q)\) in the Standard Model. More...
 
const double computeBrHto4v () const
 The Br \((H\to 4\nu)\) in the Standard Model. More...
 
const double computeBrHtobb () const
 The Br \((H\to bb)\) in the Standard Model. More...
 
const double computeBrHtocc () const
 The Br \((H\to cc)\) in the Standard Model. More...
 
const double computeBrHtoevmuv () const
 The Br \((H\to e \nu \mu \nu)\) in the Standard Model. More...
 
const double computeBrHtogaga () const
 The Br \((H\to\gamma\gamma)\) in the Standard Model. More...
 
const double computeBrHtogg () const
 The Br \((H\to gg)\) in the Standard Model. More...
 
const double computeBrHtollvv2 () const
 The Br \((H\to l^+ l^- \nu \nu)\) \(l=e,\mu\) in the Standard Model. More...
 
const double computeBrHtollvv3 () const
 The Br \((H\to l^+ l^- \nu \nu)\) \(l=e,\mu,\tau\) in the Standard Model. More...
 
const double computeBrHtomumu () const
 The Br \((H\to \mu\mu)\) in the Standard Model. More...
 
const double computeBrHtoss () const
 The Br \((H\to ss)\) in the Standard Model. More...
 
const double computeBrHtotautau () const
 The Br \((H\to \tau\tau)\) in the Standard Model. More...
 
const double computeBrHtoWW () const
 The Br \((H\to WW)\) in the Standard Model. More...
 
const double computeBrHtoZga () const
 The Br \((H\to Z\gamma)\) in the Standard Model. More...
 
const double computeBrHtoZZ () const
 The Br \((H\to ZZ)\) in the Standard Model. More...
 
void ComputeDeltaR_rem (const double Mw_i, double DeltaR_rem[orders_EW_size]) const
 A method to collect \(\Delta r_{\mathrm{rem}}\) computed via subclasses. More...
 
void ComputeDeltaRho (const double Mw_i, double DeltaRho[orders_EW_size]) const
 A method to collect \(\Delta\rho\) computed via subclasses. More...
 
const double computeGammaHgaga_tt () const
 The top loop contribution to \(H\to\gamma\gamma\) in the Standard Model. More...
 
const double computeGammaHgaga_tW () const
 The mixed \(t-W\) loop contribution to \(H\to\gamma\gamma\) in the Standard Model. More...
 
const double computeGammaHgaga_WW () const
 The \(W\) loop contribution to \(H\to\gamma\gamma\) in the Standard Model. More...
 
const double computeGammaHgg_bb () const
 The bottom loop contribution to \(H\to gg\) in the Standard Model. More...
 
const double computeGammaHgg_tb () const
 The top-bottom interference contribution to \(H\to gg\) in the Standard Model. More...
 
const double computeGammaHgg_tt () const
 The top loop contribution to \(H\to gg\) in the Standard Model. More...
 
const double computeGammaHTotal () const
 The Higgs total width in the Standard Model. More...
 
const double computeGammaHZga_tt () const
 The top loop contribution to \(H\to Z\gamma\) in the Standard Model. More...
 
const double computeGammaHZga_tW () const
 The mixed \(t-W\) loop contribution to \(H\to Z\gamma\) in the Standard Model. More...
 
const double computeGammaHZga_WW () const
 The \(W\) loop contribution to \(H\to Z\gamma\) in the Standard Model. Currently it returns the value of tab 41 in ref. [Heinemeyer:2013tqa]. More...
 
const double computeSigmabbH (const double sqrt_s) const
 The bbH production cross section in the Standard Model. More...
 
const double computeSigmaggH (const double sqrt_s) const
 The ggH cross section in the Standard Model. More...
 
const double computeSigmaggH_bb (const double sqrt_s) const
 The square of the bottom-quark contribution to the ggH cross section in the Standard Model. More...
 
const double computeSigmaggH_tb (const double sqrt_s) const
 The top-bottom interference contribution to the ggH cross section in the Standard Model. More...
 
const double computeSigmaggH_tt (const double sqrt_s) const
 The square of the top-quark contribution to the ggH cross section in the Standard Model. More...
 
const double computeSigmatHq (const double sqrt_s) const
 The tHq production cross section in the Standard Model. More...
 
const double computeSigmattH (const double sqrt_s) const
 The ttH production cross section in the Standard Model. More...
 
const double computeSigmaVBF (const double sqrt_s) const
 The VBF cross section in the Standard Model. More...
 
const double computeSigmaWF (const double sqrt_s) const
 The W fusion contribution \(\sigma_{WF}\) to higgs-production cross section in the Standard Model. More...
 
const double computeSigmaWH (const double sqrt_s) const
 The WH production cross section in the Standard Model. More...
 
const double computeSigmaZF (const double sqrt_s) const
 The Z fusion contribution \(\sigma_{ZF}\) to higgs-production cross section in the Standard Model. More...
 
const double computeSigmaZH (const double sqrt_s) const
 The ZH production cross section in the Standard Model. More...
 
const double computeSigmaZWF (const double sqrt_s) const
 The Z W interference fusion contribution \(\sigma_{ZWF}\) to higgs-production cross section in the Standard Model. More...
 
virtual const double cW2 () const
 
virtual const double cW2 (const double Mw_i) const
 The square of the cosine of the weak mixing angle in the on-shell scheme, denoted as \(c_W^2\). More...
 
virtual const double Dalpha5hMz () const
 The 5-quark contribution to the running of the em constant to the \(Z\) pole. \(\Delta\alpha_{had}^{(5)}(M_Z)\). More...
 
const double DeltaAlpha () const
 The total corrections to the electromagnetic coupling \(\alpha\) at the \(Z\)-mass scale, denoted as \(\Delta\alpha(M_Z^2)\). More...
 
const double DeltaAlphaL5q () const
 The sum of the leptonic and the five-flavour hadronic corrections to the electromagnetic coupling \(\alpha\) at the \(Z\)-mass scale, denoted as \(\Delta\alpha^{\ell+5q}(M_Z^2)\). More...
 
const double DeltaAlphaLepton (const double s) const
 Leptonic contribution to the electromagnetic coupling \(\alpha\), denoted as \(\Delta\alpha_{\mathrm{lept}}(s)\). More...
 
const double DeltaAlphaTop (const double s) const
 Top-quark contribution to the electromagnetic coupling \(\alpha\), denoted as \(\Delta\alpha_{\mathrm{top}}(s)\). More...
 
virtual const gslpp::complex deltaKappaZ_f (const Particle f) const
 Flavour non-universal vertex corrections to \(\kappa_Z^l\), denoted by \(\Delta\kappa_Z^l\). More...
 
virtual const double DeltaR () const
 The SM prediction for \(\Delta r\) derived from that for the \(W\) boson mass. More...
 
virtual const double DeltaRbar () const
 The SM prediction for \(\Delta \overline{r}\) derived from that for the \(W\)-boson mass. More...
 
virtual const gslpp::complex deltaRhoZ_f (const Particle f) const
 Flavour non-universal vertex corrections to \(\rho_Z^l\), denoted by \(\Delta\rho_Z^l\). More...
 
virtual const double eeffAFBbottom (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffAFBcharm (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffAFBe (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffAFBetsub (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffAFBmu (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffAFBstrange (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffAFBtau (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffRbottom (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffRcharm (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffRelectron (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffRelectrontsub (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffRmuon (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffRstrange (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffRtau (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffsigma (const Particle f, const double pol_e, const double pol_p, const double s, const double cosmin, const double cosmax) const
 
virtual const double eeffsigmaBottom (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffsigmaCharm (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffsigmaE (const double pol_e, const double pol_p, const double s) const
 
const double eeffsigmaEbin (const double pol_e, const double pol_p, const double s, const double cosmin, const double cosmax) const
 
virtual const double eeffsigmaEtsub (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffsigmaHadron (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffsigmaMu (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffsigmaStrange (const double pol_e, const double pol_p, const double s) const
 
virtual const double eeffsigmaTau (const double pol_e, const double pol_p, const double s) const
 
virtual const double epsilon1 () const
 The SM contribution to the epsilon parameter \(\varepsilon_1\). More...
 
virtual const double epsilon2 () const
 The SM contribution to the epsilon parameter \(\varepsilon_2\). More...
 
virtual const double epsilon3 () const
 The SM contribution to the epsilon parameter \(\varepsilon_3\). More...
 
virtual const double epsilonb () const
 The SM contribution to the epsilon parameter \(\varepsilon_b\). More...
 
gslpp::complex f_triangle (const double tau) const
 Loop function entering in the calculation of the effective \(Hgg\) and \(H\gamma\gamma\) couplings. More...
 
gslpp::complex g_triangle (const double tau) const
 Loop function entering in the calculation of the effective \(HZ\gamma\) coupling. More...
 
virtual const double Gamma_inv () const
 The invisible partial decay width of the \(Z\) boson, \(\Gamma_{\mathrm{inv}}\). More...
 
virtual const double Gamma_muon () const
 The computation of the muon decay. More...
 
virtual const double Gamma_tau_l_nunu (const Particle l) const
 The computation of the leptonic tau decays. More...
 
virtual const double GammaHtobb () const
 The \(\Gamma(H\to b \bar{b})\) in the Standard Model. More...
 
virtual const double GammaHtocc () const
 The \(\Gamma(H\to c \bar{c})\) in the Standard Model. More...
 
virtual const double GammaHtogaga () const
 The \(\Gamma(H\to \gamma \gamma)\) in the Standard Model. More...
 
virtual const double GammaHtogg () const
 The \(\Gamma(H\to gg)\) in the Standard Model. More...
 
virtual const double GammaHtomumu () const
 The \(\Gamma(H\to \mu^+ \mu^-)\) in the Standard Model. More...
 
virtual const double GammaHtoss () const
 The \(\Gamma(H\to s \bar{s})\) in the Standard Model. More...
 
virtual const double GammaHTot () const
 The total Higgs width \(\Gamma(H)\) in the Standard Model. More...
 
virtual const double GammaHtotautau () const
 The \(\Gamma(H\to \tau^+ \tau^-)\) in the Standard Model. More...
 
virtual const double GammaHtoWWstar () const
 The \(\Gamma(H\to W W^*)\) in the Standard Model. More...
 
virtual const double GammaHtoZga () const
 The \(\Gamma(H\to Z \gamma)\) in the Standard Model. More...
 
virtual const double GammaHtoZZstar () const
 The \(\Gamma(H\to Z Z^*)\) in the Standard Model. More...
 
virtual const double GammaZ (const Particle f) const
 The \(Z\to \ell\bar{\ell}\) partial decay width, \(\Gamma_\ell\). More...
 
virtual const double gAnue () const
 The effective (muon) neutrino-electron axial-vector coupling: gAnue. More...
 
const double getAle () const
 A get method to retrieve the fine-structure constant \(\alpha\). More...
 
const double getAlsMz () const
 A get method to access the value of \(\alpha_s(M_Z)\). More...
 
virtual const double getCBd () const
 The ratio of the absolute value of the $B_d$ mixing amplitude over the Standard Model value. More...
 
virtual const double getCBs () const
 The ratio of the absolute value of the $B_s$ mixing amplitude over the Standard Model value. More...
 
virtual const double getCCC1 () const
 A virtual implementation for the RealWeakEFTCC class. More...
 
virtual const double getCCC2 () const
 A virtual implementation for the RealWeakEFTCC class. More...
 
virtual const double getCCC3 () const
 A virtual implementation for the RealWeakEFTCC class. More...
 
virtual const double getCCC4 () const
 A virtual implementation for the RealWeakEFTCC class. More...
 
virtual const double getCCC5 () const
 A virtual implementation for the RealWeakEFTCC class. More...
 
virtual const double getCDMK () const
 The ratio of the real part of the $K$ mixing amplitude over the Standard Model value. More...
 
virtual const double getCepsK () const
 The ratio of the imaginary part of the $K$ mixing amplitude over the Standard Model value. More...
 
const CKMgetCKM () const
 A get method to retrieve the member object of type CKM. More...
 
const double getDAle5Mz () const
 A get method to retrieve the five-flavour hadronic contribution to the electromagnetic coupling, \(\Delta\alpha_{\mathrm{had}}^{(5)}(M_Z^2)\). More...
 
const double getDelGammaWlv () const
 A get method to retrieve the theoretical uncertainty in \(\Gamma_W_{l\nu}\), denoted as \(\delta\,\Gamma_W_{l\nu}\). More...
 
const double getDelGammaWqq () const
 A get method to retrieve the theoretical uncertainty in \(\Gamma_W_{qq}\), denoted as \(\delta\,\Gamma_W_{qq}\). More...
 
const double getDelGammaZ () const
 A get method to retrieve the theoretical uncertainty in \(\Gamma_Z\), denoted as \(\delta\,\Gamma_Z\). More...
 
const double getDelMw () const
 A get method to retrieve the theoretical uncertainty in \(M_W\), denoted as \(\delta\,M_W\). More...
 
const double getDelR0b () const
 A get method to retrieve the theoretical uncertainty in \(R_b^0\), denoted as \(\delta\,R_b^0\). More...
 
const double getDelR0c () const
 A get method to retrieve the theoretical uncertainty in \(R_c^0\), denoted as \(\delta\,R_c^0\). More...
 
const double getDelR0l () const
 A get method to retrieve the theoretical uncertainty in \(R_l^0\), denoted as \(\delta\,R_l^0\). More...
 
const double getDelSigma0H () const
 A get method to retrieve the theoretical uncertainty in \(\sigma_{Hadron}^0\), denoted as \(\delta\,\sigma_{Hadron}^0\). More...
 
const double getDelSin2th_b () const
 A get method to retrieve the theoretical uncertainty in \(\sin^2\theta_{\rm eff}^{b}\), denoted as \(\delta\sin^2\theta_{\rm eff}^{b}\). More...
 
const double getDelSin2th_l () const
 A get method to retrieve the theoretical uncertainty in \(\sin^2\theta_{\rm eff}^{\rm lept}\), denoted as \(\delta\sin^2\theta_{\rm eff}^{\rm lept}\). More...
 
const double getDelSin2th_q () const
 A get method to retrieve the theoretical uncertainty in \(\sin^2\theta_{\rm eff}^{q\not = b,t}\), denoted as \(\delta\sin^2\theta_{\rm eff}^{q\not = b,t}\). More...
 
const std::string getFlagKappaZ () const
 A method to retrieve the model flag KappaZ. More...
 
const std::string getFlagMw () const
 A method to retrieve the model flag Mw. More...
 
const std::string getFlagRhoZ () const
 A method to retrieve the model flag RhoZ. More...
 
const FlavourgetFlavour () const
 
const double getGF () const
 A get method to retrieve the Fermi constant \(G_\mu\). More...
 
const int getIterationNo () const
 
const ParticlegetLeptons (const QCD::lepton p) const
 A get method to retrieve the member object of a lepton. More...
 
virtual const double getMHl () const
 A get method to retrieve the Higgs mass \(m_h\). More...
 
virtual const double getmq (const QCD::quark q, const double mu) const
 The MSbar running quark mass computed at NLO. More...
 
const double getMuw () const
 A get method to retrieve the matching scale \(\mu_W\) around the weak scale. More...
 
const double getMw () const
 A get method to access the input value of the mass of the \(W\) boson \(M_W\). More...
 
EWSMApproximateFormulaegetMyApproximateFormulae () const
 A get method to retrieve the member pointer of type EWSMApproximateFormulae. More...
 
EWSMcachegetMyEWSMcache () const
 A get method to retrieve the member pointer of type EWSMcache. More...
 
LeptonFlavourgetMyLeptonFlavour () const
 
EWSMOneLoopEWgetMyOneLoopEW () const
 A get method to retrieve the member pointer of type EWSMOneLoopEW,. More...
 
EWSMThreeLoopEWgetMyThreeLoopEW () const
 
EWSMThreeLoopEW2QCDgetMyThreeLoopEW2QCD () const
 
EWSMThreeLoopQCDgetMyThreeLoopQCD () const
 
EWSMTwoFermionsLEP2getMyTwoFermionsLEP2 () const
 A get method to retrieve the member pointer of type EWSMTwoFermionsLEP2. More...
 
EWSMTwoLoopEWgetMyTwoLoopEW () const
 
EWSMTwoLoopQCDgetMyTwoLoopQCD () const
 
const double getMz () const
 A get method to access the mass of the \(Z\) boson \(M_Z\). More...
 
virtual const double getPhiBd () const
 Half the relative phase of the $B_d$ mixing amplitude w.r.t. the Standard Model one. More...
 
virtual const double getPhiBs () const
 Half the relative phase of the $B_s$ mixing amplitude w.r.t. the Standard Model one. More...
 
const gslpp::matrix< gslpp::complex > getUPMNS () const
 A get method to retrieve the object of the PMNS matrix. More...
 
const gslpp::matrix< gslpp::complex > getVCKM () const
 A get method to retrieve the CKM matrix. More...
 
const gslpp::matrix< gslpp::complex > & getYd () const
 A get method to retrieve the Yukawa matrix of the down-type quarks, \(Y_d\). More...
 
const gslpp::matrix< gslpp::complex > & getYe () const
 A get method to retrieve the Yukawa matrix of the charged leptons, \(Y_e\). More...
 
const gslpp::matrix< gslpp::complex > & getYn () const
 A get method to retrieve the Yukawa matrix of the neutrinos, \(Y_\nu\). More...
 
const gslpp::matrix< gslpp::complex > & getYu () const
 A get method to retrieve the Yukawa matrix of the up-type quarks, \(Y_u\). More...
 
virtual const double gLnuN2 () const
 The effective neutrino nucleon LH coupling: gLnuN2. More...
 
virtual const double gRnuN2 () const
 The effective neutrino nucleon RH coupling: gRnuN2. More...
 
virtual const double gVnue () const
 The effective (muon) neutrino-electron vector coupling: gVnue. More...
 
gslpp::complex I_triangle_1 (const double tau, const double lambda) const
 Loop function entering in the calculation of the effective \(HZ\gamma\) coupling. More...
 
gslpp::complex I_triangle_2 (const double tau, const double lambda) const
 Loop function entering in the calculation of the effective \(HZ\gamma\) coupling. More...
 
virtual bool InitializeModel ()
 A method to initialize the model. More...
 
const double intMLL2eeeeus2 (const double s, const double t0, const double t1) const
 
const double intMLR2eeeets2 (const double s, const double t0, const double t1) const
 
const double intMLRtilde2eeeest2 (const double s, const double t0, const double t1) const
 
const double intMRR2eeeeus2 (const double s, const double t0, const double t1) const
 
const bool IsFlagNoApproximateGammaZ () const
 A method to retrieve the model flag NoApproximateGammaZ. More...
 
const bool IsFlagWithoutNonUniversalVC () const
 A method to retrieve the model flag WithoutNonUniversalVC. More...
 
const bool isSMSuccess () const
 A get method to retrieve the success status of the Standard Model update and matching. More...
 
virtual const double LEP2AFBbottom (const double s) const
 
virtual const double LEP2AFBcharm (const double s) const
 
virtual const double LEP2AFBe (const double s) const
 
virtual const double LEP2AFBmu (const double s) const
 
virtual const double LEP2AFBtau (const double s) const
 
virtual const double LEP2dsigmadcosBinE (const double s, const double cos, const double cosmin, const double cosmax) const
 
virtual const double LEP2dsigmadcosBinMu (const double s, const double cos, const double cosmin, const double cosmax) const
 
virtual const double LEP2dsigmadcosBinTau (const double s, const double cos, const double cosmin, const double cosmax) const
 
virtual const double LEP2dsigmadcosE (const double s, const double cos) const
 
virtual const double LEP2dsigmadcosMu (const double s, const double cos) const
 
virtual const double LEP2dsigmadcosTau (const double s, const double cos) const
 
virtual const double LEP2Rbottom (const double s) const
 
virtual const double LEP2Rcharm (const double s) const
 
virtual const double LEP2sigmaBottom (const double s) const
 
virtual const double LEP2sigmaCharm (const double s) const
 
virtual const double LEP2sigmaE (const double s) const
 
virtual const double LEP2sigmaHadron (const double s) const
 
virtual const double LEP2sigmaMu (const double s) const
 
virtual const double LEP2sigmaTau (const double s) const
 
const double MLL2eeff (const Particle f, const double s, const double t) const
 
const double MLR2eeff (const Particle f, const double s) const
 
const double MRL2eeff (const Particle f, const double s) const
 
const double MRR2eeff (const Particle f, const double s, const double t) const
 
const double Mw_tree () const
 The tree-level mass of the \(W\) boson, \(M_W^{\mathrm{tree}}\). More...
 
const double MwbarFromMw (const double Mw) const
 A method to convert the \(W\)-boson mass in the experimental/running-width scheme to that in the complex-pole/fixed-width scheme. More...
 
const double MwFromMwbar (const double Mwbar) const
 A method to convert the \(W\)-boson mass in the complex-pole/fixed-width scheme to that in the experimental/running-width scheme. More...
 
double Mzbar () const
 The \(Z\)-boson mass \(\overline{M}_Z\) in the complex-pole/fixed-width scheme. More...
 
virtual const double Qwemoller (const double q2, const double y) const
 The computation of the electron's weak charge. More...
 
virtual const double Qwn () const
 The computation of the neutron weak charge: Qwn. More...
 
virtual const double Qwp () const
 The computation of the proton weak charge: Qwp. More...
 
virtual const double rho_GammaW (const Particle fi, const Particle fj) const
 EW radiative corrections to the width of \(W \to f_i \bar{f}_j\), denoted as \(\rho^W_{ij}\). More...
 
const double s02 () const
 The square of the sine of the weak mixing angle \(s_0^2\) defined without weak radiative corrections. More...
 
void setCKM (const CKM &CKMMatrix)
 A set method to change the CKM matrix. More...
 
void setFlagCacheInStandardModel (bool FlagCacheInStandardModel)
 A set method to change the model flag CacheInStandardModel of StandardModel. More...
 
void setFlagNoApproximateGammaZ (bool FlagNoApproximateGammaZ)
 
bool setFlagSigmaForAFB (const bool flagSigmaForAFB_i)
 
bool setFlagSigmaForR (const bool flagSigmaForR_i)
 
void setRequireCKM (bool requireCKM)
 A set method to change the value of requireCKM. More...
 
void setSMSuccess (bool success) const
 A set method to change the success status of the Standard Model update and matching. More...
 
void setYd (const gslpp::matrix< gslpp::complex > &Yd)
 A set method to set the Yukawa matrix of the down-type quarks, \(Y_d\). More...
 
void setYe (const gslpp::matrix< gslpp::complex > &Ye)
 A set method to set the Yukawa matrix of the charged leptons, \(Y_e\). More...
 
void setYu (const gslpp::matrix< gslpp::complex > &Yu)
 A set method to set the Yukawa matrix of the up-type quarks, \(Y_u\). More...
 
virtual const double SigmaeeHee (const double sqrt_s, const double Pe, const double Pp) const
 The \(\sigma(e^+ e^- \to e^+ e^- H)\) in the Standard Model. More...
 
virtual const double SigmaeeHvv (const double sqrt_s, const double Pe, const double Pp) const
 The \(\sigma(e^+ e^- \to \nu \bar{\nu} H)\) in the Standard Model. More...
 
virtual const double SigmaeeZH (const double sqrt_s, const double Pe, const double Pp) const
 The \(\sigma(e^+ e^- \to Z H)\) in the Standard Model. More...
 
 StandardModel ()
 The default constructor. More...
 
const double sW2 () const
 
virtual const double sW2 (const double Mw_i) const
 The square of the sine of the weak mixing angle in the on-shell scheme, denoted as \(s_W^2\). More...
 
const double sW2_MSbar_Approx () const
 The (approximated formula for the) square of the sine of the weak mixing angle in the MSbar scheme, denoted as \(\hat{s}_{W}^2\). See: PDG 22, R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) More...
 
const double sW2_ND () const
 The square of the sine of the weak mixing angle in the MSbar-ND scheme (w/o decoupling $\alpha\ln(m_t/M_Z)$ terms), denoted as \(\hat{s}_{ND}^2\). See: PDG 22, R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) (eq. 10.13a/10.13b) More...
 
virtual const double TauLFU_gmuge () const
 The computation of the LFU ratio \(g_\mu/ g_e \). More...
 
virtual const double TauLFU_gtauge () const
 The computation of the LFU ratio \(g_\tau/ g_e \). More...
 
virtual const double TauLFU_gtaugmu () const
 The computation of the LFU ratio \(g_\tau/ g_\mu \). More...
 
virtual const double TauLFU_gtaugmuK () const
 The computation of the LFU ratio \(\left(g_\tau/ g_\mu\right)_K \). More...
 
virtual const double TauLFU_gtaugmuPi () const
 The computation of the LFU ratio \(\left(g_\tau/ g_\mu\right)_\pi \). More...
 
virtual const double ThetaLnuN () const
 The effective neutrino nucleon LH parameter: ThetaLnuN. More...
 
virtual const double ThetaRnuN () const
 The effective neutrino nucleon RH parameter: ThetaRnuN. More...
 
const double tovers2 (const double cosmin, const double cosmax) const
 
const double uovers2 (const double cosmin, const double cosmax) const
 
const double v () const
 The Higgs vacuum expectation value. More...
 
virtual ~StandardModel ()
 The default destructor. More...
 
- Public Member Functions inherited from QCD
const double AboveTh (const double mu) const
 The active flavour threshold above the scale \(\mu\) as defined in QCD::Thresholds(). More...
 
void addParameters (std::vector< std::string > params_i)
 A method to add parameters that are specific to only one set of observables. More...
 
const double Als (const double mu, const int Nf_in, const orders order=FULLNLO) const
 Computes the running strong coupling \(\alpha_s(\mu)\) with \(N_f\) active flavours in the \(\overline{\mathrm{MS}}\) scheme. In the cases of LO, NLO and FULLNLO, the coupling is computed with AlsWithInit(). On the other hand, in the cases of NNLO and FULLNNLO, the coupling is computed with AlsWithLambda(). More...
 
const double Als (const double mu, const orders order=FULLNLO, const bool Nf_thr=true) const
 
const double Als4 (const double mu) const
 The value of \(\alpha_s^{\mathrm{FULLNLO}}\) at any scale \(\mu\) with the number of flavours \(n_f = 4\). More...
 
const double AlsByOrder (const double mu, const int Nf_in, const orders order=FULLNLO) const
 
const double AlsByOrder (const double mu, const orders order=FULLNLO, bool Nf_thr=true) const
 
const double AlsOLD (const double mu, const orders order=FULLNLO) const
 Computes the running strong coupling \(\alpha_s(\mu)\) in the \(\overline{\mathrm{MS}}\) scheme. In the cases of LO, NLO and FULLNNLO, the coupling is computed with AlsWithInit(). On the other hand, in the cases of NNLO and FULLNNLO, the coupling is computed with AlsWithLambda(). More...
 
const double AlsWithInit (const double mu, const double alsi, const double mu_i, const int nf, const orders order) const
 Computes the running strong coupling \(\alpha_s(\mu)\) from \(\alpha_s(\mu_i)\) in the \(\overline{\mathrm{MS}}\) scheme, where it is forbidden to across a flavour threshold in the RG running from \(\mu_i\) to \(\mu\). More...
 
const double AlsWithLambda (const double mu, const orders order) const
 Computes the running strong coupling \(\alpha_s(\mu)\) in the \(\overline{\mathrm{MS}}\) scheme with the use of \(\Lambda_{\rm QCD}\). More...
 
const double BelowTh (const double mu) const
 The active flavour threshold below the scale \(\mu\) as defined in QCD::Thresholds(). More...
 
const double Beta0 (const double nf) const
 The \(\beta_0(n_f)\) coefficient for a certain number of flavours \(n_f\). More...
 
const double Beta1 (const double nf) const
 The \(\beta_1(n_f)\) coefficient for a certain number of flavours \(n_f\). More...
 
const double Beta2 (const double nf) const
 The \(\beta_2(n_f)\) coefficient for a certain number of flavours \(n_f\). More...
 
const double Beta3 (const double nf) const
 The \(\beta_3(n_f)\) coefficient for a certain number of flavours \(n_f\). More...
 
void CacheShift (double cache[][5], int n) const
 A member used to manage the caching for this class. More...
 
void CacheShift (int cache[][5], int n) const
 
const orders FullOrder (orders order) const
 Return the FULLORDER enum corresponding to order. More...
 
const double Gamma0 (const double nf) const
 The \(\gamma_0\) coefficient used to compute the running of a mass. More...
 
const double Gamma1 (const double nf) const
 The \(\gamma_1\) coefficient used to compute the running of a mass. More...
 
const double Gamma2 (const double nf) const
 The \(\gamma_2\) coefficient used to compute the running of a mass. More...
 
const double getAlsM () const
 A get method to access the value of \(\alpha_s(M_{\alpha_s})\). More...
 
const BParametergetBBd () const
 For getting the bag parameters corresponding to the operator basis \(O_1 -O_5\) in \(\Delta b = 2\) process in the \(B_d\) meson system. More...
 
const BParametergetBBd_subleading () const
 For getting the subleading bag parameters \(R_2 - R_3\) in \(\Delta b = 2\) process in the \(B_d\) meson system. More...
 
const BParametergetBBs () const
 For getting the bag parameters corresponding to the operator basis \(O_1 -O_5\) in \(\Delta b = 2\) process in the \(B_s\) meson system. More...
 
const BParametergetBBs_subleading () const
 For getting the subleading bag parameters \(R_2 - R_3\) in \(\Delta b = 2\) process in the \(B_s\) meson system. More...
 
const BParametergetBD () const
 For getting the bag parameters corresponding to the operator basis \(O_1 -O_5\) in \(\Delta c = 2\) process in the \(D^0\) meson system. More...
 
const BParametergetBK () const
 For getting the bag parameters corresponding to the operator basis \(O_1 -O_5\) in \(\Delta s = 2\) process in the \(K^0\) meson system. More...
 
const BParametergetBKd1 () const
 
const BParametergetBKd3 () const
 
const double getCF () const
 A get method to access the Casimir factor of QCD. More...
 
const double getMAls () const
 A get method to access the mass scale \(M_{\alpha_s}\) at which the strong coupling constant measurement is provided. More...
 
const MesongetMesons (const QCD::meson m) const
 A get method to access a meson as an object of the type Meson. More...
 
const double getMtpole () const
 A get method to access the pole mass of the top quark. More...
 
const double getMub () const
 A get method to access the threshold between five- and four-flavour theory in GeV. More...
 
const double getMuc () const
 A get method to access the threshold between four- and three-flavour theory in GeV. More...
 
const double getMut () const
 A get method to access the threshold between six- and five-flavour theory in GeV. More...
 
const double getNc () const
 A get method to access the number of colours \(N_c\). More...
 
const double getOptionalParameter (std::string name) const
 A method to get parameters that are specific to only one set of observables. More...
 
const ParticlegetQuarks (const QCD::quark q) const
 A get method to access a quark as an object of the type Particle. More...
 
std::vector< std::string > getUnknownParameters ()
 A method to get the vector of the parameters that have been specified in the configuration file but not being used. More...
 
void initializeBParameter (std::string name_i) const
 A method to initialize B Parameter and the corresponding meson. More...
 
void initializeMeson (QCD::meson meson_i) const
 A method to initialize a meson. More...
 
bool isQCDsuccess () const
 A getter for the QCDsuccess flag. More...
 
const double logLambda (const double nf, orders order) const
 Computes \(\ln\Lambda_\mathrm{QCD}\) with nf flavours in GeV. More...
 
const double Mbar2Mp (const double mbar, const quark q, const orders order=FULLNNLO) const
 Converts the \(\overline{\mathrm{MS}}\) mass \(m(m)\) to the pole mass. More...
 
const double Mofmu2Mbar (const double m, const double mu, const quark q) const
 Converts a quark running mass at an arbitrary scale to the corresponding \(\overline{\mathrm{MS}}\) mass \(m(m)\). More...
 
const double Mp2Mbar (const double mp, const quark q, orders order=FULLNNLO) const
 Converts a quark pole mass to the corresponding \(\overline{\mathrm{MS}}\) mass \(m(m)\). More...
 
const double Mrun (const double mu, const double m, const quark q, const orders order=FULLNNLO) const
 Computes a running quark mass \(m(\mu)\) from \(m(m)\). More...
 
const double Mrun (const double mu_f, const double mu_i, const double m, const quark q, const orders order=FULLNNLO) const
 Runs a quark mass from \(\mu_i\) to \(\mu_f\). More...
 
const double Mrun4 (const double mu_f, const double mu_i, const double m) const
 The running of a mass with the number of flavours \(n_f = 4\). More...
 
const double MS2DRqmass (const double MSbar) const
 Converts a quark mass from the \(\overline{\mathrm{MS}}\) scheme to the \(\overline{\mathrm{DR}}\) scheme. More...
 
const double MS2DRqmass (const double MSscale, const double MSbar) const
 Converts a quark mass from the \(\overline{\mathrm{MS}}\) scheme to the \(\overline{\mathrm{DR}}\) scheme. More...
 
const double Nf (const double mu) const
 The number of active flavour at scale \(\mu\). More...
 
const double NfThresholdCorrections (double mu, double M, double als, int nf, orders order) const
 Threshold corrections in matching \(\alpha_s(n_f+1)\) with \(\alpha_s(n_f)\) from eq. (34) of hep-ph/0512060. More...
 
const std::string orderToString (const orders order) const
 Converts an object of the enum type "orders" to the corresponding string. More...
 
 QCD ()
 Constructor. More...
 
void setComputemt (bool computemt)
 A set method to change the value of computemt. More...
 
void setMtpole (double mtpole_in)
 A method to set the pole mass of the top quark. More...
 
void setNc (double Nc)
 A set method to change the number of colours \(N_c\). More...
 
void setOptionalParameter (std::string name, double value)
 A method to set the parameter value for the parameters that are specific to only one set of observables. More...
 
void setQuarkMass (const quark q, const double mass)
 A set method to change the mass of a quark. More...
 
const double Thresholds (const int i) const
 For accessing the active flavour threshold scales. More...
 
- Public Member Functions inherited from Model
void addMissingModelParameter (const std::string &missingParameterName)
 
std::vector< std::string > getmissingModelParameters ()
 
unsigned int getMissingModelParametersCount ()
 
std::string getModelName () const
 A method to fetch the name of the model. More...
 
const double & getModelParam (std::string name) const
 
bool isModelFWC_DF2 () const
 
bool isModelGeneralTHDM () const
 
bool isModelGeorgiMachacek () const
 
bool IsModelInitialized () const
 A method to check if the model is initialized. More...
 
bool isModelLinearized () const
 
bool isModelNPquadratic () const
 
bool isModelParam (std::string name) const
 
bool isModelSUSY () const
 
bool isModelTHDM () const
 
bool isModelTHDMW () const
 
bool IsUpdateError () const
 A method to check if there was any error in the model update process. More...
 
 Model ()
 The default constructor. More...
 
void raiseMissingModelParameterCount ()
 
void setModelFWC_DF2 ()
 
void setModelGeneralTHDM ()
 
void setModelGeorgiMachacek ()
 
void setModelInitialized (bool ModelInitialized)
 A set method to fix the failure or success of the initialization of the model. More...
 
void setModelLinearized (bool linearized=true)
 
void setModelName (const std::string name)
 A method to set the name of the model. More...
 
void setModelNPquadratic (bool NPquadratic=true)
 
void setModelSUSY ()
 
void setModelTHDM ()
 
void setModelTHDMW ()
 
void setSliced (bool Sliced)
 
void setUpdateError (bool UpdateError)
 A set method to fix the update status as success or failure. More...
 
virtual ~Model ()
 The default destructor. More...
 

Static Public Attributes

static const int NNPSMEFTd6MFVVars = 178+1
 
static std::string NPSMEFTd6MFVVars [NNPSMEFTd6MFVVars]
 
- Static Public Attributes inherited from NPSMEFTd6General
static const int NNPSMEFTd6GeneralVars = 2708-208 + 79
 The number of the model parameters in NPSMEFTd6General (including the 18 parameters needed for the SM and 79 auxiliary parameters). More...
 
static const std::string NPSMEFTd6GeneralVars [NNPSMEFTd6GeneralVars]
 A string array containing the labels of the model parameters in NPSMEFTd6General. More...
 
- Static Public Attributes inherited from StandardModel
static const double GeVminus2_to_nb = 389379.338
 
static const double Mw_error = 0.00001
 The target accuracy of the iterative calculation of the \(W\)-boson mass in units of GeV. More...
 
static const int NSMvars = 28
 The number of the model parameters in StandardModel. More...
 
static const int NumSMParamsForEWPO = 35
 The number of the SM parameters that are relevant to the EW precision observables. More...
 
static std::string SMvars [NSMvars]
 A string array containing the labels of the model parameters in StandardModel. More...
 
- Static Public Attributes inherited from QCD
static const int NQCDvars = 11
 The number of model parameters in QCD. More...
 
static std::string QCDvars [NQCDvars]
 An array containing the labels under which all QCD parameters are stored in a vector of ModelParameter via InputParser::ReadParameters(). More...
 

Protected Member Functions

void setNPSMEFTd6GeneralParameters ()
 An auxiliary method to set the WC of the general class. More...
 
virtual void setParameter (const std::string name, const double &value)
 
- Protected Member Functions inherited from StandardModel
const double AFB_NoISR_l (const QCD::lepton l_flavor, const double s) const
 
const double AFB_NoISR_q (const QCD::quark q_flavor, const double s) const
 
bool checkEWPOscheme (const std::string scheme) const
 A method to check if a given scheme name in string form is valid. More...
 
virtual void computeCKM ()
 The method to compute the CKM matrix. More...
 
virtual void computeYukawas ()
 The method to compute the Yukawas matrix. More...
 
double Delta_EWQCD (const QCD::quark q) const
 The non-factorizable EW-QCD corrections to the partial widths for \(Z\to q\bar{q}\), denoted as \(\Delta_{\mathrm{EW/QCD}}\). More...
 
const double getIntegrand_AFBnumeratorWithISR_bottom133 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_bottom167 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_bottom172 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_bottom183 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_bottom189 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_bottom192 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_bottom196 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_bottom200 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_bottom202 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_bottom205 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_bottom207 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_charm133 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_charm167 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_charm172 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_charm183 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_charm189 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_charm192 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_charm196 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_charm200 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_charm202 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_charm205 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_charm207 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu130 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu136 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu161 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu172 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu183 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu189 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu192 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu196 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu200 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu202 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu205 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_mu207 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau130 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau136 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau161 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau172 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau183 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau189 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau192 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau196 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau200 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau202 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau205 (double x) const
 
const double getIntegrand_AFBnumeratorWithISR_tau207 (double x) const
 
const double getIntegrand_dsigmaBox_bottom130 (double x) const
 
const double getIntegrand_dsigmaBox_bottom133 (double x) const
 
const double getIntegrand_dsigmaBox_bottom136 (double x) const
 
const double getIntegrand_dsigmaBox_bottom161 (double x) const
 
const double getIntegrand_dsigmaBox_bottom167 (double x) const
 
const double getIntegrand_dsigmaBox_bottom172 (double x) const
 
const double getIntegrand_dsigmaBox_bottom183 (double x) const
 
const double getIntegrand_dsigmaBox_bottom189 (double x) const
 
const double getIntegrand_dsigmaBox_bottom192 (double x) const
 
const double getIntegrand_dsigmaBox_bottom196 (double x) const
 
const double getIntegrand_dsigmaBox_bottom200 (double x) const
 
const double getIntegrand_dsigmaBox_bottom202 (double x) const
 
const double getIntegrand_dsigmaBox_bottom205 (double x) const
 
const double getIntegrand_dsigmaBox_bottom207 (double x) const
 
const double getIntegrand_dsigmaBox_charm130 (double x) const
 
const double getIntegrand_dsigmaBox_charm133 (double x) const
 
const double getIntegrand_dsigmaBox_charm136 (double x) const
 
const double getIntegrand_dsigmaBox_charm161 (double x) const
 
const double getIntegrand_dsigmaBox_charm167 (double x) const
 
const double getIntegrand_dsigmaBox_charm172 (double x) const
 
const double getIntegrand_dsigmaBox_charm183 (double x) const
 
const double getIntegrand_dsigmaBox_charm189 (double x) const
 
const double getIntegrand_dsigmaBox_charm192 (double x) const
 
const double getIntegrand_dsigmaBox_charm196 (double x) const
 
const double getIntegrand_dsigmaBox_charm200 (double x) const
 
const double getIntegrand_dsigmaBox_charm202 (double x) const
 
const double getIntegrand_dsigmaBox_charm205 (double x) const
 
const double getIntegrand_dsigmaBox_charm207 (double x) const
 
const double getIntegrand_dsigmaBox_down130 (double x) const
 
const double getIntegrand_dsigmaBox_down133 (double x) const
 
const double getIntegrand_dsigmaBox_down136 (double x) const
 
const double getIntegrand_dsigmaBox_down161 (double x) const
 
const double getIntegrand_dsigmaBox_down167 (double x) const
 
const double getIntegrand_dsigmaBox_down172 (double x) const
 
const double getIntegrand_dsigmaBox_down183 (double x) const
 
const double getIntegrand_dsigmaBox_down189 (double x) const
 
const double getIntegrand_dsigmaBox_down192 (double x) const
 
const double getIntegrand_dsigmaBox_down196 (double x) const
 
const double getIntegrand_dsigmaBox_down200 (double x) const
 
const double getIntegrand_dsigmaBox_down202 (double x) const
 
const double getIntegrand_dsigmaBox_down205 (double x) const
 
const double getIntegrand_dsigmaBox_down207 (double x) const
 
const double getIntegrand_dsigmaBox_mu130 (double x) const
 
const double getIntegrand_dsigmaBox_mu133 (double x) const
 
const double getIntegrand_dsigmaBox_mu136 (double x) const
 
const double getIntegrand_dsigmaBox_mu161 (double x) const
 
const double getIntegrand_dsigmaBox_mu167 (double x) const
 
const double getIntegrand_dsigmaBox_mu172 (double x) const
 
const double getIntegrand_dsigmaBox_mu183 (double x) const
 
const double getIntegrand_dsigmaBox_mu189 (double x) const
 
const double getIntegrand_dsigmaBox_mu192 (double x) const
 
const double getIntegrand_dsigmaBox_mu196 (double x) const
 
const double getIntegrand_dsigmaBox_mu200 (double x) const
 
const double getIntegrand_dsigmaBox_mu202 (double x) const
 
const double getIntegrand_dsigmaBox_mu205 (double x) const
 
const double getIntegrand_dsigmaBox_mu207 (double x) const
 
const double getIntegrand_dsigmaBox_strange130 (double x) const
 
const double getIntegrand_dsigmaBox_strange133 (double x) const
 
const double getIntegrand_dsigmaBox_strange136 (double x) const
 
const double getIntegrand_dsigmaBox_strange161 (double x) const
 
const double getIntegrand_dsigmaBox_strange167 (double x) const
 
const double getIntegrand_dsigmaBox_strange172 (double x) const
 
const double getIntegrand_dsigmaBox_strange183 (double x) const
 
const double getIntegrand_dsigmaBox_strange189 (double x) const
 
const double getIntegrand_dsigmaBox_strange192 (double x) const
 
const double getIntegrand_dsigmaBox_strange196 (double x) const
 
const double getIntegrand_dsigmaBox_strange200 (double x) const
 
const double getIntegrand_dsigmaBox_strange202 (double x) const
 
const double getIntegrand_dsigmaBox_strange205 (double x) const
 
const double getIntegrand_dsigmaBox_strange207 (double x) const
 
const double getIntegrand_dsigmaBox_tau130 (double x) const
 
const double getIntegrand_dsigmaBox_tau133 (double x) const
 
const double getIntegrand_dsigmaBox_tau136 (double x) const
 
const double getIntegrand_dsigmaBox_tau161 (double x) const
 
const double getIntegrand_dsigmaBox_tau167 (double x) const
 
const double getIntegrand_dsigmaBox_tau172 (double x) const
 
const double getIntegrand_dsigmaBox_tau183 (double x) const
 
const double getIntegrand_dsigmaBox_tau189 (double x) const
 
const double getIntegrand_dsigmaBox_tau192 (double x) const
 
const double getIntegrand_dsigmaBox_tau196 (double x) const
 
const double getIntegrand_dsigmaBox_tau200 (double x) const
 
const double getIntegrand_dsigmaBox_tau202 (double x) const
 
const double getIntegrand_dsigmaBox_tau205 (double x) const
 
const double getIntegrand_dsigmaBox_tau207 (double x) const
 
const double getIntegrand_dsigmaBox_up130 (double x) const
 
const double getIntegrand_dsigmaBox_up133 (double x) const
 
const double getIntegrand_dsigmaBox_up136 (double x) const
 
const double getIntegrand_dsigmaBox_up161 (double x) const
 
const double getIntegrand_dsigmaBox_up167 (double x) const
 
const double getIntegrand_dsigmaBox_up172 (double x) const
 
const double getIntegrand_dsigmaBox_up183 (double x) const
 
const double getIntegrand_dsigmaBox_up189 (double x) const
 
const double getIntegrand_dsigmaBox_up192 (double x) const
 
const double getIntegrand_dsigmaBox_up196 (double x) const
 
const double getIntegrand_dsigmaBox_up200 (double x) const
 
const double getIntegrand_dsigmaBox_up202 (double x) const
 
const double getIntegrand_dsigmaBox_up205 (double x) const
 
const double getIntegrand_dsigmaBox_up207 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom130 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom133 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom136 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom161 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom167 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom172 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom183 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom189 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom192 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom196 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom200 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom202 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom205 (double x) const
 
const double getIntegrand_sigmaWithISR_bottom207 (double x) const
 
const double getIntegrand_sigmaWithISR_charm130 (double x) const
 
const double getIntegrand_sigmaWithISR_charm133 (double x) const
 
const double getIntegrand_sigmaWithISR_charm136 (double x) const
 
const double getIntegrand_sigmaWithISR_charm161 (double x) const
 
const double getIntegrand_sigmaWithISR_charm167 (double x) const
 
const double getIntegrand_sigmaWithISR_charm172 (double x) const
 
const double getIntegrand_sigmaWithISR_charm183 (double x) const
 
const double getIntegrand_sigmaWithISR_charm189 (double x) const
 
const double getIntegrand_sigmaWithISR_charm192 (double x) const
 
const double getIntegrand_sigmaWithISR_charm196 (double x) const
 
const double getIntegrand_sigmaWithISR_charm200 (double x) const
 
const double getIntegrand_sigmaWithISR_charm202 (double x) const
 
const double getIntegrand_sigmaWithISR_charm205 (double x) const
 
const double getIntegrand_sigmaWithISR_charm207 (double x) const
 
const double getIntegrand_sigmaWithISR_down130 (double x) const
 
const double getIntegrand_sigmaWithISR_down133 (double x) const
 
const double getIntegrand_sigmaWithISR_down136 (double x) const
 
const double getIntegrand_sigmaWithISR_down161 (double x) const
 
const double getIntegrand_sigmaWithISR_down167 (double x) const
 
const double getIntegrand_sigmaWithISR_down172 (double x) const
 
const double getIntegrand_sigmaWithISR_down183 (double x) const
 
const double getIntegrand_sigmaWithISR_down189 (double x) const
 
const double getIntegrand_sigmaWithISR_down192 (double x) const
 
const double getIntegrand_sigmaWithISR_down196 (double x) const
 
const double getIntegrand_sigmaWithISR_down200 (double x) const
 
const double getIntegrand_sigmaWithISR_down202 (double x) const
 
const double getIntegrand_sigmaWithISR_down205 (double x) const
 
const double getIntegrand_sigmaWithISR_down207 (double x) const
 
const double getIntegrand_sigmaWithISR_mu130 (double x) const
 
const double getIntegrand_sigmaWithISR_mu136 (double x) const
 
const double getIntegrand_sigmaWithISR_mu161 (double x) const
 
const double getIntegrand_sigmaWithISR_mu172 (double x) const
 
const double getIntegrand_sigmaWithISR_mu183 (double x) const
 
const double getIntegrand_sigmaWithISR_mu189 (double x) const
 
const double getIntegrand_sigmaWithISR_mu192 (double x) const
 
const double getIntegrand_sigmaWithISR_mu196 (double x) const
 
const double getIntegrand_sigmaWithISR_mu200 (double x) const
 
const double getIntegrand_sigmaWithISR_mu202 (double x) const
 
const double getIntegrand_sigmaWithISR_mu205 (double x) const
 
const double getIntegrand_sigmaWithISR_mu207 (double x) const
 
const double getIntegrand_sigmaWithISR_strange130 (double x) const
 
const double getIntegrand_sigmaWithISR_strange133 (double x) const
 
const double getIntegrand_sigmaWithISR_strange136 (double x) const
 
const double getIntegrand_sigmaWithISR_strange161 (double x) const
 
const double getIntegrand_sigmaWithISR_strange167 (double x) const
 
const double getIntegrand_sigmaWithISR_strange172 (double x) const
 
const double getIntegrand_sigmaWithISR_strange183 (double x) const
 
const double getIntegrand_sigmaWithISR_strange189 (double x) const
 
const double getIntegrand_sigmaWithISR_strange192 (double x) const
 
const double getIntegrand_sigmaWithISR_strange196 (double x) const
 
const double getIntegrand_sigmaWithISR_strange200 (double x) const
 
const double getIntegrand_sigmaWithISR_strange202 (double x) const
 
const double getIntegrand_sigmaWithISR_strange205 (double x) const
 
const double getIntegrand_sigmaWithISR_strange207 (double x) const
 
const double getIntegrand_sigmaWithISR_tau130 (double x) const
 
const double getIntegrand_sigmaWithISR_tau136 (double x) const
 
const double getIntegrand_sigmaWithISR_tau161 (double x) const
 
const double getIntegrand_sigmaWithISR_tau172 (double x) const
 
const double getIntegrand_sigmaWithISR_tau183 (double x) const
 
const double getIntegrand_sigmaWithISR_tau189 (double x) const
 
const double getIntegrand_sigmaWithISR_tau192 (double x) const
 
const double getIntegrand_sigmaWithISR_tau196 (double x) const
 
const double getIntegrand_sigmaWithISR_tau200 (double x) const
 
const double getIntegrand_sigmaWithISR_tau202 (double x) const
 
const double getIntegrand_sigmaWithISR_tau205 (double x) const
 
const double getIntegrand_sigmaWithISR_tau207 (double x) const
 
const double getIntegrand_sigmaWithISR_up130 (double x) const
 
const double getIntegrand_sigmaWithISR_up133 (double x) const
 
const double getIntegrand_sigmaWithISR_up136 (double x) const
 
const double getIntegrand_sigmaWithISR_up161 (double x) const
 
const double getIntegrand_sigmaWithISR_up167 (double x) const
 
const double getIntegrand_sigmaWithISR_up172 (double x) const
 
const double getIntegrand_sigmaWithISR_up183 (double x) const
 
const double getIntegrand_sigmaWithISR_up189 (double x) const
 
const double getIntegrand_sigmaWithISR_up192 (double x) const
 
const double getIntegrand_sigmaWithISR_up196 (double x) const
 
const double getIntegrand_sigmaWithISR_up200 (double x) const
 
const double getIntegrand_sigmaWithISR_up202 (double x) const
 
const double getIntegrand_sigmaWithISR_up205 (double x) const
 
const double getIntegrand_sigmaWithISR_up207 (double x) const
 
const double Integrand_AFBnumeratorWithISR_l (double x, const QCD::lepton l_flavor, const double s) const
 
const double Integrand_AFBnumeratorWithISR_q (double x, const QCD::quark q_flavor, const double s) const
 
const double Integrand_dsigmaBox_l (double cosTheta, const QCD::lepton l_flavor, const double s) const
 
const double Integrand_dsigmaBox_q (double cosTheta, const QCD::quark q_flavor, const double s) const
 
const double Integrand_sigmaWithISR_l (double x, const QCD::lepton l_flavor, const double s) const
 
const double Integrand_sigmaWithISR_q (double x, const QCD::quark q_flavor, const double s) const
 
double m_q (const QCD::quark q, const double mu, const orders order=FULLNLO) const
 
double RAq (const QCD::quark q) const
 The radiator factor associated with the final-state QED and QCD corrections to the the axial-vector-current interactions, \(R_A^q(M_Z^2)\). More...
 
double resumKappaZ (const double DeltaRho[orders_EW_size], const double deltaKappa_rem[orders_EW_size], const double DeltaRbar_rem, const bool bool_Zbb) const
 A method to compute the real part of the effetvive coupling \(\kappa_Z^f\) from \(\Delta\rho\), \(\delta\rho_{\rm rem}^{f}\) and \(\Delta r_{\mathrm{rem}}\). More...
 
double resumMw (const double Mw_i, const double DeltaRho[orders_EW_size], const double DeltaR_rem[orders_EW_size]) const
 A method to compute the \(W\)-boson mass from \(\Delta\rho\) and \(\Delta r_{\mathrm{rem}}\). More...
 
double resumRhoZ (const double DeltaRho[orders_EW_size], const double deltaRho_rem[orders_EW_size], const double DeltaRbar_rem, const bool bool_Zbb) const
 A method to compute the real part of the effective coupling \(\rho_Z^f\) from \(\Delta\rho\), \(\delta\rho_{\rm rem}^{f}\) and \(\Delta r_{\mathrm{rem}}\). More...
 
double RVh () const
 The singlet vector corrections to the hadronic \(Z\)-boson width, denoted as \(R_V^h\). More...
 
double RVq (const QCD::quark q) const
 The radiator factor associated with the final-state QED and QCD corrections to the the vector-current interactions, \(R_V^q(M_Z^2)\). More...
 
double SchemeToDouble (const std::string scheme) const
 A method to convert a given scheme name in string form into a floating-point number with double precision. More...
 
const double sigma_NoISR_l (const QCD::lepton l_flavor, const double s) const
 
const double sigma_NoISR_q (const QCD::quark q_flavor, const double s) const
 
double taub () const
 Top-mass corrections to the \(Zb\bar{b}\) vertex, denoted by \(\tau_b\). More...
 
- Protected Member Functions inherited from QCD
const double MassOfNf (int nf) const
 The Mbar mass of the heaviest quark in the theory with Nf active flavour. More...
 

Protected Attributes

double CdB_0_LNP = 0.
 
double CdB_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hq}^{(1)})_{ij}\). More...
 
double CdB_u_LNP = 0.
 
double Cdd_00_LNP = 0.
 
double Cdd_d0_LNP = 0.
 
double Cdd_dd_LNP = 0.
 
double Cddp_00_LNP = 0.
 
double Cddp_d0_LNP = 0.
 
double Cddp_dd_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ud}^{(1)})_{ijkm}\). More...
 
double CdG_0_LNP = 0.
 
double CdG_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{dW})_{ij}\). More...
 
double CdG_u_LNP = 0.
 
double CdH_0_LNP = 0.
 
double CdH_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{dG})_{ij}\). More...
 
double CdH_u_LNP = 0.
 
double CdW_0_LNP = 0.
 
double CdW_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{dB})_{ij}\). More...
 
double CdW_u_LNP = 0.
 
double Ced_0_LNP = 0.
 
double Ced_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qq}^{(1)})_{ijkm}\). More...
 
double Cee_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{le})_{ijkm}\). More...
 
double Ceu_0_LNP = 0.
 
double Ceu_u_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ld})_{ijkm}\). More...
 
double CHd_0_LNP = 0.
 
double CHd_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hud})_{ij}\). More...
 
double CHe_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ll})_{ijkm}\). More...
 
double CHl1_LNP = 0.
 < Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hl}^{(1)})_{ij}\). More...
 
double CHl3_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{He})_{ij}\). More...
 
double CHq1_0_LNP = 0.
 
double CHq1_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hq}^{(3)})_{ij}\). More...
 
double CHq1_u_LNP = 0.
 
double CHq3_0_LNP = 0.
 
double CHq3_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hu})_{ij}\). More...
 
double CHq3_u_LNP = 0.
 
double CHu_0_LNP = 0.
 
double CHu_u_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hd})_{ij}\). More...
 
double CHud_ud_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{lq}^{(1)})_{ijkm}\). More...
 
double Cld_0_LNP = 0.
 
double Cld_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ed})_{ijkm}\). More...
 
double Cle_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{uH})_{ij}\). More...
 
double Cll_aabb_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ll})_{ijkm}\). More...
 
double Cll_abba_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ee})_{ijkm}\). More...
 
double Clq1_0_LNP = 0.
 
double Clq1_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{lq}^{(3)})_{ijkm}\). More...
 
double Clq1_u_LNP = 0.
 
double Clq3_0_LNP = 0.
 
double Clq3_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qe})_{ijkm}\). More...
 
double Clq3_u_LNP = 0.
 
double Clu_0_LNP = 0.
 
double Clu_u_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{eu})_{ijkm}\). More...
 
double Cqd1_00_LNP = 0.
 
double Cqd1_0d_LNP = 0.
 
double Cqd1_d0_LNP = 0.
 
double Cqd1_dd_LNP = 0.
 
double Cqd1_dy_LNP = 0.
 
double Cqd1_u0_LNP = 0.
 
double Cqd1_ud_LNP = 0.
 
double Cqd1_uy_LNP = 0.
 
double Cqd1_y_LNP = 0.
 
double Cqd1_yd_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qd}^{(8)})_{ijkm}\). More...
 
double Cqd1_yu_LNP = 0.
 
double Cqd8_00_LNP = 0.
 
double Cqd8_0d_LNP = 0.
 
double Cqd8_d0_LNP = 0.
 
double Cqd8_dd_LNP = 0.
 
double Cqd8_dy_LNP = 0.
 
double Cqd8_u0_LNP = 0.
 
double Cqd8_ud_LNP = 0.
 
double Cqd8_uy_LNP = 0.
 
double Cqd8_y_LNP = 0.
 
double Cqd8_yd_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{quqd}^{(1)})_{ijkm}\). More...
 
double Cqd8_yu_LNP = 0.
 
double Cqe_0_LNP = 0.
 
double Cqe_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{lu})_{ijkm}\). More...
 
double Cqe_u_LNP = 0.
 
double Cqq1_00_LNP = 0.
 
double Cqq1_d0_LNP = 0.
 
double Cqq1_dd_LNP = 0.
 
double Cqq1_u0_LNP = 0.
 
double Cqq1_ud_LNP = 0.
 
double Cqq1_uu_LNP = 0.
 
double Cqq1p_00_LNP = 0.
 
double Cqq1p_d0_LNP = 0.
 
double Cqq1p_dd_LNP = 0.
 
double Cqq1p_u0_LNP = 0.
 
double Cqq1p_ud_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qq}^{(3)})_{ijkm}\). More...
 
double Cqq1p_uu_LNP = 0.
 
double Cqq3_00_LNP = 0.
 
double Cqq3_d0_LNP = 0.
 
double Cqq3_dd_LNP = 0.
 
double Cqq3_u0_LNP = 0.
 
double Cqq3_ud_LNP = 0.
 
double Cqq3_uu_LNP = 0.
 
double Cqq3p_00_LNP = 0.
 
double Cqq3p_d0_LNP = 0.
 
double Cqq3p_dd_LNP = 0.
 
double Cqq3p_u0_LNP = 0.
 
double Cqq3p_ud_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{uu})_{ijkm}\). More...
 
double Cqq3p_uu_LNP = 0.
 
double Cqu1_00_LNP = 0.
 
double Cqu1_0u_LNP = 0.
 
double Cqu1_d0_LNP = 0.
 
double Cqu1_du_LNP = 0.
 
double Cqu1_dy_LNP = 0.
 
double Cqu1_u0_LNP = 0.
 
double Cqu1_uu_LNP = 0.
 
double Cqu1_uy_LNP = 0.
 
double Cqu1_y_LNP = 0.
 
double Cqu1_yd_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qu}^{(8)})_{ijkm}\). More...
 
double Cqu1_yu_LNP = 0.
 
double Cqu8_00_LNP = 0.
 
double Cqu8_0u_LNP = 0.
 
double Cqu8_d0_LNP = 0.
 
double Cqu8_du_LNP = 0.
 
double Cqu8_dy_LNP = 0.
 
double Cqu8_u0_LNP = 0.
 
double Cqu8_uu_LNP = 0.
 
double Cqu8_uy_LNP = 0.
 
double Cqu8_y_LNP = 0.
 
double Cqu8_yd_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qd}^{(1)})_{ijkm}\). More...
 
double Cqu8_yu_LNP = 0.
 
double Cquqd1_00_LNP = 0.
 
double Cquqd1_0d_LNP = 0.
 
double Cquqd1_0u_LNP = 0.
 
double Cquqd1_d0_LNP = 0.
 
double Cquqd1_u0_LNP = 0.
 
double Cquqd1p_00_LNP = 0.
 
double Cquqd1p_0d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{quqd}^{(8)})_{ijkm}\). More...
 
double Cquqd1p_0u_LNP = 0.
 
double Cquqd1p_d0_LNP = 0.
 
double Cquqd1p_u0_LNP = 0.
 
double Cquqd8_00_LNP = 0.
 
double Cquqd8_0d_LNP = 0.
 
double Cquqd8_0u_LNP = 0.
 
double Cquqd8_d0_LNP = 0.
 
double Cquqd8_u0_LNP = 0.
 
double Cquqd8p_00_LNP = 0.
 
double Cquqd8p_0d_LNP = 0.
 
double Cquqd8p_0u_LNP = 0.
 
double Cquqd8p_d0_LNP = 0.
 
double Cquqd8p_u0_LNP = 0.
 
double CuB_0_LNP = 0.
 
double CuB_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{dH})_{ij}\). More...
 
double CuB_u_LNP = 0.
 
double Cud1_00_LNP = 0.
 
double Cud1_0d_LNP = 0.
 
double Cud1_u0_LNP = 0.
 
double Cud1_ud_LNP = 0.
 
double Cud1p_ud_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ud}^{(8)})_{ijkm}\). More...
 
double Cud8_00_LNP = 0.
 
double Cud8_0d_LNP = 0.
 
double Cud8_u0_LNP = 0.
 
double Cud8_ud_LNP = 0.
 
double Cud8p_ud_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qu}^{(1)})_{ijkm}\). More...
 
double CuG_0_LNP = 0.
 
double CuG_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{uW})_{ij}\). More...
 
double CuG_u_LNP = 0.
 
double CuH_0_LNP = 0.
 
double CuH_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{uG})_{ij}\). More...
 
double CuH_u_LNP = 0.
 
double Cuu_00_LNP = 0.
 
double Cuu_u0_LNP = 0.
 
double Cuu_uu_LNP = 0.
 
double Cuup_00_LNP = 0.
 
double Cuup_u0_LNP = 0.
 
double Cuup_uu_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{dd})_{ijkm}\). More...
 
double CuW_0_LNP = 0.
 
double CuW_d_LNP = 0.
 Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{uB})_{ij}\). More...
 
double CuW_u_LNP = 0.
 
- Protected Attributes inherited from StandardModel
double A
 The CKM parameter \(A\) in the Wolfenstein parameterization. More...
 
double ale
 The fine-structure constant \(\alpha\). More...
 
double alpha21
 
double alpha31
 
double AlsMz
 The strong coupling constant at the Z-boson mass, \(\alpha_s(M_Z)\). More...
 
bool bSigmaForAFB
 
bool bSigmaForR
 
double dAl5hMz
 The five-flavour hadronic contribution to the electromagnetic coupling, \(\Delta\alpha_{\mathrm{had}}^{(5)}(M_Z^2)\). (Non-input parameter) More...
 
double dAle5Mz
 The five-flavour hadronic contribution to the electromagnetic coupling, \(\Delta\alpha_{\mathrm{had}}^{(5)}(M_Z^2)\), used as input for FlagMWinput = FALSE. More...
 
double delGammaWlv
 The theoretical uncertainty in \(\Gamma_W_{l\nu}\), denoted as \(\delta\,\Gamma_W_{l\nu}\). More...
 
double delGammaWqq
 The theoretical uncertainty in \(\Gamma_W_{qq}\), denoted as \(\delta\,\Gamma_W_{qq}\). More...
 
double delGammaZ
 The theoretical uncertainty in \(\Gamma_Z\), denoted as \(\delta\,\Gamma_Z\), in GeV. More...
 
double delMw
 The theoretical uncertainty in \(M_W\), denoted as \(\delta\,M_W\), in GeV. More...
 
double delR0b
 The theoretical uncertainty in \(R_b^0\), denoted as \(\delta\,R_b^0\). More...
 
double delR0c
 The theoretical uncertainty in \(R_c^0\), denoted as \(\delta\,R_c^0\). More...
 
double delR0l
 The theoretical uncertainty in \(R_l^0\), denoted as \(\delta\,R_l^0\). More...
 
double delsigma0H
 The theoretical uncertainty in \(\sigma_{Hadron}^0\), denoted as \(\delta\,\sigma_{Hadron}^0\) in nb. More...
 
double delSin2th_b
 The theoretical uncertainty in \(\sin^2\theta_{\rm eff}^{b}\), denoted as \(\delta\sin^2\theta_{\rm eff}^{b}\). More...
 
double delSin2th_l
 The theoretical uncertainty in \(\sin^2\theta_{\rm eff}^{\rm lept}\), denoted as \(\delta\sin^2\theta_{\rm eff}^{\rm lept}\). More...
 
double delSin2th_q
 The theoretical uncertainty in \(\sin^2\theta_{\rm eff}^{q\not = b,t}\), denoted as \(\delta\sin^2\theta_{\rm eff}^{q\not = b,t}\). More...
 
double delta
 
double etab
 The CKM parameter \(\bar{\eta}\) in the Wolfenstein parameterization. More...
 
bool flag_order [orders_EW_size]
 An array of internal flags controlling the inclusions of higher-order corrections. More...
 
bool FlagFixMuwMut
 A boolean for the model flag FixMuwMut. More...
 
bool flagLEP2 [NUMofLEP2RCs]
 
double gamma
 \(\gamma \) used as an input for FlagWolfenstein = FALSE More...
 
double GF
 The Fermi constant \(G_\mu\) in \({\rm GeV}^{-2}\). More...
 
double lambda
 The CKM parameter \(\lambda\) in the Wolfenstein parameterization. More...
 
Particle leptons [6]
 An array of Particle objects for the leptons. More...
 
double mHl
 The Higgs mass \(m_h\) in GeV. More...
 
double muw
 A matching scale \(\mu_W\) around the weak scale in GeV. More...
 
double Mw_inp
 The mass of the \(W\) boson in GeV used as input for FlagMWinput = TRUE. More...
 
CKM myCKM
 An object of type CKM. More...
 
PMNS myPMNS
 
double Mz
 The mass of the \(Z\) boson in GeV. More...
 
bool requireCKM
 An internal flag to control whether the CKM matrix has to be recomputed. More...
 
bool requireYe
 An internal flag to control whether the charged-lepton Yukawa matrix has to be recomputed. More...
 
bool requireYn
 An internal flag to control whether the neutrino Yukawa matrix has to be recomputed. More...
 
double rhob
 The CKM parameter \(\bar{\rho}\) in the Wolfenstein parameterization. More...
 
double s12
 
double s13
 
double s23
 
Flavour SMFlavour
 An object of type Flavour. More...
 
Matching< StandardModelMatching, StandardModelSMM
 An object of type Matching. More...
 
double Vcb
 \(\vert V_{cb} \vert \) used as an input for FlagWolfenstein = FALSE More...
 
double Vub
 \(\vert V_{ub} \vert \) used as an input for FlagWolfenstein = FALSE More...
 
double Vud
 \(\vert V_{ud} \vert \) used as an input for FlagWolfenstein = FALSE and FlagUseVud = TRUE More...
 
double Vus
 \(\vert V_{us} \vert \) used as an input for FlagWolfenstein = FALSE More...
 
gslpp::matrix< gslpp::complex > Yd
 The Yukawa matrix of the down-type quarks. More...
 
gslpp::matrix< gslpp::complex > Ye
 The Yukawa matrix of the charged leptons. More...
 
gslpp::matrix< gslpp::complex > Yn
 The Yukawa matrix of the neutrinos. More...
 
gslpp::matrix< gslpp::complex > Yu
 The Yukawa matrix of the up-type quarks. More...
 
- Protected Attributes inherited from QCD
double AlsM
 The strong coupling constant at the mass scale MAls, \(\alpha_s(M_{\alpha_s})\). More...
 
double CA
 
double CF
 
bool computemt
 Switch for computing the \(\overline{\mathrm{MS}}\) mass of the top quark. More...
 
double dAdA_NA
 
double dFdA_NA
 
double dFdF_NA
 
bool FlagMpole2MbarNumeric
 A flag to determine whether the pole mass to \(\over \mathrm{MS}\) mass conversion is done numerically. More...
 
bool FlagMtPole
 A flag to determine whether the pole mass of the top quark is used as input. More...
 
double MAls
 The mass scale in GeV at which the strong coupling measurement is provided. More...
 
double mtpole
 The pole mass of the top quark. More...
 
double mub
 The threshold between five- and four-flavour theory in GeV. More...
 
double muc
 The threshold between four- and three-flavour theory in GeV. More...
 
double mut
 The threshold between six- and five-flavour theory in GeV. More...
 
double NA
 
double Nc
 The number of colours. More...
 
bool QCDsuccess =true
 
Particle quarks [6]
 The vector of all SM quarks. More...
 
bool requireYd
 Switch for generating the Yukawa couplings to the down-type quarks. More...
 
bool requireYu
 Switch for generating the Yukawa couplings to the up-type quarks. More...
 
double TF
 
- Protected Attributes inherited from Model
bool isSliced = false
 A boolean set to true if the current istance is a slice of an extended object. More...
 
std::map< std::string, std::reference_wrapper< const double > > ModelParamMap
 
bool UpdateError = false
 A boolean set to false if update is successful. More...
 

Additional Inherited Members

- Public Types inherited from StandardModel
enum  LEP2RCs { Weak = 0 , WeakBox , ISR , QEDFSR , QCDFSR , NUMofLEP2RCs }
 
enum  orders_EW { EW1 = 0 , EW1QCD1 , EW1QCD2 , EW2 , EW2QCD1 , EW3 , orders_EW_size }
 An enumerated type representing perturbative orders of radiative corrections to EW precision observables. More...
 
- Public Types inherited from QCD
enum  lepton { NEUTRINO_1 , ELECTRON , NEUTRINO_2 , MU , NEUTRINO_3 , TAU , NOLEPTON }
 An enum type for leptons. More...
 
enum  meson { P_0 , P_P , K_0 , K_P , D_0 , D_P , D_S , B_D , B_P , B_S , B_C , PHI , K_star , K_star_P , K_S , D_star_P , RHO , RHO_P , OMEGA , MESON_END }
 An enum type for mesons. More...
 
enum  quark { UP , DOWN , CHARM , STRANGE , TOP , BOTTOM }
 An enum type for quarks. More...
 

Constructor & Destructor Documentation

◆ NPSMEFTd6MFV()

NPSMEFTd6MFV::NPSMEFTd6MFV ( )

Definition at line 40 of file NPSMEFTd6MFV.cpp.

41 setModelName("NPSMEFTd6MFV");
42 ModelParamMap.insert(std::make_pair("CG_LNP",std::cref(CG_LNP)));
43 ModelParamMap.insert(std::make_pair("CW_LNP",std::cref(CW_LNP)));
44 ModelParamMap.insert(std::make_pair("CHG_LNP",std::cref(CHG_LNP)));
45 ModelParamMap.insert(std::make_pair("CHW_LNP",std::cref(CHW_LNP)));
46 ModelParamMap.insert(std::make_pair("CHB_LNP",std::cref(CHB_LNP)));
47 ModelParamMap.insert(std::make_pair("CHWB_LNP",std::cref(CHWB_LNP)));
48 ModelParamMap.insert(std::make_pair("CHD_LNP",std::cref(CHD_LNP)));
49 ModelParamMap.insert(std::make_pair("CHbox_LNP",std::cref(CHbox_LNP)));
50 ModelParamMap.insert(std::make_pair("CH_LNP",std::cref(CH_LNP)));
51 ModelParamMap.insert(std::make_pair("CHl1_LNP",std::cref(CHl1_LNP)));
52 ModelParamMap.insert(std::make_pair("CHl3_LNP",std::cref(CHl3_LNP)));
53 ModelParamMap.insert(std::make_pair("CHe_LNP",std::cref(CHe_LNP)));
54 ModelParamMap.insert(std::make_pair("Cll_aabb_LNP",std::cref(Cll_aabb_LNP)));
55 ModelParamMap.insert(std::make_pair("Cll_abba_LNP",std::cref(Cll_abba_LNP)));
56 ModelParamMap.insert(std::make_pair("Cee_LNP",std::cref(Cee_LNP)));
57 ModelParamMap.insert(std::make_pair("Cle_LNP",std::cref(Cle_LNP)));
58 ModelParamMap.insert(std::make_pair("CuH_0_LNP",std::cref(CuH_0_LNP)));
59 ModelParamMap.insert(std::make_pair("CuH_u_LNP",std::cref(CuH_u_LNP)));
60 ModelParamMap.insert(std::make_pair("CuH_d_LNP",std::cref(CuH_d_LNP)));
61 ModelParamMap.insert(std::make_pair("CuG_0_LNP",std::cref(CuG_0_LNP)));
62 ModelParamMap.insert(std::make_pair("CuG_u_LNP",std::cref(CuG_u_LNP)));
63 ModelParamMap.insert(std::make_pair("CuG_d_LNP",std::cref(CuG_d_LNP)));
64 ModelParamMap.insert(std::make_pair("CuW_0_LNP",std::cref(CuW_0_LNP)));
65 ModelParamMap.insert(std::make_pair("CuW_u_LNP",std::cref(CuW_u_LNP)));
66 ModelParamMap.insert(std::make_pair("CuW_d_LNP",std::cref(CuW_d_LNP)));
67 ModelParamMap.insert(std::make_pair("CuB_0_LNP",std::cref(CuB_0_LNP)));
68 ModelParamMap.insert(std::make_pair("CuB_u_LNP",std::cref(CuB_u_LNP)));
69 ModelParamMap.insert(std::make_pair("CuB_d_LNP",std::cref(CuB_d_LNP)));
70 ModelParamMap.insert(std::make_pair("CdH_0_LNP",std::cref(CdH_0_LNP)));
71 ModelParamMap.insert(std::make_pair("CdH_u_LNP",std::cref(CdH_u_LNP)));
72 ModelParamMap.insert(std::make_pair("CdH_d_LNP",std::cref(CdH_d_LNP)));
73 ModelParamMap.insert(std::make_pair("CdG_0_LNP",std::cref(CdG_0_LNP)));
74 ModelParamMap.insert(std::make_pair("CdG_u_LNP",std::cref(CdG_u_LNP)));
75 ModelParamMap.insert(std::make_pair("CdG_d_LNP",std::cref(CdG_d_LNP)));
76 ModelParamMap.insert(std::make_pair("CdW_0_LNP",std::cref(CdW_0_LNP)));
77 ModelParamMap.insert(std::make_pair("CdW_u_LNP",std::cref(CdW_u_LNP)));
78 ModelParamMap.insert(std::make_pair("CdW_d_LNP",std::cref(CdW_d_LNP)));
79 ModelParamMap.insert(std::make_pair("CdB_0_LNP",std::cref(CdB_0_LNP)));
80 ModelParamMap.insert(std::make_pair("CdB_u_LNP",std::cref(CdB_u_LNP)));
81 ModelParamMap.insert(std::make_pair("CdB_d_LNP",std::cref(CdB_d_LNP)));
82 ModelParamMap.insert(std::make_pair("CHq1_0_LNP",std::cref(CHq1_0_LNP)));
83 ModelParamMap.insert(std::make_pair("CHq1_u_LNP",std::cref(CHq1_u_LNP)));
84 ModelParamMap.insert(std::make_pair("CHq1_d_LNP",std::cref(CHq1_d_LNP)));
85 ModelParamMap.insert(std::make_pair("CHq3_0_LNP",std::cref(CHq3_0_LNP)));
86 ModelParamMap.insert(std::make_pair("CHq3_u_LNP",std::cref(CHq3_u_LNP)));
87 ModelParamMap.insert(std::make_pair("CHq3_d_LNP",std::cref(CHq3_d_LNP)));
88 ModelParamMap.insert(std::make_pair("CHu_0_LNP",std::cref(CHu_0_LNP)));
89 ModelParamMap.insert(std::make_pair("CHu_u_LNP",std::cref(CHu_u_LNP)));
90 ModelParamMap.insert(std::make_pair("CHd_0_LNP",std::cref(CHd_0_LNP)));
91 ModelParamMap.insert(std::make_pair("CHd_d_LNP",std::cref(CHd_d_LNP)));
92 ModelParamMap.insert(std::make_pair("CHud_ud_LNP",std::cref(CHud_ud_LNP)));
93 ModelParamMap.insert(std::make_pair("Clq1_0_LNP",std::cref(Clq1_0_LNP)));
94 ModelParamMap.insert(std::make_pair("Clq1_u_LNP",std::cref(Clq1_u_LNP)));
95 ModelParamMap.insert(std::make_pair("Clq1_d_LNP",std::cref(Clq1_d_LNP)));
96 ModelParamMap.insert(std::make_pair("Clq3_0_LNP",std::cref(Clq3_0_LNP)));
97 ModelParamMap.insert(std::make_pair("Clq3_u_LNP",std::cref(Clq3_u_LNP)));
98 ModelParamMap.insert(std::make_pair("Clq3_d_LNP",std::cref(Clq3_d_LNP)));
99 ModelParamMap.insert(std::make_pair("Cqe_0_LNP",std::cref(Cqe_0_LNP)));
100 ModelParamMap.insert(std::make_pair("Cqe_u_LNP",std::cref(Cqe_u_LNP)));
101 ModelParamMap.insert(std::make_pair("Cqe_d_LNP",std::cref(Cqe_d_LNP)));
102 ModelParamMap.insert(std::make_pair("Clu_0_LNP",std::cref(Clu_0_LNP)));
103 ModelParamMap.insert(std::make_pair("Clu_u_LNP",std::cref(Clu_u_LNP)));
104 ModelParamMap.insert(std::make_pair("Ceu_0_LNP",std::cref(Ceu_0_LNP)));
105 ModelParamMap.insert(std::make_pair("Ceu_u_LNP",std::cref(Ceu_u_LNP)));
106 ModelParamMap.insert(std::make_pair("Cld_0_LNP",std::cref(Cld_0_LNP)));
107 ModelParamMap.insert(std::make_pair("Cld_d_LNP",std::cref(Cld_d_LNP)));
108 ModelParamMap.insert(std::make_pair("Ced_0_LNP",std::cref(Ced_0_LNP)));
109 ModelParamMap.insert(std::make_pair("Ced_d_LNP",std::cref(Ced_d_LNP)));
110 ModelParamMap.insert(std::make_pair("Cqq1_00_LNP",std::cref(Cqq1_00_LNP)));
111 ModelParamMap.insert(std::make_pair("Cqq1_u0_LNP",std::cref(Cqq1_u0_LNP)));
112 ModelParamMap.insert(std::make_pair("Cqq1_d0_LNP",std::cref(Cqq1_d0_LNP)));
113 ModelParamMap.insert(std::make_pair("Cqq1_uu_LNP",std::cref(Cqq1_uu_LNP)));
114 ModelParamMap.insert(std::make_pair("Cqq1_dd_LNP",std::cref(Cqq1_dd_LNP)));
115 ModelParamMap.insert(std::make_pair("Cqq1_ud_LNP",std::cref(Cqq1_ud_LNP)));
116 ModelParamMap.insert(std::make_pair("Cqq1p_00_LNP",std::cref(Cqq1p_00_LNP)));
117 ModelParamMap.insert(std::make_pair("Cqq1p_u0_LNP",std::cref(Cqq1p_u0_LNP)));
118 ModelParamMap.insert(std::make_pair("Cqq1p_d0_LNP",std::cref(Cqq1p_d0_LNP)));
119 ModelParamMap.insert(std::make_pair("Cqq1p_uu_LNP",std::cref(Cqq1p_uu_LNP)));
120 ModelParamMap.insert(std::make_pair("Cqq1p_dd_LNP",std::cref(Cqq1p_dd_LNP)));
121 ModelParamMap.insert(std::make_pair("Cqq1p_ud_LNP",std::cref(Cqq1p_ud_LNP)));
122 ModelParamMap.insert(std::make_pair("Cqq3_00_LNP",std::cref(Cqq3_00_LNP)));
123 ModelParamMap.insert(std::make_pair("Cqq3_u0_LNP",std::cref(Cqq3_u0_LNP)));
124 ModelParamMap.insert(std::make_pair("Cqq3_d0_LNP",std::cref(Cqq3_d0_LNP)));
125 ModelParamMap.insert(std::make_pair("Cqq3_uu_LNP",std::cref(Cqq3_uu_LNP)));
126 ModelParamMap.insert(std::make_pair("Cqq3_dd_LNP",std::cref(Cqq3_dd_LNP)));
127 ModelParamMap.insert(std::make_pair("Cqq3_ud_LNP",std::cref(Cqq3_ud_LNP)));
128 ModelParamMap.insert(std::make_pair("Cqq3p_00_LNP",std::cref(Cqq3p_00_LNP)));
129 ModelParamMap.insert(std::make_pair("Cqq3p_u0_LNP",std::cref(Cqq3p_u0_LNP)));
130 ModelParamMap.insert(std::make_pair("Cqq3p_d0_LNP",std::cref(Cqq3p_d0_LNP)));
131 ModelParamMap.insert(std::make_pair("Cqq3p_uu_LNP",std::cref(Cqq3p_uu_LNP)));
132 ModelParamMap.insert(std::make_pair("Cqq3p_dd_LNP",std::cref(Cqq3p_dd_LNP)));
133 ModelParamMap.insert(std::make_pair("Cqq3p_ud_LNP",std::cref(Cqq3p_ud_LNP)));
134 ModelParamMap.insert(std::make_pair("Cuu_00_LNP",std::cref(Cuu_00_LNP)));
135 ModelParamMap.insert(std::make_pair("Cuu_u0_LNP",std::cref(Cuu_u0_LNP)));
136 ModelParamMap.insert(std::make_pair("Cuu_uu_LNP",std::cref(Cuu_uu_LNP)));
137 ModelParamMap.insert(std::make_pair("Cuup_00_LNP",std::cref(Cuup_00_LNP)));
138 ModelParamMap.insert(std::make_pair("Cuup_u0_LNP",std::cref(Cuup_u0_LNP)));
139 ModelParamMap.insert(std::make_pair("Cuup_uu_LNP",std::cref(Cuup_uu_LNP)));
140 ModelParamMap.insert(std::make_pair("Cdd_00_LNP",std::cref(Cdd_00_LNP)));
141 ModelParamMap.insert(std::make_pair("Cdd_d0_LNP",std::cref(Cdd_d0_LNP)));
142 ModelParamMap.insert(std::make_pair("Cdd_dd_LNP",std::cref(Cdd_dd_LNP)));
143 ModelParamMap.insert(std::make_pair("Cddp_00_LNP",std::cref(Cddp_00_LNP)));
144 ModelParamMap.insert(std::make_pair("Cddp_d0_LNP",std::cref(Cddp_d0_LNP)));
145 ModelParamMap.insert(std::make_pair("Cddp_dd_LNP",std::cref(Cddp_dd_LNP)));
146 ModelParamMap.insert(std::make_pair("Cud1_00_LNP",std::cref(Cud1_00_LNP)));
147 ModelParamMap.insert(std::make_pair("Cud1_u0_LNP",std::cref(Cud1_u0_LNP)));
148 ModelParamMap.insert(std::make_pair("Cud1_0d_LNP",std::cref(Cud1_0d_LNP)));
149 ModelParamMap.insert(std::make_pair("Cud1_ud_LNP",std::cref(Cud1_ud_LNP)));
150 ModelParamMap.insert(std::make_pair("Cud1p_ud_LNP",std::cref(Cud1p_ud_LNP)));
151 ModelParamMap.insert(std::make_pair("Cud8_00_LNP",std::cref(Cud8_00_LNP)));
152 ModelParamMap.insert(std::make_pair("Cud8_u0_LNP",std::cref(Cud8_u0_LNP)));
153 ModelParamMap.insert(std::make_pair("Cud8_0d_LNP",std::cref(Cud8_0d_LNP)));
154 ModelParamMap.insert(std::make_pair("Cud8_ud_LNP",std::cref(Cud8_ud_LNP)));
155 ModelParamMap.insert(std::make_pair("Cud8p_ud_LNP",std::cref(Cud8p_ud_LNP)));
156 ModelParamMap.insert(std::make_pair("Cqu1_00_LNP",std::cref(Cqu1_00_LNP)));
157 ModelParamMap.insert(std::make_pair("Cqu1_u0_LNP",std::cref(Cqu1_u0_LNP)));
158 ModelParamMap.insert(std::make_pair("Cqu1_d0_LNP",std::cref(Cqu1_d0_LNP)));
159 ModelParamMap.insert(std::make_pair("Cqu1_0u_LNP",std::cref(Cqu1_0u_LNP)));
160 ModelParamMap.insert(std::make_pair("Cqu1_uu_LNP",std::cref(Cqu1_uu_LNP)));
161 ModelParamMap.insert(std::make_pair("Cqu1_du_LNP",std::cref(Cqu1_du_LNP)));
162 ModelParamMap.insert(std::make_pair("Cqu1_y_LNP",std::cref(Cqu1_y_LNP)));
163 ModelParamMap.insert(std::make_pair("Cqu1_uy_LNP",std::cref(Cqu1_uy_LNP)));
164 ModelParamMap.insert(std::make_pair("Cqu1_dy_LNP",std::cref(Cqu1_dy_LNP)));
165 ModelParamMap.insert(std::make_pair("Cqu1_yu_LNP",std::cref(Cqu1_yu_LNP)));
166 ModelParamMap.insert(std::make_pair("Cqu1_yd_LNP",std::cref(Cqu1_yd_LNP)));
167 ModelParamMap.insert(std::make_pair("Cqu8_00_LNP",std::cref(Cqu8_00_LNP)));
168 ModelParamMap.insert(std::make_pair("Cqu8_u0_LNP",std::cref(Cqu8_u0_LNP)));
169 ModelParamMap.insert(std::make_pair("Cqu8_d0_LNP",std::cref(Cqu8_d0_LNP)));
170 ModelParamMap.insert(std::make_pair("Cqu8_0u_LNP",std::cref(Cqu8_0u_LNP)));
171 ModelParamMap.insert(std::make_pair("Cqu8_uu_LNP",std::cref(Cqu8_uu_LNP)));
172 ModelParamMap.insert(std::make_pair("Cqu8_du_LNP",std::cref(Cqu8_du_LNP)));
173 ModelParamMap.insert(std::make_pair("Cqu8_y_LNP",std::cref(Cqu8_y_LNP)));
174 ModelParamMap.insert(std::make_pair("Cqu8_uy_LNP",std::cref(Cqu8_uy_LNP)));
175 ModelParamMap.insert(std::make_pair("Cqu8_dy_LNP",std::cref(Cqu8_dy_LNP)));
176 ModelParamMap.insert(std::make_pair("Cqu8_yu_LNP",std::cref(Cqu8_yu_LNP)));
177 ModelParamMap.insert(std::make_pair("Cqu8_yd_LNP",std::cref(Cqu8_yd_LNP)));
178 ModelParamMap.insert(std::make_pair("Cqd1_00_LNP",std::cref(Cqd1_00_LNP)));
179 ModelParamMap.insert(std::make_pair("Cqd1_u0_LNP",std::cref(Cqd1_u0_LNP)));
180 ModelParamMap.insert(std::make_pair("Cqd1_d0_LNP",std::cref(Cqd1_d0_LNP)));
181 ModelParamMap.insert(std::make_pair("Cqd1_0d_LNP",std::cref(Cqd1_0d_LNP)));
182 ModelParamMap.insert(std::make_pair("Cqd1_ud_LNP",std::cref(Cqd1_ud_LNP)));
183 ModelParamMap.insert(std::make_pair("Cqd1_dd_LNP",std::cref(Cqd1_dd_LNP)));
184 ModelParamMap.insert(std::make_pair("Cqd1_y_LNP",std::cref(Cqd1_y_LNP)));
185 ModelParamMap.insert(std::make_pair("Cqd1_uy_LNP",std::cref(Cqd1_uy_LNP)));
186 ModelParamMap.insert(std::make_pair("Cqd1_dy_LNP",std::cref(Cqd1_dy_LNP)));
187 ModelParamMap.insert(std::make_pair("Cqd1_yu_LNP",std::cref(Cqd1_yu_LNP)));
188 ModelParamMap.insert(std::make_pair("Cqd1_yd_LNP",std::cref(Cqd1_yd_LNP)));
189 ModelParamMap.insert(std::make_pair("Cqd8_00_LNP",std::cref(Cqd8_00_LNP)));
190 ModelParamMap.insert(std::make_pair("Cqd8_u0_LNP",std::cref(Cqd8_u0_LNP)));
191 ModelParamMap.insert(std::make_pair("Cqd8_d0_LNP",std::cref(Cqd8_d0_LNP)));
192 ModelParamMap.insert(std::make_pair("Cqd8_0d_LNP",std::cref(Cqd8_0d_LNP)));
193 ModelParamMap.insert(std::make_pair("Cqd8_ud_LNP",std::cref(Cqd8_ud_LNP)));
194 ModelParamMap.insert(std::make_pair("Cqd8_dd_LNP",std::cref(Cqd8_dd_LNP)));
195 ModelParamMap.insert(std::make_pair("Cqd8_y_LNP",std::cref(Cqd8_y_LNP)));
196 ModelParamMap.insert(std::make_pair("Cqd8_uy_LNP",std::cref(Cqd8_uy_LNP)));
197 ModelParamMap.insert(std::make_pair("Cqd8_dy_LNP",std::cref(Cqd8_dy_LNP)));
198 ModelParamMap.insert(std::make_pair("Cqd8_yu_LNP",std::cref(Cqd8_yu_LNP)));
199 ModelParamMap.insert(std::make_pair("Cqd8_yd_LNP",std::cref(Cqd8_yd_LNP)));
200 ModelParamMap.insert(std::make_pair("Cquqd1_00_LNP",std::cref(Cquqd1_00_LNP)));
201 ModelParamMap.insert(std::make_pair("Cquqd1_u0_LNP",std::cref(Cquqd1_u0_LNP)));
202 ModelParamMap.insert(std::make_pair("Cquqd1_d0_LNP",std::cref(Cquqd1_d0_LNP)));
203 ModelParamMap.insert(std::make_pair("Cquqd1_0u_LNP",std::cref(Cquqd1_0u_LNP)));
204 ModelParamMap.insert(std::make_pair("Cquqd1_0d_LNP",std::cref(Cquqd1_0d_LNP)));
205 ModelParamMap.insert(std::make_pair("Cquqd1p_00_LNP",std::cref(Cquqd1p_00_LNP)));
206 ModelParamMap.insert(std::make_pair("Cquqd1p_u0_LNP",std::cref(Cquqd1p_u0_LNP)));
207 ModelParamMap.insert(std::make_pair("Cquqd1p_d0_LNP",std::cref(Cquqd1p_d0_LNP)));
208 ModelParamMap.insert(std::make_pair("Cquqd1p_0u_LNP",std::cref(Cquqd1p_0u_LNP)));
209 ModelParamMap.insert(std::make_pair("Cquqd1p_0d_LNP",std::cref(Cquqd1p_0d_LNP)));
210 ModelParamMap.insert(std::make_pair("Cquqd8_00_LNP",std::cref(Cquqd8_00_LNP)));
211 ModelParamMap.insert(std::make_pair("Cquqd8_u0_LNP",std::cref(Cquqd8_u0_LNP)));
212 ModelParamMap.insert(std::make_pair("Cquqd8_d0_LNP",std::cref(Cquqd8_d0_LNP)));
213 ModelParamMap.insert(std::make_pair("Cquqd8_0u_LNP",std::cref(Cquqd8_0u_LNP)));
214 ModelParamMap.insert(std::make_pair("Cquqd8_0d_LNP",std::cref(Cquqd8_0d_LNP)));
215 ModelParamMap.insert(std::make_pair("Cquqd8p_00_LNP",std::cref(Cquqd8p_00_LNP)));
216 ModelParamMap.insert(std::make_pair("Cquqd8p_u0_LNP",std::cref(Cquqd8p_u0_LNP)));
217 ModelParamMap.insert(std::make_pair("Cquqd8p_d0_LNP",std::cref(Cquqd8p_d0_LNP)));
218 ModelParamMap.insert(std::make_pair("Cquqd8p_0u_LNP",std::cref(Cquqd8p_0u_LNP)));
219 ModelParamMap.insert(std::make_pair("Cquqd8p_0d_LNP",std::cref(Cquqd8p_0d_LNP)));
220
221}
std::map< std::string, std::reference_wrapper< const double > > ModelParamMap
Definition: Model.h:280
void setModelName(const std::string name)
A method to set the name of the model.
Definition: Model.h:50
NPSMEFTd6General()
Constructor.
double Cqq3_00_LNP
Definition: NPSMEFTd6MFV.h:119
double CuH_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:56
double Cquqd8_u0_LNP
Definition: NPSMEFTd6MFV.h:149
double Clq1_u_LNP
Definition: NPSMEFTd6MFV.h:95
double Cqq1p_ud_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:116
double Cqu8_yd_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:137
double Cquqd1p_d0_LNP
Definition: NPSMEFTd6MFV.h:146
double Cqe_u_LNP
Definition: NPSMEFTd6MFV.h:101
double CHq3_0_LNP
Definition: NPSMEFTd6MFV.h:83
double Cud1_u0_LNP
Definition: NPSMEFTd6MFV.h:128
double Ced_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:113
double Cqd1_u0_LNP
Definition: NPSMEFTd6MFV.h:140
double Cqq1_ud_LNP
Definition: NPSMEFTd6MFV.h:116
double Cquqd1_00_LNP
Definition: NPSMEFTd6MFV.h:146
double Cud8p_ud_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:131
double Cqq3_dd_LNP
Definition: NPSMEFTd6MFV.h:119
double Cqq3p_ud_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:119
double Cquqd1p_00_LNP
Definition: NPSMEFTd6MFV.h:146
double Cquqd8_d0_LNP
Definition: NPSMEFTd6MFV.h:149
double Cqq1p_00_LNP
Definition: NPSMEFTd6MFV.h:116
double Cqu1_uy_LNP
Definition: NPSMEFTd6MFV.h:134
double Cud8_u0_LNP
Definition: NPSMEFTd6MFV.h:131
double Cqd8_d0_LNP
Definition: NPSMEFTd6MFV.h:143
double Cqd1_y_LNP
Definition: NPSMEFTd6MFV.h:140
double Cqq3p_u0_LNP
Definition: NPSMEFTd6MFV.h:119
double CdB_u_LNP
Definition: NPSMEFTd6MFV.h:77
double Cud8_0d_LNP
Definition: NPSMEFTd6MFV.h:131
double Cqq3_ud_LNP
Definition: NPSMEFTd6MFV.h:119
double Clq3_u_LNP
Definition: NPSMEFTd6MFV.h:98
double Cquqd8_00_LNP
Definition: NPSMEFTd6MFV.h:149
double Cquqd8p_00_LNP
Definition: NPSMEFTd6MFV.h:149
double CHu_0_LNP
Definition: NPSMEFTd6MFV.h:86
double Ceu_u_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:107
double CHe_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:41
double Cqq3p_d0_LNP
Definition: NPSMEFTd6MFV.h:119
double Cddp_dd_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:125
double Cqd1_d0_LNP
Definition: NPSMEFTd6MFV.h:140
double Cquqd1p_0d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:146
double CuB_u_LNP
Definition: NPSMEFTd6MFV.h:65
double CHd_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:89
double Clq3_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:98
double CdG_u_LNP
Definition: NPSMEFTd6MFV.h:71
double CuG_u_LNP
Definition: NPSMEFTd6MFV.h:59
double CuW_0_LNP
Definition: NPSMEFTd6MFV.h:62
double CdH_u_LNP
Definition: NPSMEFTd6MFV.h:68
double Cqu1_yu_LNP
Definition: NPSMEFTd6MFV.h:134
double CdW_u_LNP
Definition: NPSMEFTd6MFV.h:74
double Cqu1_du_LNP
Definition: NPSMEFTd6MFV.h:134
double CHl3_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:38
double Cquqd8p_u0_LNP
Definition: NPSMEFTd6MFV.h:149
double Cqq3p_uu_LNP
Definition: NPSMEFTd6MFV.h:119
double CHd_0_LNP
Definition: NPSMEFTd6MFV.h:89
double CdG_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:71
double CuW_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:62
double Cquqd1p_u0_LNP
Definition: NPSMEFTd6MFV.h:146
double Ced_0_LNP
Definition: NPSMEFTd6MFV.h:113
double Cuup_uu_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:122
double Clq3_0_LNP
Definition: NPSMEFTd6MFV.h:98
double Cqu1_u0_LNP
Definition: NPSMEFTd6MFV.h:134
double Cqq3_u0_LNP
Definition: NPSMEFTd6MFV.h:119
double Cquqd8p_0d_LNP
Definition: NPSMEFTd6MFV.h:149
double Clq1_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:95
double Cqu1_yd_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:134
double Cqq1p_uu_LNP
Definition: NPSMEFTd6MFV.h:116
double Cll_abba_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:47
double Cqd8_dy_LNP
Definition: NPSMEFTd6MFV.h:143
double Cquqd1_0d_LNP
Definition: NPSMEFTd6MFV.h:146
double CuG_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:59
double Cqd8_y_LNP
Definition: NPSMEFTd6MFV.h:143
double Cee_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:50
double CuW_u_LNP
Definition: NPSMEFTd6MFV.h:62
double Cquqd8_0d_LNP
Definition: NPSMEFTd6MFV.h:149
double Cll_aabb_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:44
double Cqu1_0u_LNP
Definition: NPSMEFTd6MFV.h:134
double Cqq1_dd_LNP
Definition: NPSMEFTd6MFV.h:116
double Cqd8_ud_LNP
Definition: NPSMEFTd6MFV.h:143
double Cqu8_0u_LNP
Definition: NPSMEFTd6MFV.h:137
double Cqq3_uu_LNP
Definition: NPSMEFTd6MFV.h:119
double Cqu1_y_LNP
Definition: NPSMEFTd6MFV.h:134
double Cquqd8p_d0_LNP
Definition: NPSMEFTd6MFV.h:149
double CuB_0_LNP
Definition: NPSMEFTd6MFV.h:65
double Cqu1_dy_LNP
Definition: NPSMEFTd6MFV.h:134
double Cqq1_d0_LNP
Definition: NPSMEFTd6MFV.h:116
double Cqd8_dd_LNP
Definition: NPSMEFTd6MFV.h:143
double Cqd1_dd_LNP
Definition: NPSMEFTd6MFV.h:140
double CdH_0_LNP
Definition: NPSMEFTd6MFV.h:68
double Cqu8_dy_LNP
Definition: NPSMEFTd6MFV.h:137
double Cqu1_00_LNP
Definition: NPSMEFTd6MFV.h:134
double CHu_u_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:86
double Cuu_00_LNP
Definition: NPSMEFTd6MFV.h:122
double Cuu_uu_LNP
Definition: NPSMEFTd6MFV.h:122
double CHq3_u_LNP
Definition: NPSMEFTd6MFV.h:83
double Cqu8_uy_LNP
Definition: NPSMEFTd6MFV.h:137
double Cqd8_yu_LNP
Definition: NPSMEFTd6MFV.h:143
double Cdd_dd_LNP
Definition: NPSMEFTd6MFV.h:125
double Cqu1_d0_LNP
Definition: NPSMEFTd6MFV.h:134
double CHq1_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:80
double CdB_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:77
double Cqq3p_dd_LNP
Definition: NPSMEFTd6MFV.h:119
double CHud_ud_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:92
double CdB_0_LNP
Definition: NPSMEFTd6MFV.h:77
double CHq1_0_LNP
Definition: NPSMEFTd6MFV.h:80
double CdH_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:68
double Cquqd1_u0_LNP
Definition: NPSMEFTd6MFV.h:146
double Cqd8_u0_LNP
Definition: NPSMEFTd6MFV.h:143
double Cud1_ud_LNP
Definition: NPSMEFTd6MFV.h:128
double CdG_0_LNP
Definition: NPSMEFTd6MFV.h:71
double Cqq1_00_LNP
Definition: NPSMEFTd6MFV.h:116
double Cqd1_yd_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:140
double CuH_u_LNP
Definition: NPSMEFTd6MFV.h:56
double Ceu_0_LNP
Definition: NPSMEFTd6MFV.h:107
double Clq1_0_LNP
Definition: NPSMEFTd6MFV.h:95
double Cdd_00_LNP
Definition: NPSMEFTd6MFV.h:125
double Clu_0_LNP
Definition: NPSMEFTd6MFV.h:104
double Cquqd1_0u_LNP
Definition: NPSMEFTd6MFV.h:146
double Cqq1_uu_LNP
Definition: NPSMEFTd6MFV.h:116
double Cqq3p_00_LNP
Definition: NPSMEFTd6MFV.h:119
double Cquqd8p_0u_LNP
Definition: NPSMEFTd6MFV.h:149
double Cquqd1p_0u_LNP
Definition: NPSMEFTd6MFV.h:146
double Cud8_00_LNP
Definition: NPSMEFTd6MFV.h:131
double Clu_u_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:104
double Cquqd1_d0_LNP
Definition: NPSMEFTd6MFV.h:146
double Cqq3_d0_LNP
Definition: NPSMEFTd6MFV.h:119
double Cquqd8_0u_LNP
Definition: NPSMEFTd6MFV.h:149
double Cqd8_yd_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:143
double Cddp_d0_LNP
Definition: NPSMEFTd6MFV.h:125
double CuH_0_LNP
Definition: NPSMEFTd6MFV.h:56
double Cuu_u0_LNP
Definition: NPSMEFTd6MFV.h:122
double Cqd8_0d_LNP
Definition: NPSMEFTd6MFV.h:143
double Cqq1_u0_LNP
Definition: NPSMEFTd6MFV.h:116
double Cqd1_dy_LNP
Definition: NPSMEFTd6MFV.h:140
double Cqq1p_d0_LNP
Definition: NPSMEFTd6MFV.h:116
double Cqu8_d0_LNP
Definition: NPSMEFTd6MFV.h:137
double Cqd8_uy_LNP
Definition: NPSMEFTd6MFV.h:143
double CHq1_u_LNP
Definition: NPSMEFTd6MFV.h:80
double Cqq1p_u0_LNP
Definition: NPSMEFTd6MFV.h:116
double Cud8_ud_LNP
Definition: NPSMEFTd6MFV.h:131
double Cqu8_uu_LNP
Definition: NPSMEFTd6MFV.h:137
double Cqu8_du_LNP
Definition: NPSMEFTd6MFV.h:137
double Cqe_0_LNP
Definition: NPSMEFTd6MFV.h:101
double Cuup_u0_LNP
Definition: NPSMEFTd6MFV.h:122
double CdW_0_LNP
Definition: NPSMEFTd6MFV.h:74
double Cqd1_00_LNP
Definition: NPSMEFTd6MFV.h:140
double CHl1_LNP
< Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:35
double Cud1p_ud_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:128
double Cqq1p_dd_LNP
Definition: NPSMEFTd6MFV.h:116
double Cqd1_yu_LNP
Definition: NPSMEFTd6MFV.h:140
double Cld_0_LNP
Definition: NPSMEFTd6MFV.h:110
double Cld_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:110
double Cud1_0d_LNP
Definition: NPSMEFTd6MFV.h:128
double CuB_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:65
double Cqd1_0d_LNP
Definition: NPSMEFTd6MFV.h:140
double Cqu8_00_LNP
Definition: NPSMEFTd6MFV.h:137
double Cqd1_ud_LNP
Definition: NPSMEFTd6MFV.h:140
double Cud1_00_LNP
Definition: NPSMEFTd6MFV.h:128
double CuG_0_LNP
Definition: NPSMEFTd6MFV.h:59
double Cddp_00_LNP
Definition: NPSMEFTd6MFV.h:125
double Cqu8_yu_LNP
Definition: NPSMEFTd6MFV.h:137
double Cqu8_y_LNP
Definition: NPSMEFTd6MFV.h:137
double Cdd_d0_LNP
Definition: NPSMEFTd6MFV.h:125
double Cqu8_u0_LNP
Definition: NPSMEFTd6MFV.h:137
double Cle_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:53
double Cqd1_uy_LNP
Definition: NPSMEFTd6MFV.h:140
double Cqd8_00_LNP
Definition: NPSMEFTd6MFV.h:143
double Cqu1_uu_LNP
Definition: NPSMEFTd6MFV.h:134
double CdW_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:74
double Cqe_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:101
double CHq3_d_LNP
Coefficients of the MFV expansion of the dimension-6 operator coefficient .
Definition: NPSMEFTd6MFV.h:83
double Cuup_00_LNP
Definition: NPSMEFTd6MFV.h:122

Member Function Documentation

◆ PostUpdate()

bool NPSMEFTd6MFV::PostUpdate ( )
virtual

The post-update method for NPSMEFTd6General.

This method runs all the procedures that are need to be executed after the model is successfully updated.

Returns
a boolean that is true if the execution is successful

Reimplemented from NPSMEFTd6General.

Definition at line 2080 of file NPSMEFTd6MFV.cpp.

2080 {
2081
2083
2085
2086 if (!NPSMEFTd6General::PostUpdate()) return (false);
2087
2088 return (true);
2089}
virtual bool PostUpdate()
The post-update method for NPSMEFTd6General.
void GenerateSMInitialConditions()
Generates the initial condition for the Standard Model parameters.
void setNPSMEFTd6GeneralParameters()
An auxiliary method to set the WC of the general class.

◆ setNPSMEFTd6GeneralParameters()

void NPSMEFTd6MFV::setNPSMEFTd6GeneralParameters ( )
protected

An auxiliary method to set the WC of the general class.

Definition at line 587 of file NPSMEFTd6MFV.cpp.

587 {
588
589 // Precomputing Yukawa matrices and matrix products
590
591 // Single Yukawa
592 gslpp::matrix<gslpp::complex> YuL(3, 3, 0.), YucL(3, 3, 0.);
593 gslpp::matrix<gslpp::complex> YdL(3, 3, 0.), YdcL(3, 3, 0.);
594
595 for (int i = 0; i < 3; i++) {
596 for (int j = 0; j < 3; j++) {
597 YuL.assignre(i, j, getSMEFTCoeffEW("YuR", i, j));
598 YuL.assignim(i, j, getSMEFTCoeffEW("YuI", i, j));
599 }
600 }
601
602 for (int i = 0; i < 3; i++) {
603 for (int j = 0; j < 3; j++) {
604 YdL.assignre(i, j, getSMEFTCoeffEW("YdR", i, j));
605 YdL.assignim(i, j, getSMEFTCoeffEW("YdI", i, j));
606 }
607 }
608
609 YucL = YuL.hconjugate();
610 YdcL = YdL.hconjugate();
611
612 // Products of two Yukawas
613 gslpp::matrix<gslpp::complex> SQUL(3, 3, 0.), SUL(3, 3, 0.);
614 gslpp::matrix<gslpp::complex> SQDL(3, 3, 0.), SDL(3, 3, 0.);
615 gslpp::matrix<gslpp::complex> SUDL(3, 3, 0.), SUDcL(3, 3, 0.);
616
617 SQUL = YucL * YuL;
618 SQDL = YdcL * YdL;
619
620 SUL = YuL * YucL;
621 SDL = YdL * YdcL;
622
623 SUDL = YuL * YdcL;
624 SUDcL = YdL * YucL;
625
626 // Products of three Yukawas
627 gslpp::matrix<gslpp::complex> SQUYucL(3, 3, 0.), YuSQUL(3, 3, 0.);
628 gslpp::matrix<gslpp::complex> SQUYdcL(3, 3, 0.), YdSQUL(3, 3, 0.);
629 gslpp::matrix<gslpp::complex> SQDYucL(3, 3, 0.), YuSQDL(3, 3, 0.);
630 gslpp::matrix<gslpp::complex> SQDYdcL(3, 3, 0.), YdSQDL(3, 3, 0.);
631
632 SQUYucL = SQUL * YucL;
633 YuSQUL = YuL * SQUL;
634
635 SQUYdcL = SQUL * YdcL;
636 YdSQUL = YdL * SQUL;
637
638 SQDYucL = SQDL * YucL;
639 YuSQDL = YuL * SQDL;
640
641 SQDYdcL = SQDL * YdcL;
642 YdSQDL = YdL * SQDL;
643
644
645 // Operator assignments
646
647 CHl1_11r_LNP = CHl1_LNP;
648 CHl1_22r_LNP = CHl1_LNP;
649 CHl1_33r_LNP = CHl1_LNP;
650
651 CHl3_11r_LNP = CHl3_LNP;
652 CHl3_22r_LNP = CHl3_LNP;
653 CHl3_33r_LNP = CHl3_LNP;
654
655 CHe_11r_LNP = CHe_LNP;
656 CHe_22r_LNP = CHe_LNP;
657 CHe_33r_LNP = CHe_LNP;
658
659 Cll_1111r_LNP = Cll_aabb_LNP + Cll_abba_LNP;
660 Cll_2222r_LNP = Cll_aabb_LNP + Cll_abba_LNP;
661 Cll_3333r_LNP = Cll_aabb_LNP + Cll_abba_LNP;
662 Cll_1122r_LNP = Cll_aabb_LNP;
663 Cll_1133r_LNP = Cll_aabb_LNP;
664 Cll_2233r_LNP = Cll_aabb_LNP;
665 Cll_1221r_LNP = Cll_abba_LNP;
666 Cll_1331r_LNP = Cll_abba_LNP;
667 Cll_2332r_LNP = Cll_abba_LNP;
668
669 CuH_11r_LNP = (CuH_d_LNP*SQDYucL(0,0) + CuH_u_LNP*SQUYucL(0,0) + CuH_0_LNP*YucL(0,0)).real();
670 CuH_11i_LNP = (CuH_d_LNP*SQDYucL(0,0) + CuH_u_LNP*SQUYucL(0,0) + CuH_0_LNP*YucL(0,0)).imag();
671 CuH_12r_LNP = (CuH_d_LNP*SQDYucL(0,1) + CuH_u_LNP*SQUYucL(0,1) + CuH_0_LNP*YucL(0,1)).real();
672 CuH_12i_LNP = (CuH_d_LNP*SQDYucL(0,1) + CuH_u_LNP*SQUYucL(0,1) + CuH_0_LNP*YucL(0,1)).imag();
673 CuH_13r_LNP = (CuH_d_LNP*SQDYucL(0,2) + CuH_u_LNP*SQUYucL(0,2) + CuH_0_LNP*YucL(0,2)).real();
674 CuH_13i_LNP = (CuH_d_LNP*SQDYucL(0,2) + CuH_u_LNP*SQUYucL(0,2) + CuH_0_LNP*YucL(0,2)).imag();
675 CuH_21r_LNP = (CuH_d_LNP*SQDYucL(1,0) + CuH_u_LNP*SQUYucL(1,0) + CuH_0_LNP*YucL(1,0)).real();
676 CuH_21i_LNP = (CuH_d_LNP*SQDYucL(1,0) + CuH_u_LNP*SQUYucL(1,0) + CuH_0_LNP*YucL(1,0)).imag();
677 CuH_22r_LNP = (CuH_d_LNP*SQDYucL(1,1) + CuH_u_LNP*SQUYucL(1,1) + CuH_0_LNP*YucL(1,1)).real();
678 CuH_22i_LNP = (CuH_d_LNP*SQDYucL(1,1) + CuH_u_LNP*SQUYucL(1,1) + CuH_0_LNP*YucL(1,1)).imag();
679 CuH_23r_LNP = (CuH_d_LNP*SQDYucL(1,2) + CuH_u_LNP*SQUYucL(1,2) + CuH_0_LNP*YucL(1,2)).real();
680 CuH_23i_LNP = (CuH_d_LNP*SQDYucL(1,2) + CuH_u_LNP*SQUYucL(1,2) + CuH_0_LNP*YucL(1,2)).imag();
681 CuH_31r_LNP = (CuH_d_LNP*SQDYucL(2,0) + CuH_u_LNP*SQUYucL(2,0) + CuH_0_LNP*YucL(2,0)).real();
682 CuH_31i_LNP = (CuH_d_LNP*SQDYucL(2,0) + CuH_u_LNP*SQUYucL(2,0) + CuH_0_LNP*YucL(2,0)).imag();
683 CuH_32r_LNP = (CuH_d_LNP*SQDYucL(2,1) + CuH_u_LNP*SQUYucL(2,1) + CuH_0_LNP*YucL(2,1)).real();
684 CuH_32i_LNP = (CuH_d_LNP*SQDYucL(2,1) + CuH_u_LNP*SQUYucL(2,1) + CuH_0_LNP*YucL(2,1)).imag();
685 CuH_33r_LNP = (CuH_d_LNP*SQDYucL(2,2) + CuH_u_LNP*SQUYucL(2,2) + CuH_0_LNP*YucL(2,2)).real();
686 CuH_33i_LNP = (CuH_d_LNP*SQDYucL(2,2) + CuH_u_LNP*SQUYucL(2,2) + CuH_0_LNP*YucL(2,2)).imag();
687
688 CuG_11r_LNP = (CuG_d_LNP*SQDYucL(0,0) + CuG_u_LNP*SQUYucL(0,0) + CuG_0_LNP*YucL(0,0)).real();
689 CuG_11i_LNP = (CuG_d_LNP*SQDYucL(0,0) + CuG_u_LNP*SQUYucL(0,0) + CuG_0_LNP*YucL(0,0)).imag();
690 CuG_12r_LNP = (CuG_d_LNP*SQDYucL(0,1) + CuG_u_LNP*SQUYucL(0,1) + CuG_0_LNP*YucL(0,1)).real();
691 CuG_12i_LNP = (CuG_d_LNP*SQDYucL(0,1) + CuG_u_LNP*SQUYucL(0,1) + CuG_0_LNP*YucL(0,1)).imag();
692 CuG_13r_LNP = (CuG_d_LNP*SQDYucL(0,2) + CuG_u_LNP*SQUYucL(0,2) + CuG_0_LNP*YucL(0,2)).real();
693 CuG_13i_LNP = (CuG_d_LNP*SQDYucL(0,2) + CuG_u_LNP*SQUYucL(0,2) + CuG_0_LNP*YucL(0,2)).imag();
694 CuG_21r_LNP = (CuG_d_LNP*SQDYucL(1,0) + CuG_u_LNP*SQUYucL(1,0) + CuG_0_LNP*YucL(1,0)).real();
695 CuG_21i_LNP = (CuG_d_LNP*SQDYucL(1,0) + CuG_u_LNP*SQUYucL(1,0) + CuG_0_LNP*YucL(1,0)).imag();
696 CuG_22r_LNP = (CuG_d_LNP*SQDYucL(1,1) + CuG_u_LNP*SQUYucL(1,1) + CuG_0_LNP*YucL(1,1)).real();
697 CuG_22i_LNP = (CuG_d_LNP*SQDYucL(1,1) + CuG_u_LNP*SQUYucL(1,1) + CuG_0_LNP*YucL(1,1)).imag();
698 CuG_23r_LNP = (CuG_d_LNP*SQDYucL(1,2) + CuG_u_LNP*SQUYucL(1,2) + CuG_0_LNP*YucL(1,2)).real();
699 CuG_23i_LNP = (CuG_d_LNP*SQDYucL(1,2) + CuG_u_LNP*SQUYucL(1,2) + CuG_0_LNP*YucL(1,2)).imag();
700 CuG_31r_LNP = (CuG_d_LNP*SQDYucL(2,0) + CuG_u_LNP*SQUYucL(2,0) + CuG_0_LNP*YucL(2,0)).real();
701 CuG_31i_LNP = (CuG_d_LNP*SQDYucL(2,0) + CuG_u_LNP*SQUYucL(2,0) + CuG_0_LNP*YucL(2,0)).imag();
702 CuG_32r_LNP = (CuG_d_LNP*SQDYucL(2,1) + CuG_u_LNP*SQUYucL(2,1) + CuG_0_LNP*YucL(2,1)).real();
703 CuG_32i_LNP = (CuG_d_LNP*SQDYucL(2,1) + CuG_u_LNP*SQUYucL(2,1) + CuG_0_LNP*YucL(2,1)).imag();
704 CuG_33r_LNP = (CuG_d_LNP*SQDYucL(2,2) + CuG_u_LNP*SQUYucL(2,2) + CuG_0_LNP*YucL(2,2)).real();
705 CuG_33i_LNP = (CuG_d_LNP*SQDYucL(2,2) + CuG_u_LNP*SQUYucL(2,2) + CuG_0_LNP*YucL(2,2)).imag();
706
707 CuW_11r_LNP = (CuW_d_LNP*SQDYucL(0,0) + CuW_u_LNP*SQUYucL(0,0) + CuW_0_LNP*YucL(0,0)).real();
708 CuW_11i_LNP = (CuW_d_LNP*SQDYucL(0,0) + CuW_u_LNP*SQUYucL(0,0) + CuW_0_LNP*YucL(0,0)).imag();
709 CuW_12r_LNP = (CuW_d_LNP*SQDYucL(0,1) + CuW_u_LNP*SQUYucL(0,1) + CuW_0_LNP*YucL(0,1)).real();
710 CuW_12i_LNP = (CuW_d_LNP*SQDYucL(0,1) + CuW_u_LNP*SQUYucL(0,1) + CuW_0_LNP*YucL(0,1)).imag();
711 CuW_13r_LNP = (CuW_d_LNP*SQDYucL(0,2) + CuW_u_LNP*SQUYucL(0,2) + CuW_0_LNP*YucL(0,2)).real();
712 CuW_13i_LNP = (CuW_d_LNP*SQDYucL(0,2) + CuW_u_LNP*SQUYucL(0,2) + CuW_0_LNP*YucL(0,2)).imag();
713 CuW_21r_LNP = (CuW_d_LNP*SQDYucL(1,0) + CuW_u_LNP*SQUYucL(1,0) + CuW_0_LNP*YucL(1,0)).real();
714 CuW_21i_LNP = (CuW_d_LNP*SQDYucL(1,0) + CuW_u_LNP*SQUYucL(1,0) + CuW_0_LNP*YucL(1,0)).imag();
715 CuW_22r_LNP = (CuW_d_LNP*SQDYucL(1,1) + CuW_u_LNP*SQUYucL(1,1) + CuW_0_LNP*YucL(1,1)).real();
716 CuW_22i_LNP = (CuW_d_LNP*SQDYucL(1,1) + CuW_u_LNP*SQUYucL(1,1) + CuW_0_LNP*YucL(1,1)).imag();
717 CuW_23r_LNP = (CuW_d_LNP*SQDYucL(1,2) + CuW_u_LNP*SQUYucL(1,2) + CuW_0_LNP*YucL(1,2)).real();
718 CuW_23i_LNP = (CuW_d_LNP*SQDYucL(1,2) + CuW_u_LNP*SQUYucL(1,2) + CuW_0_LNP*YucL(1,2)).imag();
719 CuW_31r_LNP = (CuW_d_LNP*SQDYucL(2,0) + CuW_u_LNP*SQUYucL(2,0) + CuW_0_LNP*YucL(2,0)).real();
720 CuW_31i_LNP = (CuW_d_LNP*SQDYucL(2,0) + CuW_u_LNP*SQUYucL(2,0) + CuW_0_LNP*YucL(2,0)).imag();
721 CuW_32r_LNP = (CuW_d_LNP*SQDYucL(2,1) + CuW_u_LNP*SQUYucL(2,1) + CuW_0_LNP*YucL(2,1)).real();
722 CuW_32i_LNP = (CuW_d_LNP*SQDYucL(2,1) + CuW_u_LNP*SQUYucL(2,1) + CuW_0_LNP*YucL(2,1)).imag();
723 CuW_33r_LNP = (CuW_d_LNP*SQDYucL(2,2) + CuW_u_LNP*SQUYucL(2,2) + CuW_0_LNP*YucL(2,2)).real();
724 CuW_33i_LNP = (CuW_d_LNP*SQDYucL(2,2) + CuW_u_LNP*SQUYucL(2,2) + CuW_0_LNP*YucL(2,2)).imag();
725
726 CuB_11r_LNP = (CuB_d_LNP*SQDYucL(0,0) + CuB_u_LNP*SQUYucL(0,0) + CuB_0_LNP*YucL(0,0)).real();
727 CuB_11i_LNP = (CuB_d_LNP*SQDYucL(0,0) + CuB_u_LNP*SQUYucL(0,0) + CuB_0_LNP*YucL(0,0)).imag();
728 CuB_12r_LNP = (CuB_d_LNP*SQDYucL(0,1) + CuB_u_LNP*SQUYucL(0,1) + CuB_0_LNP*YucL(0,1)).real();
729 CuB_12i_LNP = (CuB_d_LNP*SQDYucL(0,1) + CuB_u_LNP*SQUYucL(0,1) + CuB_0_LNP*YucL(0,1)).imag();
730 CuB_13r_LNP = (CuB_d_LNP*SQDYucL(0,2) + CuB_u_LNP*SQUYucL(0,2) + CuB_0_LNP*YucL(0,2)).real();
731 CuB_13i_LNP = (CuB_d_LNP*SQDYucL(0,2) + CuB_u_LNP*SQUYucL(0,2) + CuB_0_LNP*YucL(0,2)).imag();
732 CuB_21r_LNP = (CuB_d_LNP*SQDYucL(1,0) + CuB_u_LNP*SQUYucL(1,0) + CuB_0_LNP*YucL(1,0)).real();
733 CuB_21i_LNP = (CuB_d_LNP*SQDYucL(1,0) + CuB_u_LNP*SQUYucL(1,0) + CuB_0_LNP*YucL(1,0)).imag();
734 CuB_22r_LNP = (CuB_d_LNP*SQDYucL(1,1) + CuB_u_LNP*SQUYucL(1,1) + CuB_0_LNP*YucL(1,1)).real();
735 CuB_22i_LNP = (CuB_d_LNP*SQDYucL(1,1) + CuB_u_LNP*SQUYucL(1,1) + CuB_0_LNP*YucL(1,1)).imag();
736 CuB_23r_LNP = (CuB_d_LNP*SQDYucL(1,2) + CuB_u_LNP*SQUYucL(1,2) + CuB_0_LNP*YucL(1,2)).real();
737 CuB_23i_LNP = (CuB_d_LNP*SQDYucL(1,2) + CuB_u_LNP*SQUYucL(1,2) + CuB_0_LNP*YucL(1,2)).imag();
738 CuB_31r_LNP = (CuB_d_LNP*SQDYucL(2,0) + CuB_u_LNP*SQUYucL(2,0) + CuB_0_LNP*YucL(2,0)).real();
739 CuB_31i_LNP = (CuB_d_LNP*SQDYucL(2,0) + CuB_u_LNP*SQUYucL(2,0) + CuB_0_LNP*YucL(2,0)).imag();
740 CuB_32r_LNP = (CuB_d_LNP*SQDYucL(2,1) + CuB_u_LNP*SQUYucL(2,1) + CuB_0_LNP*YucL(2,1)).real();
741 CuB_32i_LNP = (CuB_d_LNP*SQDYucL(2,1) + CuB_u_LNP*SQUYucL(2,1) + CuB_0_LNP*YucL(2,1)).imag();
742 CuB_33r_LNP = (CuB_d_LNP*SQDYucL(2,2) + CuB_u_LNP*SQUYucL(2,2) + CuB_0_LNP*YucL(2,2)).real();
743 CuB_33i_LNP = (CuB_d_LNP*SQDYucL(2,2) + CuB_u_LNP*SQUYucL(2,2) + CuB_0_LNP*YucL(2,2)).imag();
744
745 CdH_11r_LNP = (CdH_d_LNP*SQDYdcL(0,0) + CdH_u_LNP*SQUYdcL(0,0) + CdH_0_LNP*YdcL(0,0)).real();
746 CdH_11i_LNP = (CdH_d_LNP*SQDYdcL(0,0) + CdH_u_LNP*SQUYdcL(0,0) + CdH_0_LNP*YdcL(0,0)).imag();
747 CdH_12r_LNP = (CdH_d_LNP*SQDYdcL(0,1) + CdH_u_LNP*SQUYdcL(0,1) + CdH_0_LNP*YdcL(0,1)).real();
748 CdH_12i_LNP = (CdH_d_LNP*SQDYdcL(0,1) + CdH_u_LNP*SQUYdcL(0,1) + CdH_0_LNP*YdcL(0,1)).imag();
749 CdH_13r_LNP = (CdH_d_LNP*SQDYdcL(0,2) + CdH_u_LNP*SQUYdcL(0,2) + CdH_0_LNP*YdcL(0,2)).real();
750 CdH_13i_LNP = (CdH_d_LNP*SQDYdcL(0,2) + CdH_u_LNP*SQUYdcL(0,2) + CdH_0_LNP*YdcL(0,2)).imag();
751 CdH_21r_LNP = (CdH_d_LNP*SQDYdcL(1,0) + CdH_u_LNP*SQUYdcL(1,0) + CdH_0_LNP*YdcL(1,0)).real();
752 CdH_21i_LNP = (CdH_d_LNP*SQDYdcL(1,0) + CdH_u_LNP*SQUYdcL(1,0) + CdH_0_LNP*YdcL(1,0)).imag();
753 CdH_22r_LNP = (CdH_d_LNP*SQDYdcL(1,1) + CdH_u_LNP*SQUYdcL(1,1) + CdH_0_LNP*YdcL(1,1)).real();
754 CdH_22i_LNP = (CdH_d_LNP*SQDYdcL(1,1) + CdH_u_LNP*SQUYdcL(1,1) + CdH_0_LNP*YdcL(1,1)).imag();
755 CdH_23r_LNP = (CdH_d_LNP*SQDYdcL(1,2) + CdH_u_LNP*SQUYdcL(1,2) + CdH_0_LNP*YdcL(1,2)).real();
756 CdH_23i_LNP = (CdH_d_LNP*SQDYdcL(1,2) + CdH_u_LNP*SQUYdcL(1,2) + CdH_0_LNP*YdcL(1,2)).imag();
757 CdH_31r_LNP = (CdH_d_LNP*SQDYdcL(2,0) + CdH_u_LNP*SQUYdcL(2,0) + CdH_0_LNP*YdcL(2,0)).real();
758 CdH_31i_LNP = (CdH_d_LNP*SQDYdcL(2,0) + CdH_u_LNP*SQUYdcL(2,0) + CdH_0_LNP*YdcL(2,0)).imag();
759 CdH_32r_LNP = (CdH_d_LNP*SQDYdcL(2,1) + CdH_u_LNP*SQUYdcL(2,1) + CdH_0_LNP*YdcL(2,1)).real();
760 CdH_32i_LNP = (CdH_d_LNP*SQDYdcL(2,1) + CdH_u_LNP*SQUYdcL(2,1) + CdH_0_LNP*YdcL(2,1)).imag();
761 CdH_33r_LNP = (CdH_d_LNP*SQDYdcL(2,2) + CdH_u_LNP*SQUYdcL(2,2) + CdH_0_LNP*YdcL(2,2)).real();
762 CdH_33i_LNP = (CdH_d_LNP*SQDYdcL(2,2) + CdH_u_LNP*SQUYdcL(2,2) + CdH_0_LNP*YdcL(2,2)).imag();
763
764 CdG_11r_LNP = (CdG_d_LNP*SQDYdcL(0,0) + CdG_u_LNP*SQUYdcL(0,0) + CdG_0_LNP*YdcL(0,0)).real();
765 CdG_11i_LNP = (CdG_d_LNP*SQDYdcL(0,0) + CdG_u_LNP*SQUYdcL(0,0) + CdG_0_LNP*YdcL(0,0)).imag();
766 CdG_12r_LNP = (CdG_d_LNP*SQDYdcL(0,1) + CdG_u_LNP*SQUYdcL(0,1) + CdG_0_LNP*YdcL(0,1)).real();
767 CdG_12i_LNP = (CdG_d_LNP*SQDYdcL(0,1) + CdG_u_LNP*SQUYdcL(0,1) + CdG_0_LNP*YdcL(0,1)).imag();
768 CdG_13r_LNP = (CdG_d_LNP*SQDYdcL(0,2) + CdG_u_LNP*SQUYdcL(0,2) + CdG_0_LNP*YdcL(0,2)).real();
769 CdG_13i_LNP = (CdG_d_LNP*SQDYdcL(0,2) + CdG_u_LNP*SQUYdcL(0,2) + CdG_0_LNP*YdcL(0,2)).imag();
770 CdG_21r_LNP = (CdG_d_LNP*SQDYdcL(1,0) + CdG_u_LNP*SQUYdcL(1,0) + CdG_0_LNP*YdcL(1,0)).real();
771 CdG_21i_LNP = (CdG_d_LNP*SQDYdcL(1,0) + CdG_u_LNP*SQUYdcL(1,0) + CdG_0_LNP*YdcL(1,0)).imag();
772 CdG_22r_LNP = (CdG_d_LNP*SQDYdcL(1,1) + CdG_u_LNP*SQUYdcL(1,1) + CdG_0_LNP*YdcL(1,1)).real();
773 CdG_22i_LNP = (CdG_d_LNP*SQDYdcL(1,1) + CdG_u_LNP*SQUYdcL(1,1) + CdG_0_LNP*YdcL(1,1)).imag();
774 CdG_23r_LNP = (CdG_d_LNP*SQDYdcL(1,2) + CdG_u_LNP*SQUYdcL(1,2) + CdG_0_LNP*YdcL(1,2)).real();
775 CdG_23i_LNP = (CdG_d_LNP*SQDYdcL(1,2) + CdG_u_LNP*SQUYdcL(1,2) + CdG_0_LNP*YdcL(1,2)).imag();
776 CdG_31r_LNP = (CdG_d_LNP*SQDYdcL(2,0) + CdG_u_LNP*SQUYdcL(2,0) + CdG_0_LNP*YdcL(2,0)).real();
777 CdG_31i_LNP = (CdG_d_LNP*SQDYdcL(2,0) + CdG_u_LNP*SQUYdcL(2,0) + CdG_0_LNP*YdcL(2,0)).imag();
778 CdG_32r_LNP = (CdG_d_LNP*SQDYdcL(2,1) + CdG_u_LNP*SQUYdcL(2,1) + CdG_0_LNP*YdcL(2,1)).real();
779 CdG_32i_LNP = (CdG_d_LNP*SQDYdcL(2,1) + CdG_u_LNP*SQUYdcL(2,1) + CdG_0_LNP*YdcL(2,1)).imag();
780 CdG_33r_LNP = (CdG_d_LNP*SQDYdcL(2,2) + CdG_u_LNP*SQUYdcL(2,2) + CdG_0_LNP*YdcL(2,2)).real();
781 CdG_33i_LNP = (CdG_d_LNP*SQDYdcL(2,2) + CdG_u_LNP*SQUYdcL(2,2) + CdG_0_LNP*YdcL(2,2)).imag();
782
783 CdW_11r_LNP = (CdW_d_LNP*SQDYdcL(0,0) + CdW_u_LNP*SQUYdcL(0,0) + CdW_0_LNP*YdcL(0,0)).real();
784 CdW_11i_LNP = (CdW_d_LNP*SQDYdcL(0,0) + CdW_u_LNP*SQUYdcL(0,0) + CdW_0_LNP*YdcL(0,0)).imag();
785 CdW_12r_LNP = (CdW_d_LNP*SQDYdcL(0,1) + CdW_u_LNP*SQUYdcL(0,1) + CdW_0_LNP*YdcL(0,1)).real();
786 CdW_12i_LNP = (CdW_d_LNP*SQDYdcL(0,1) + CdW_u_LNP*SQUYdcL(0,1) + CdW_0_LNP*YdcL(0,1)).imag();
787 CdW_13r_LNP = (CdW_d_LNP*SQDYdcL(0,2) + CdW_u_LNP*SQUYdcL(0,2) + CdW_0_LNP*YdcL(0,2)).real();
788 CdW_13i_LNP = (CdW_d_LNP*SQDYdcL(0,2) + CdW_u_LNP*SQUYdcL(0,2) + CdW_0_LNP*YdcL(0,2)).imag();
789 CdW_21r_LNP = (CdW_d_LNP*SQDYdcL(1,0) + CdW_u_LNP*SQUYdcL(1,0) + CdW_0_LNP*YdcL(1,0)).real();
790 CdW_21i_LNP = (CdW_d_LNP*SQDYdcL(1,0) + CdW_u_LNP*SQUYdcL(1,0) + CdW_0_LNP*YdcL(1,0)).imag();
791 CdW_22r_LNP = (CdW_d_LNP*SQDYdcL(1,1) + CdW_u_LNP*SQUYdcL(1,1) + CdW_0_LNP*YdcL(1,1)).real();
792 CdW_22i_LNP = (CdW_d_LNP*SQDYdcL(1,1) + CdW_u_LNP*SQUYdcL(1,1) + CdW_0_LNP*YdcL(1,1)).imag();
793 CdW_23r_LNP = (CdW_d_LNP*SQDYdcL(1,2) + CdW_u_LNP*SQUYdcL(1,2) + CdW_0_LNP*YdcL(1,2)).real();
794 CdW_23i_LNP = (CdW_d_LNP*SQDYdcL(1,2) + CdW_u_LNP*SQUYdcL(1,2) + CdW_0_LNP*YdcL(1,2)).imag();
795 CdW_31r_LNP = (CdW_d_LNP*SQDYdcL(2,0) + CdW_u_LNP*SQUYdcL(2,0) + CdW_0_LNP*YdcL(2,0)).real();
796 CdW_31i_LNP = (CdW_d_LNP*SQDYdcL(2,0) + CdW_u_LNP*SQUYdcL(2,0) + CdW_0_LNP*YdcL(2,0)).imag();
797 CdW_32r_LNP = (CdW_d_LNP*SQDYdcL(2,1) + CdW_u_LNP*SQUYdcL(2,1) + CdW_0_LNP*YdcL(2,1)).real();
798 CdW_32i_LNP = (CdW_d_LNP*SQDYdcL(2,1) + CdW_u_LNP*SQUYdcL(2,1) + CdW_0_LNP*YdcL(2,1)).imag();
799 CdW_33r_LNP = (CdW_d_LNP*SQDYdcL(2,2) + CdW_u_LNP*SQUYdcL(2,2) + CdW_0_LNP*YdcL(2,2)).real();
800 CdW_33i_LNP = (CdW_d_LNP*SQDYdcL(2,2) + CdW_u_LNP*SQUYdcL(2,2) + CdW_0_LNP*YdcL(2,2)).imag();
801
802 CdB_11r_LNP = (CdB_d_LNP*SQDYdcL(0,0) + CdB_u_LNP*SQUYdcL(0,0) + CdB_0_LNP*YdcL(0,0)).real();
803 CdB_11i_LNP = (CdB_d_LNP*SQDYdcL(0,0) + CdB_u_LNP*SQUYdcL(0,0) + CdB_0_LNP*YdcL(0,0)).imag();
804 CdB_12r_LNP = (CdB_d_LNP*SQDYdcL(0,1) + CdB_u_LNP*SQUYdcL(0,1) + CdB_0_LNP*YdcL(0,1)).real();
805 CdB_12i_LNP = (CdB_d_LNP*SQDYdcL(0,1) + CdB_u_LNP*SQUYdcL(0,1) + CdB_0_LNP*YdcL(0,1)).imag();
806 CdB_13r_LNP = (CdB_d_LNP*SQDYdcL(0,2) + CdB_u_LNP*SQUYdcL(0,2) + CdB_0_LNP*YdcL(0,2)).real();
807 CdB_13i_LNP = (CdB_d_LNP*SQDYdcL(0,2) + CdB_u_LNP*SQUYdcL(0,2) + CdB_0_LNP*YdcL(0,2)).imag();
808 CdB_21r_LNP = (CdB_d_LNP*SQDYdcL(1,0) + CdB_u_LNP*SQUYdcL(1,0) + CdB_0_LNP*YdcL(1,0)).real();
809 CdB_21i_LNP = (CdB_d_LNP*SQDYdcL(1,0) + CdB_u_LNP*SQUYdcL(1,0) + CdB_0_LNP*YdcL(1,0)).imag();
810 CdB_22r_LNP = (CdB_d_LNP*SQDYdcL(1,1) + CdB_u_LNP*SQUYdcL(1,1) + CdB_0_LNP*YdcL(1,1)).real();
811 CdB_22i_LNP = (CdB_d_LNP*SQDYdcL(1,1) + CdB_u_LNP*SQUYdcL(1,1) + CdB_0_LNP*YdcL(1,1)).imag();
812 CdB_23r_LNP = (CdB_d_LNP*SQDYdcL(1,2) + CdB_u_LNP*SQUYdcL(1,2) + CdB_0_LNP*YdcL(1,2)).real();
813 CdB_23i_LNP = (CdB_d_LNP*SQDYdcL(1,2) + CdB_u_LNP*SQUYdcL(1,2) + CdB_0_LNP*YdcL(1,2)).imag();
814 CdB_31r_LNP = (CdB_d_LNP*SQDYdcL(2,0) + CdB_u_LNP*SQUYdcL(2,0) + CdB_0_LNP*YdcL(2,0)).real();
815 CdB_31i_LNP = (CdB_d_LNP*SQDYdcL(2,0) + CdB_u_LNP*SQUYdcL(2,0) + CdB_0_LNP*YdcL(2,0)).imag();
816 CdB_32r_LNP = (CdB_d_LNP*SQDYdcL(2,1) + CdB_u_LNP*SQUYdcL(2,1) + CdB_0_LNP*YdcL(2,1)).real();
817 CdB_32i_LNP = (CdB_d_LNP*SQDYdcL(2,1) + CdB_u_LNP*SQUYdcL(2,1) + CdB_0_LNP*YdcL(2,1)).imag();
818 CdB_33r_LNP = (CdB_d_LNP*SQDYdcL(2,2) + CdB_u_LNP*SQUYdcL(2,2) + CdB_0_LNP*YdcL(2,2)).real();
819 CdB_33i_LNP = (CdB_d_LNP*SQDYdcL(2,2) + CdB_u_LNP*SQUYdcL(2,2) + CdB_0_LNP*YdcL(2,2)).imag();
820
821 CHq1_11r_LNP = (CHq1_0_LNP + CHq1_d_LNP*SQDL(0,0) + CHq1_u_LNP*SQUL(0,0)).real();
822 CHq1_12r_LNP = (CHq1_d_LNP*SQDL(0,1) + CHq1_u_LNP*SQUL(0,1)).real();
823 CHq1_12i_LNP = (CHq1_d_LNP*SQDL(0,1) + CHq1_u_LNP*SQUL(0,1)).imag();
824 CHq1_13r_LNP = (CHq1_d_LNP*SQDL(0,2) + CHq1_u_LNP*SQUL(0,2)).real();
825 CHq1_13i_LNP = (CHq1_d_LNP*SQDL(0,2) + CHq1_u_LNP*SQUL(0,2)).imag();
826 CHq1_22r_LNP = (CHq1_0_LNP + CHq1_d_LNP*SQDL(1,1) + CHq1_u_LNP*SQUL(1,1)).real();
827 CHq1_23r_LNP = (CHq1_d_LNP*SQDL(1,2) + CHq1_u_LNP*SQUL(1,2)).real();
828 CHq1_23i_LNP = (CHq1_d_LNP*SQDL(1,2) + CHq1_u_LNP*SQUL(1,2)).imag();
829 CHq1_33r_LNP = (CHq1_0_LNP + CHq1_d_LNP*SQDL(2,2) + CHq1_u_LNP*SQUL(2,2)).real();
830
831 CHq3_11r_LNP = (CHq3_0_LNP + CHq3_d_LNP*SQDL(0,0) + CHq3_u_LNP*SQUL(0,0)).real();
832 CHq3_12r_LNP = (CHq3_d_LNP*SQDL(0,1) + CHq3_u_LNP*SQUL(0,1)).real();
833 CHq3_12i_LNP = (CHq3_d_LNP*SQDL(0,1) + CHq3_u_LNP*SQUL(0,1)).imag();
834 CHq3_13r_LNP = (CHq3_d_LNP*SQDL(0,2) + CHq3_u_LNP*SQUL(0,2)).real();
835 CHq3_13i_LNP = (CHq3_d_LNP*SQDL(0,2) + CHq3_u_LNP*SQUL(0,2)).imag();
836 CHq3_22r_LNP = (CHq3_0_LNP + CHq3_d_LNP*SQDL(1,1) + CHq3_u_LNP*SQUL(1,1)).real();
837 CHq3_23r_LNP = (CHq3_d_LNP*SQDL(1,2) + CHq3_u_LNP*SQUL(1,2)).real();
838 CHq3_23i_LNP = (CHq3_d_LNP*SQDL(1,2) + CHq3_u_LNP*SQUL(1,2)).imag();
839 CHq3_33r_LNP = (CHq3_0_LNP + CHq3_d_LNP*SQDL(2,2) + CHq3_u_LNP*SQUL(2,2)).real();
840
841 CHu_11r_LNP = (CHu_0_LNP + CHu_u_LNP*SUL(0,0)).real();
842 CHu_12r_LNP = (CHu_u_LNP*SUL(0,1)).real();
843 CHu_12i_LNP = (CHu_u_LNP*SUL(0,1)).imag();
844 CHu_13r_LNP = (CHu_u_LNP*SUL(0,2)).real();
845 CHu_13i_LNP = (CHu_u_LNP*SUL(0,2)).imag();
846 CHu_22r_LNP = (CHu_0_LNP + CHu_u_LNP*SUL(1,1)).real();
847 CHu_23r_LNP = (CHu_u_LNP*SUL(1,2)).real();
848 CHu_23i_LNP = (CHu_u_LNP*SUL(1,2)).imag();
849 CHu_33r_LNP = (CHu_0_LNP + CHu_u_LNP*SUL(2,2)).real();
850
851 CHd_11r_LNP = (CHd_0_LNP + CHd_d_LNP*SDL(0,0)).real();
852 CHd_12r_LNP = (CHd_d_LNP*SDL(0,1)).real();
853 CHd_12i_LNP = (CHd_d_LNP*SDL(0,1)).imag();
854 CHd_13r_LNP = (CHd_d_LNP*SDL(0,2)).real();
855 CHd_13i_LNP = (CHd_d_LNP*SDL(0,2)).imag();
856 CHd_22r_LNP = (CHd_0_LNP + CHd_d_LNP*SDL(1,1)).real();
857 CHd_23r_LNP = (CHd_d_LNP*SDL(1,2)).real();
858 CHd_23i_LNP = (CHd_d_LNP*SDL(1,2)).imag();
859 CHd_33r_LNP = (CHd_0_LNP + CHd_d_LNP*SDL(2,2)).real();
860
861 CHud_11r_LNP = (CHud_ud_LNP*SUDL(0,0)).real();
862 CHud_11i_LNP = (CHud_ud_LNP*SUDL(0,0)).imag();
863 CHud_12r_LNP = (CHud_ud_LNP*SUDL(0,1)).real();
864 CHud_12i_LNP = (CHud_ud_LNP*SUDL(0,1)).imag();
865 CHud_13r_LNP = (CHud_ud_LNP*SUDL(0,2)).real();
866 CHud_13i_LNP = (CHud_ud_LNP*SUDL(0,2)).imag();
867 CHud_21r_LNP = (CHud_ud_LNP*SUDL(1,0)).real();
868 CHud_21i_LNP = (CHud_ud_LNP*SUDL(1,0)).imag();
869 CHud_22r_LNP = (CHud_ud_LNP*SUDL(1,1)).real();
870 CHud_22i_LNP = (CHud_ud_LNP*SUDL(1,1)).imag();
871 CHud_23r_LNP = (CHud_ud_LNP*SUDL(1,2)).real();
872 CHud_23i_LNP = (CHud_ud_LNP*SUDL(1,2)).imag();
873 CHud_31r_LNP = (CHud_ud_LNP*SUDL(2,0)).real();
874 CHud_31i_LNP = (CHud_ud_LNP*SUDL(2,0)).imag();
875 CHud_32r_LNP = (CHud_ud_LNP*SUDL(2,1)).real();
876 CHud_32i_LNP = (CHud_ud_LNP*SUDL(2,1)).imag();
877 CHud_33r_LNP = (CHud_ud_LNP*SUDL(2,2)).real();
878 CHud_33i_LNP = (CHud_ud_LNP*SUDL(2,2)).imag();
879
880 Clq1_1111r_LNP = (Clq1_0_LNP + Clq1_d_LNP*SQDL(0,0) + Clq1_u_LNP*SQUL(0,0)).real();
881 Clq1_1112r_LNP = (Clq1_d_LNP*SQDL(0,1) + Clq1_u_LNP*SQUL(0,1)).real();
882 Clq1_1112i_LNP = (Clq1_d_LNP*SQDL(0,1) + Clq1_u_LNP*SQUL(0,1)).imag();
883 Clq1_1113r_LNP = (Clq1_d_LNP*SQDL(0,2) + Clq1_u_LNP*SQUL(0,2)).real();
884 Clq1_1113i_LNP = (Clq1_d_LNP*SQDL(0,2) + Clq1_u_LNP*SQUL(0,2)).imag();
885 Clq1_1122r_LNP = (Clq1_0_LNP + Clq1_d_LNP*SQDL(1,1) + Clq1_u_LNP*SQUL(1,1)).real();
886 Clq1_1123r_LNP = (Clq1_d_LNP*SQDL(1,2) + Clq1_u_LNP*SQUL(1,2)).real();
887 Clq1_1123i_LNP = (Clq1_d_LNP*SQDL(1,2) + Clq1_u_LNP*SQUL(1,2)).imag();
888 Clq1_1133r_LNP = (Clq1_0_LNP + Clq1_d_LNP*SQDL(2,2) + Clq1_u_LNP*SQUL(2,2)).real();
889 Clq1_2211r_LNP = (Clq1_0_LNP + Clq1_d_LNP*SQDL(0,0) + Clq1_u_LNP*SQUL(0,0)).real();
890 Clq1_2212r_LNP = (Clq1_d_LNP*SQDL(0,1) + Clq1_u_LNP*SQUL(0,1)).real();
891 Clq1_2212i_LNP = (Clq1_d_LNP*SQDL(0,1) + Clq1_u_LNP*SQUL(0,1)).imag();
892 Clq1_2213r_LNP = (Clq1_d_LNP*SQDL(0,2) + Clq1_u_LNP*SQUL(0,2)).real();
893 Clq1_2213i_LNP = (Clq1_d_LNP*SQDL(0,2) + Clq1_u_LNP*SQUL(0,2)).imag();
894 Clq1_2222r_LNP = (Clq1_0_LNP + Clq1_d_LNP*SQDL(1,1) + Clq1_u_LNP*SQUL(1,1)).real();
895 Clq1_2223r_LNP = (Clq1_d_LNP*SQDL(1,2) + Clq1_u_LNP*SQUL(1,2)).real();
896 Clq1_2223i_LNP = (Clq1_d_LNP*SQDL(1,2) + Clq1_u_LNP*SQUL(1,2)).imag();
897 Clq1_2233r_LNP = (Clq1_0_LNP + Clq1_d_LNP*SQDL(2,2) + Clq1_u_LNP*SQUL(2,2)).real();
898 Clq1_3311r_LNP = (Clq1_0_LNP + Clq1_d_LNP*SQDL(0,0) + Clq1_u_LNP*SQUL(0,0)).real();
899 Clq1_3312r_LNP = (Clq1_d_LNP*SQDL(0,1) + Clq1_u_LNP*SQUL(0,1)).real();
900 Clq1_3312i_LNP = (Clq1_d_LNP*SQDL(0,1) + Clq1_u_LNP*SQUL(0,1)).imag();
901 Clq1_3313r_LNP = (Clq1_d_LNP*SQDL(0,2) + Clq1_u_LNP*SQUL(0,2)).real();
902 Clq1_3313i_LNP = (Clq1_d_LNP*SQDL(0,2) + Clq1_u_LNP*SQUL(0,2)).imag();
903 Clq1_3322r_LNP = (Clq1_0_LNP + Clq1_d_LNP*SQDL(1,1) + Clq1_u_LNP*SQUL(1,1)).real();
904 Clq1_3323r_LNP = (Clq1_d_LNP*SQDL(1,2) + Clq1_u_LNP*SQUL(1,2)).real();
905 Clq1_3323i_LNP = (Clq1_d_LNP*SQDL(1,2) + Clq1_u_LNP*SQUL(1,2)).imag();
906 Clq1_3333r_LNP = (Clq1_0_LNP + Clq1_d_LNP*SQDL(2,2) + Clq1_u_LNP*SQUL(2,2)).real();
907
908 Clq3_1111r_LNP = (Clq3_0_LNP + Clq3_d_LNP*SQDL(0,0) + Clq3_u_LNP*SQUL(0,0)).real();
909 Clq3_1112r_LNP = (Clq3_d_LNP*SQDL(0,1) + Clq3_u_LNP*SQUL(0,1)).real();
910 Clq3_1112i_LNP = (Clq3_d_LNP*SQDL(0,1) + Clq3_u_LNP*SQUL(0,1)).imag();
911 Clq3_1113r_LNP = (Clq3_d_LNP*SQDL(0,2) + Clq3_u_LNP*SQUL(0,2)).real();
912 Clq3_1113i_LNP = (Clq3_d_LNP*SQDL(0,2) + Clq3_u_LNP*SQUL(0,2)).imag();
913 Clq3_1122r_LNP = (Clq3_0_LNP + Clq3_d_LNP*SQDL(1,1) + Clq3_u_LNP*SQUL(1,1)).real();
914 Clq3_1123r_LNP = (Clq3_d_LNP*SQDL(1,2) + Clq3_u_LNP*SQUL(1,2)).real();
915 Clq3_1123i_LNP = (Clq3_d_LNP*SQDL(1,2) + Clq3_u_LNP*SQUL(1,2)).imag();
916 Clq3_1133r_LNP = (Clq3_0_LNP + Clq3_d_LNP*SQDL(2,2) + Clq3_u_LNP*SQUL(2,2)).real();
917 Clq3_2211r_LNP = (Clq3_0_LNP + Clq3_d_LNP*SQDL(0,0) + Clq3_u_LNP*SQUL(0,0)).real();
918 Clq3_2212r_LNP = (Clq3_d_LNP*SQDL(0,1) + Clq3_u_LNP*SQUL(0,1)).real();
919 Clq3_2212i_LNP = (Clq3_d_LNP*SQDL(0,1) + Clq3_u_LNP*SQUL(0,1)).imag();
920 Clq3_2213r_LNP = (Clq3_d_LNP*SQDL(0,2) + Clq3_u_LNP*SQUL(0,2)).real();
921 Clq3_2213i_LNP = (Clq3_d_LNP*SQDL(0,2) + Clq3_u_LNP*SQUL(0,2)).imag();
922 Clq3_2222r_LNP = (Clq3_0_LNP + Clq3_d_LNP*SQDL(1,1) + Clq3_u_LNP*SQUL(1,1)).real();
923 Clq3_2223r_LNP = (Clq3_d_LNP*SQDL(1,2) + Clq3_u_LNP*SQUL(1,2)).real();
924 Clq3_2223i_LNP = (Clq3_d_LNP*SQDL(1,2) + Clq3_u_LNP*SQUL(1,2)).imag();
925 Clq3_2233r_LNP = (Clq3_0_LNP + Clq3_d_LNP*SQDL(2,2) + Clq3_u_LNP*SQUL(2,2)).real();
926 Clq3_3311r_LNP = (Clq3_0_LNP + Clq3_d_LNP*SQDL(0,0) + Clq3_u_LNP*SQUL(0,0)).real();
927 Clq3_3312r_LNP = (Clq3_d_LNP*SQDL(0,1) + Clq3_u_LNP*SQUL(0,1)).real();
928 Clq3_3312i_LNP = (Clq3_d_LNP*SQDL(0,1) + Clq3_u_LNP*SQUL(0,1)).imag();
929 Clq3_3313r_LNP = (Clq3_d_LNP*SQDL(0,2) + Clq3_u_LNP*SQUL(0,2)).real();
930 Clq3_3313i_LNP = (Clq3_d_LNP*SQDL(0,2) + Clq3_u_LNP*SQUL(0,2)).imag();
931 Clq3_3322r_LNP = (Clq3_0_LNP + Clq3_d_LNP*SQDL(1,1) + Clq3_u_LNP*SQUL(1,1)).real();
932 Clq3_3323r_LNP = (Clq3_d_LNP*SQDL(1,2) + Clq3_u_LNP*SQUL(1,2)).real();
933 Clq3_3323i_LNP = (Clq3_d_LNP*SQDL(1,2) + Clq3_u_LNP*SQUL(1,2)).imag();
934 Clq3_3333r_LNP = (Clq3_0_LNP + Clq3_d_LNP*SQDL(2,2) + Clq3_u_LNP*SQUL(2,2)).real();
935
936 Cqe_1111r_LNP = (Cqe_0_LNP + Cqe_d_LNP*SQDL(0,0) + Cqe_u_LNP*SQUL(0,0)).real();
937 Cqe_1122r_LNP = (Cqe_0_LNP + Cqe_d_LNP*SQDL(0,0) + Cqe_u_LNP*SQUL(0,0)).real();
938 Cqe_1133r_LNP = (Cqe_0_LNP + Cqe_d_LNP*SQDL(0,0) + Cqe_u_LNP*SQUL(0,0)).real();
939 Cqe_1211r_LNP = (Cqe_d_LNP*SQDL(0,1) + Cqe_u_LNP*SQUL(0,1)).real();
940 Cqe_1211i_LNP = (Cqe_d_LNP*SQDL(0,1) + Cqe_u_LNP*SQUL(0,1)).imag();
941 Cqe_1222r_LNP = (Cqe_d_LNP*SQDL(0,1) + Cqe_u_LNP*SQUL(0,1)).real();
942 Cqe_1222i_LNP = (Cqe_d_LNP*SQDL(0,1) + Cqe_u_LNP*SQUL(0,1)).imag();
943 Cqe_1233r_LNP = (Cqe_d_LNP*SQDL(0,1) + Cqe_u_LNP*SQUL(0,1)).real();
944 Cqe_1233i_LNP = (Cqe_d_LNP*SQDL(0,1) + Cqe_u_LNP*SQUL(0,1)).imag();
945 Cqe_1311r_LNP = (Cqe_d_LNP*SQDL(0,2) + Cqe_u_LNP*SQUL(0,2)).real();
946 Cqe_1311i_LNP = (Cqe_d_LNP*SQDL(0,2) + Cqe_u_LNP*SQUL(0,2)).imag();
947 Cqe_1322r_LNP = (Cqe_d_LNP*SQDL(0,2) + Cqe_u_LNP*SQUL(0,2)).real();
948 Cqe_1322i_LNP = (Cqe_d_LNP*SQDL(0,2) + Cqe_u_LNP*SQUL(0,2)).imag();
949 Cqe_1333r_LNP = (Cqe_d_LNP*SQDL(0,2) + Cqe_u_LNP*SQUL(0,2)).real();
950 Cqe_1333i_LNP = (Cqe_d_LNP*SQDL(0,2) + Cqe_u_LNP*SQUL(0,2)).imag();
951 Cqe_2211r_LNP = (Cqe_0_LNP + Cqe_d_LNP*SQDL(1,1) + Cqe_u_LNP*SQUL(1,1)).real();
952 Cqe_2222r_LNP = (Cqe_0_LNP + Cqe_d_LNP*SQDL(1,1) + Cqe_u_LNP*SQUL(1,1)).real();
953 Cqe_2233r_LNP = (Cqe_0_LNP + Cqe_d_LNP*SQDL(1,1) + Cqe_u_LNP*SQUL(1,1)).real();
954 Cqe_2311r_LNP = (Cqe_d_LNP*SQDL(1,2) + Cqe_u_LNP*SQUL(1,2)).real();
955 Cqe_2311i_LNP = (Cqe_d_LNP*SQDL(1,2) + Cqe_u_LNP*SQUL(1,2)).imag();
956 Cqe_2322r_LNP = (Cqe_d_LNP*SQDL(1,2) + Cqe_u_LNP*SQUL(1,2)).real();
957 Cqe_2322i_LNP = (Cqe_d_LNP*SQDL(1,2) + Cqe_u_LNP*SQUL(1,2)).imag();
958 Cqe_2333r_LNP = (Cqe_d_LNP*SQDL(1,2) + Cqe_u_LNP*SQUL(1,2)).real();
959 Cqe_2333i_LNP = (Cqe_d_LNP*SQDL(1,2) + Cqe_u_LNP*SQUL(1,2)).imag();
960 Cqe_3311r_LNP = (Cqe_0_LNP + Cqe_d_LNP*SQDL(2,2) + Cqe_u_LNP*SQUL(2,2)).real();
961 Cqe_3322r_LNP = (Cqe_0_LNP + Cqe_d_LNP*SQDL(2,2) + Cqe_u_LNP*SQUL(2,2)).real();
962 Cqe_3333r_LNP = (Cqe_0_LNP + Cqe_d_LNP*SQDL(2,2) + Cqe_u_LNP*SQUL(2,2)).real();
963
964 Clu_1111r_LNP = (Clu_0_LNP + Clu_u_LNP*SUL(0,0)).real();
965 Clu_1112r_LNP = (Clu_u_LNP*SUL(0,1)).real();
966 Clu_1112i_LNP = (Clu_u_LNP*SUL(0,1)).imag();
967 Clu_1113r_LNP = (Clu_u_LNP*SUL(0,2)).real();
968 Clu_1113i_LNP = (Clu_u_LNP*SUL(0,2)).imag();
969 Clu_1122r_LNP = (Clu_0_LNP + Clu_u_LNP*SUL(1,1)).real();
970 Clu_1123r_LNP = (Clu_u_LNP*SUL(1,2)).real();
971 Clu_1123i_LNP = (Clu_u_LNP*SUL(1,2)).imag();
972 Clu_1133r_LNP = (Clu_0_LNP + Clu_u_LNP*SUL(2,2)).real();
973 Clu_2211r_LNP = (Clu_0_LNP + Clu_u_LNP*SUL(0,0)).real();
974 Clu_2212r_LNP = (Clu_u_LNP*SUL(0,1)).real();
975 Clu_2212i_LNP = (Clu_u_LNP*SUL(0,1)).imag();
976 Clu_2213r_LNP = (Clu_u_LNP*SUL(0,2)).real();
977 Clu_2213i_LNP = (Clu_u_LNP*SUL(0,2)).imag();
978 Clu_2222r_LNP = (Clu_0_LNP + Clu_u_LNP*SUL(1,1)).real();
979 Clu_2223r_LNP = (Clu_u_LNP*SUL(1,2)).real();
980 Clu_2223i_LNP = (Clu_u_LNP*SUL(1,2)).imag();
981 Clu_2233r_LNP = (Clu_0_LNP + Clu_u_LNP*SUL(2,2)).real();
982 Clu_3311r_LNP = (Clu_0_LNP + Clu_u_LNP*SUL(0,0)).real();
983 Clu_3312r_LNP = (Clu_u_LNP*SUL(0,1)).real();
984 Clu_3312i_LNP = (Clu_u_LNP*SUL(0,1)).imag();
985 Clu_3313r_LNP = (Clu_u_LNP*SUL(0,2)).real();
986 Clu_3313i_LNP = (Clu_u_LNP*SUL(0,2)).imag();
987 Clu_3322r_LNP = (Clu_0_LNP + Clu_u_LNP*SUL(1,1)).real();
988 Clu_3323r_LNP = (Clu_u_LNP*SUL(1,2)).real();
989 Clu_3323i_LNP = (Clu_u_LNP*SUL(1,2)).imag();
990 Clu_3333r_LNP = (Clu_0_LNP + Clu_u_LNP*SUL(2,2)).real();
991
992 Ceu_1111r_LNP = (Ceu_0_LNP + Ceu_u_LNP*SUL(0,0)).real();
993 Ceu_1112r_LNP = (Ceu_u_LNP*SUL(0,1)).real();
994 Ceu_1112i_LNP = (Ceu_u_LNP*SUL(0,1)).imag();
995 Ceu_1113r_LNP = (Ceu_u_LNP*SUL(0,2)).real();
996 Ceu_1113i_LNP = (Ceu_u_LNP*SUL(0,2)).imag();
997 Ceu_1122r_LNP = (Ceu_0_LNP + Ceu_u_LNP*SUL(1,1)).real();
998 Ceu_1123r_LNP = (Ceu_u_LNP*SUL(1,2)).real();
999 Ceu_1123i_LNP = (Ceu_u_LNP*SUL(1,2)).imag();
1000 Ceu_1133r_LNP = (Ceu_0_LNP + Ceu_u_LNP*SUL(2,2)).real();
1001 Ceu_2211r_LNP = (Ceu_0_LNP + Ceu_u_LNP*SUL(0,0)).real();
1002 Ceu_2212r_LNP = (Ceu_u_LNP*SUL(0,1)).real();
1003 Ceu_2212i_LNP = (Ceu_u_LNP*SUL(0,1)).imag();
1004 Ceu_2213r_LNP = (Ceu_u_LNP*SUL(0,2)).real();
1005 Ceu_2213i_LNP = (Ceu_u_LNP*SUL(0,2)).imag();
1006 Ceu_2222r_LNP = (Ceu_0_LNP + Ceu_u_LNP*SUL(1,1)).real();
1007 Ceu_2223r_LNP = (Ceu_u_LNP*SUL(1,2)).real();
1008 Ceu_2223i_LNP = (Ceu_u_LNP*SUL(1,2)).imag();
1009 Ceu_2233r_LNP = (Ceu_0_LNP + Ceu_u_LNP*SUL(2,2)).real();
1010 Ceu_3311r_LNP = (Ceu_0_LNP + Ceu_u_LNP*SUL(0,0)).real();
1011 Ceu_3312r_LNP = (Ceu_u_LNP*SUL(0,1)).real();
1012 Ceu_3312i_LNP = (Ceu_u_LNP*SUL(0,1)).imag();
1013 Ceu_3313r_LNP = (Ceu_u_LNP*SUL(0,2)).real();
1014 Ceu_3313i_LNP = (Ceu_u_LNP*SUL(0,2)).imag();
1015 Ceu_3322r_LNP = (Ceu_0_LNP + Ceu_u_LNP*SUL(1,1)).real();
1016 Ceu_3323r_LNP = (Ceu_u_LNP*SUL(1,2)).real();
1017 Ceu_3323i_LNP = (Ceu_u_LNP*SUL(1,2)).imag();
1018 Ceu_3333r_LNP = (Ceu_0_LNP + Ceu_u_LNP*SUL(2,2)).real();
1019
1020 Cld_1111r_LNP = (Cld_0_LNP + Cld_d_LNP*SDL(0,0)).real();
1021 Cld_1112r_LNP = (Cld_d_LNP*SDL(0,1)).real();
1022 Cld_1112i_LNP = (Cld_d_LNP*SDL(0,1)).imag();
1023 Cld_1113r_LNP = (Cld_d_LNP*SDL(0,2)).real();
1024 Cld_1113i_LNP = (Cld_d_LNP*SDL(0,2)).imag();
1025 Cld_1122r_LNP = (Cld_0_LNP + Cld_d_LNP*SDL(1,1)).real();
1026 Cld_1123r_LNP = (Cld_d_LNP*SDL(1,2)).real();
1027 Cld_1123i_LNP = (Cld_d_LNP*SDL(1,2)).imag();
1028 Cld_1133r_LNP = (Cld_0_LNP + Cld_d_LNP*SDL(2,2)).real();
1029 Cld_2211r_LNP = (Cld_0_LNP + Cld_d_LNP*SDL(0,0)).real();
1030 Cld_2212r_LNP = (Cld_d_LNP*SDL(0,1)).real();
1031 Cld_2212i_LNP = (Cld_d_LNP*SDL(0,1)).imag();
1032 Cld_2213r_LNP = (Cld_d_LNP*SDL(0,2)).real();
1033 Cld_2213i_LNP = (Cld_d_LNP*SDL(0,2)).imag();
1034 Cld_2222r_LNP = (Cld_0_LNP + Cld_d_LNP*SDL(1,1)).real();
1035 Cld_2223r_LNP = (Cld_d_LNP*SDL(1,2)).real();
1036 Cld_2223i_LNP = (Cld_d_LNP*SDL(1,2)).imag();
1037 Cld_2233r_LNP = (Cld_0_LNP + Cld_d_LNP*SDL(2,2)).real();
1038 Cld_3311r_LNP = (Cld_0_LNP + Cld_d_LNP*SDL(0,0)).real();
1039 Cld_3312r_LNP = (Cld_d_LNP*SDL(0,1)).real();
1040 Cld_3312i_LNP = (Cld_d_LNP*SDL(0,1)).imag();
1041 Cld_3313r_LNP = (Cld_d_LNP*SDL(0,2)).real();
1042 Cld_3313i_LNP = (Cld_d_LNP*SDL(0,2)).imag();
1043 Cld_3322r_LNP = (Cld_0_LNP + Cld_d_LNP*SDL(1,1)).real();
1044 Cld_3323r_LNP = (Cld_d_LNP*SDL(1,2)).real();
1045 Cld_3323i_LNP = (Cld_d_LNP*SDL(1,2)).imag();
1046 Cld_3333r_LNP = (Cld_0_LNP + Cld_d_LNP*SDL(2,2)).real();
1047
1048 Ced_1111r_LNP = (Ced_0_LNP + Ced_d_LNP*SDL(0,0)).real();
1049 Ced_1112r_LNP = (Ced_d_LNP*SDL(0,1)).real();
1050 Ced_1112i_LNP = (Ced_d_LNP*SDL(0,1)).imag();
1051 Ced_1113r_LNP = (Ced_d_LNP*SDL(0,2)).real();
1052 Ced_1113i_LNP = (Ced_d_LNP*SDL(0,2)).imag();
1053 Ced_1122r_LNP = (Ced_0_LNP + Ced_d_LNP*SDL(1,1)).real();
1054 Ced_1123r_LNP = (Ced_d_LNP*SDL(1,2)).real();
1055 Ced_1123i_LNP = (Ced_d_LNP*SDL(1,2)).imag();
1056 Ced_1133r_LNP = (Ced_0_LNP + Ced_d_LNP*SDL(2,2)).real();
1057 Ced_2211r_LNP = (Ced_0_LNP + Ced_d_LNP*SDL(0,0)).real();
1058 Ced_2212r_LNP = (Ced_d_LNP*SDL(0,1)).real();
1059 Ced_2212i_LNP = (Ced_d_LNP*SDL(0,1)).imag();
1060 Ced_2213r_LNP = (Ced_d_LNP*SDL(0,2)).real();
1061 Ced_2213i_LNP = (Ced_d_LNP*SDL(0,2)).imag();
1062 Ced_2222r_LNP = (Ced_0_LNP + Ced_d_LNP*SDL(1,1)).real();
1063 Ced_2223r_LNP = (Ced_d_LNP*SDL(1,2)).real();
1064 Ced_2223i_LNP = (Ced_d_LNP*SDL(1,2)).imag();
1065 Ced_2233r_LNP = (Ced_0_LNP + Ced_d_LNP*SDL(2,2)).real();
1066 Ced_3311r_LNP = (Ced_0_LNP + Ced_d_LNP*SDL(0,0)).real();
1067 Ced_3312r_LNP = (Ced_d_LNP*SDL(0,1)).real();
1068 Ced_3312i_LNP = (Ced_d_LNP*SDL(0,1)).imag();
1069 Ced_3313r_LNP = (Ced_d_LNP*SDL(0,2)).real();
1070 Ced_3313i_LNP = (Ced_d_LNP*SDL(0,2)).imag();
1071 Ced_3322r_LNP = (Ced_0_LNP + Ced_d_LNP*SDL(1,1)).real();
1072 Ced_3323r_LNP = (Ced_d_LNP*SDL(1,2)).real();
1073 Ced_3323i_LNP = (Ced_d_LNP*SDL(1,2)).imag();
1074 Ced_3333r_LNP = (Ced_0_LNP + Ced_d_LNP*SDL(2,2)).real();
1075
1076 Cqq1_1111r_LNP = (Cqq1_00_LNP + 2*Cqq1_d0_LNP*SQDL(0,0) + Cqq1_dd_LNP*SQDL(0,0)*SQDL(0,0) + 2*Cqq1_u0_LNP*SQUL(0,0) + 2*Cqq1_ud_LNP*SQDL(0,0)*SQUL(0,0) + Cqq1_uu_LNP*SQUL(0,0)*SQUL(0,0) + Cqq1p_00_LNP + 2*Cqq1p_d0_LNP*SQDL(0,0) + Cqq1p_dd_LNP*SQDL(0,0)*SQDL(0,0) + 2*Cqq1p_u0_LNP*SQUL(0,0) + 2*Cqq1p_ud_LNP*SQDL(0,0)*SQUL(0,0) + Cqq1p_uu_LNP*SQUL(0,0)*SQUL(0,0)).real();
1077 Cqq1_1112r_LNP = (Cqq1_d0_LNP*SQDL(0,1) + Cqq1_dd_LNP*SQDL(0,0)*SQDL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(0,0) + Cqq1_u0_LNP*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,0)*SQUL(0,1) + Cqq1_uu_LNP*SQUL(0,0)*SQUL(0,1) + Cqq1p_d0_LNP*SQDL(0,1) + Cqq1p_dd_LNP*SQDL(0,0)*SQDL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(0,0) + Cqq1p_u0_LNP*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,0)*SQUL(0,1) + Cqq1p_uu_LNP*SQUL(0,0)*SQUL(0,1)).real();
1078 Cqq1_1112i_LNP = (Cqq1_d0_LNP*SQDL(0,1) + Cqq1_dd_LNP*SQDL(0,0)*SQDL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(0,0) + Cqq1_u0_LNP*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,0)*SQUL(0,1) + Cqq1_uu_LNP*SQUL(0,0)*SQUL(0,1) + Cqq1p_d0_LNP*SQDL(0,1) + Cqq1p_dd_LNP*SQDL(0,0)*SQDL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(0,0) + Cqq1p_u0_LNP*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,0)*SQUL(0,1) + Cqq1p_uu_LNP*SQUL(0,0)*SQUL(0,1)).imag();
1079 Cqq1_1113r_LNP = (Cqq1_d0_LNP*SQDL(0,2) + Cqq1_dd_LNP*SQDL(0,0)*SQDL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(0,0) + Cqq1_u0_LNP*SQUL(0,2) + Cqq1_ud_LNP*SQDL(0,0)*SQUL(0,2) + Cqq1_uu_LNP*SQUL(0,0)*SQUL(0,2) + Cqq1p_d0_LNP*SQDL(0,2) + Cqq1p_dd_LNP*SQDL(0,0)*SQDL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(0,0) + Cqq1p_u0_LNP*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,0)*SQUL(0,2) + Cqq1p_uu_LNP*SQUL(0,0)*SQUL(0,2)).real();
1080 Cqq1_1113i_LNP = (Cqq1_d0_LNP*SQDL(0,2) + Cqq1_dd_LNP*SQDL(0,0)*SQDL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(0,0) + Cqq1_u0_LNP*SQUL(0,2) + Cqq1_ud_LNP*SQDL(0,0)*SQUL(0,2) + Cqq1_uu_LNP*SQUL(0,0)*SQUL(0,2) + Cqq1p_d0_LNP*SQDL(0,2) + Cqq1p_dd_LNP*SQDL(0,0)*SQDL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(0,0) + Cqq1p_u0_LNP*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,0)*SQUL(0,2) + Cqq1p_uu_LNP*SQUL(0,0)*SQUL(0,2)).imag();
1081 Cqq1_1122r_LNP = (Cqq1_00_LNP + Cqq1_d0_LNP*SQDL(0,0) + Cqq1_d0_LNP*SQDL(1,1) + Cqq1_dd_LNP*SQDL(0,0)*SQDL(1,1) + Cqq1_u0_LNP*SQUL(0,0) + Cqq1_ud_LNP*SQDL(1,1)*SQUL(0,0) + Cqq1_u0_LNP*SQUL(1,1) + Cqq1_ud_LNP*SQDL(0,0)*SQUL(1,1) + Cqq1_uu_LNP*SQUL(0,0)*SQUL(1,1) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(1,0) + Cqq1p_ud_LNP*SQDL(1,0)*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(1,0) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(1,0)).real();
1082 Cqq1_1123r_LNP = (Cqq1_d0_LNP*SQDL(1,2) + Cqq1_dd_LNP*SQDL(0,0)*SQDL(1,2) + Cqq1_ud_LNP*SQDL(1,2)*SQUL(0,0) + Cqq1_u0_LNP*SQUL(1,2) + Cqq1_ud_LNP*SQDL(0,0)*SQUL(1,2) + Cqq1_uu_LNP*SQUL(0,0)*SQUL(1,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(1,0) + Cqq1p_ud_LNP*SQDL(1,0)*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(1,0) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(1,0)).real();
1083 Cqq1_1123i_LNP = (Cqq1_d0_LNP*SQDL(1,2) + Cqq1_dd_LNP*SQDL(0,0)*SQDL(1,2) + Cqq1_ud_LNP*SQDL(1,2)*SQUL(0,0) + Cqq1_u0_LNP*SQUL(1,2) + Cqq1_ud_LNP*SQDL(0,0)*SQUL(1,2) + Cqq1_uu_LNP*SQUL(0,0)*SQUL(1,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(1,0) + Cqq1p_ud_LNP*SQDL(1,0)*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(1,0) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(1,0)).imag();
1084 Cqq1_1133r_LNP = (Cqq1_00_LNP + Cqq1_d0_LNP*SQDL(0,0) + Cqq1_d0_LNP*SQDL(2,2) + Cqq1_dd_LNP*SQDL(0,0)*SQDL(2,2) + Cqq1_u0_LNP*SQUL(0,0) + Cqq1_ud_LNP*SQDL(2,2)*SQUL(0,0) + Cqq1_u0_LNP*SQUL(2,2) + Cqq1_ud_LNP*SQDL(0,0)*SQUL(2,2) + Cqq1_uu_LNP*SQUL(0,0)*SQUL(2,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(2,0) + Cqq1p_ud_LNP*SQDL(2,0)*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(2,0) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(2,0)).real();
1085 Cqq1_1212r_LNP = (Cqq1_dd_LNP*SQDL(0,1)*SQDL(0,1) + 2*Cqq1_ud_LNP*SQDL(0,1)*SQUL(0,1) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(0,1) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(0,1) + 2*Cqq1p_ud_LNP*SQDL(0,1)*SQUL(0,1) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(0,1)).real();
1086 Cqq1_1212i_LNP = (Cqq1_dd_LNP*SQDL(0,1)*SQDL(0,1) + 2*Cqq1_ud_LNP*SQDL(0,1)*SQUL(0,1) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(0,1) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(0,1) + 2*Cqq1p_ud_LNP*SQDL(0,1)*SQUL(0,1) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(0,1)).imag();
1087 Cqq1_1213r_LNP = (Cqq1_dd_LNP*SQDL(0,1)*SQDL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(0,2) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(0,2) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(0,2) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(0,2)).real();
1088 Cqq1_1213i_LNP = (Cqq1_dd_LNP*SQDL(0,1)*SQDL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(0,2) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(0,2) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(0,2) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(0,2)).imag();
1089 Cqq1_1221r_LNP = (Cqq1_dd_LNP*SQDL(0,1)*SQDL(1,0) + Cqq1_ud_LNP*SQDL(1,0)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(1,0) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(1,0) + Cqq1p_00_LNP + Cqq1p_d0_LNP*SQDL(0,0) + Cqq1p_d0_LNP*SQDL(1,1) + Cqq1p_dd_LNP*SQDL(0,0)*SQDL(1,1) + Cqq1p_u0_LNP*SQUL(0,0) + Cqq1p_ud_LNP*SQDL(1,1)*SQUL(0,0) + Cqq1p_u0_LNP*SQUL(1,1) + Cqq1p_ud_LNP*SQDL(0,0)*SQUL(1,1) + Cqq1p_uu_LNP*SQUL(0,0)*SQUL(1,1)).real();
1090 Cqq1_1222r_LNP = (Cqq1_d0_LNP*SQDL(0,1) + Cqq1_dd_LNP*SQDL(0,1)*SQDL(1,1) + Cqq1_u0_LNP*SQUL(0,1) + Cqq1_ud_LNP*SQDL(1,1)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(1,1) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(1,1) + Cqq1p_d0_LNP*SQDL(0,1) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(1,1) + Cqq1p_u0_LNP*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(1,1)*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(1,1) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(1,1)).real();
1091 Cqq1_1222i_LNP = (Cqq1_d0_LNP*SQDL(0,1) + Cqq1_dd_LNP*SQDL(0,1)*SQDL(1,1) + Cqq1_u0_LNP*SQUL(0,1) + Cqq1_ud_LNP*SQDL(1,1)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(1,1) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(1,1) + Cqq1p_d0_LNP*SQDL(0,1) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(1,1) + Cqq1p_u0_LNP*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(1,1)*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(1,1) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(1,1)).imag();
1092 Cqq1_1223r_LNP = (Cqq1_dd_LNP*SQDL(0,1)*SQDL(1,2) + Cqq1_ud_LNP*SQDL(1,2)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(1,2) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(1,2) + Cqq1p_d0_LNP*SQDL(0,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(1,1) + Cqq1p_u0_LNP*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(1,1)*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(1,1) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(1,1)).real();
1093 Cqq1_1223i_LNP = (Cqq1_dd_LNP*SQDL(0,1)*SQDL(1,2) + Cqq1_ud_LNP*SQDL(1,2)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(1,2) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(1,2) + Cqq1p_d0_LNP*SQDL(0,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(1,1) + Cqq1p_u0_LNP*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(1,1)*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(1,1) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(1,1)).imag();
1094 Cqq1_1231r_LNP = (Cqq1_dd_LNP*SQDL(0,1)*SQDL(2,0) + Cqq1_ud_LNP*SQDL(2,0)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(2,0) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(2,0) + Cqq1p_d0_LNP*SQDL(2,1) + Cqq1p_dd_LNP*SQDL(0,0)*SQDL(2,1) + Cqq1p_ud_LNP*SQDL(2,1)*SQUL(0,0) + Cqq1p_u0_LNP*SQUL(2,1) + Cqq1p_ud_LNP*SQDL(0,0)*SQUL(2,1) + Cqq1p_uu_LNP*SQUL(0,0)*SQUL(2,1)).real();
1095 Cqq1_1231i_LNP = (Cqq1_dd_LNP*SQDL(0,1)*SQDL(2,0) + Cqq1_ud_LNP*SQDL(2,0)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(2,0) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(2,0) + Cqq1p_d0_LNP*SQDL(2,1) + Cqq1p_dd_LNP*SQDL(0,0)*SQDL(2,1) + Cqq1p_ud_LNP*SQDL(2,1)*SQUL(0,0) + Cqq1p_u0_LNP*SQUL(2,1) + Cqq1p_ud_LNP*SQDL(0,0)*SQUL(2,1) + Cqq1p_uu_LNP*SQUL(0,0)*SQUL(2,1)).imag();
1096 Cqq1_1232r_LNP = (Cqq1_dd_LNP*SQDL(0,1)*SQDL(2,1) + Cqq1_ud_LNP*SQDL(2,1)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(2,1) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(2,1) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(2,1) + Cqq1p_ud_LNP*SQDL(2,1)*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(2,1) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(2,1)).real();
1097 Cqq1_1232i_LNP = (Cqq1_dd_LNP*SQDL(0,1)*SQDL(2,1) + Cqq1_ud_LNP*SQDL(2,1)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(2,1) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(2,1) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(2,1) + Cqq1p_ud_LNP*SQDL(2,1)*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(2,1) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(2,1)).imag();
1098 Cqq1_1233r_LNP = (Cqq1_d0_LNP*SQDL(0,1) + Cqq1_dd_LNP*SQDL(0,1)*SQDL(2,2) + Cqq1_u0_LNP*SQUL(0,1) + Cqq1_ud_LNP*SQDL(2,2)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(2,2) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(2,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(2,1) + Cqq1p_ud_LNP*SQDL(2,1)*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(2,1) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(2,1)).real();
1099 Cqq1_1233i_LNP = (Cqq1_d0_LNP*SQDL(0,1) + Cqq1_dd_LNP*SQDL(0,1)*SQDL(2,2) + Cqq1_u0_LNP*SQUL(0,1) + Cqq1_ud_LNP*SQDL(2,2)*SQUL(0,1) + Cqq1_ud_LNP*SQDL(0,1)*SQUL(2,2) + Cqq1_uu_LNP*SQUL(0,1)*SQUL(2,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(2,1) + Cqq1p_ud_LNP*SQDL(2,1)*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(2,1) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(2,1)).imag();
1100 Cqq1_1313r_LNP = (Cqq1_dd_LNP*SQDL(0,2)*SQDL(0,2) + 2*Cqq1_ud_LNP*SQDL(0,2)*SQUL(0,2) + Cqq1_uu_LNP*SQUL(0,2)*SQUL(0,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(0,2) + 2*Cqq1p_ud_LNP*SQDL(0,2)*SQUL(0,2) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(0,2)).real();
1101 Cqq1_1313i_LNP = (Cqq1_dd_LNP*SQDL(0,2)*SQDL(0,2) + 2*Cqq1_ud_LNP*SQDL(0,2)*SQUL(0,2) + Cqq1_uu_LNP*SQUL(0,2)*SQUL(0,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(0,2) + 2*Cqq1p_ud_LNP*SQDL(0,2)*SQUL(0,2) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(0,2)).imag();
1102 Cqq1_1322r_LNP = (Cqq1_d0_LNP*SQDL(0,2) + Cqq1_dd_LNP*SQDL(0,2)*SQDL(1,1) + Cqq1_u0_LNP*SQUL(0,2) + Cqq1_ud_LNP*SQDL(1,1)*SQUL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(1,1) + Cqq1_uu_LNP*SQUL(0,2)*SQUL(1,1) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(1,2) + Cqq1p_ud_LNP*SQDL(1,2)*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(1,2) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(1,2)).real();
1103 Cqq1_1322i_LNP = (Cqq1_d0_LNP*SQDL(0,2) + Cqq1_dd_LNP*SQDL(0,2)*SQDL(1,1) + Cqq1_u0_LNP*SQUL(0,2) + Cqq1_ud_LNP*SQDL(1,1)*SQUL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(1,1) + Cqq1_uu_LNP*SQUL(0,2)*SQUL(1,1) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(1,2) + Cqq1p_ud_LNP*SQDL(1,2)*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(1,2) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(1,2)).imag();
1104 Cqq1_1323r_LNP = (Cqq1_dd_LNP*SQDL(0,2)*SQDL(1,2) + Cqq1_ud_LNP*SQDL(1,2)*SQUL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(1,2) + Cqq1_uu_LNP*SQUL(0,2)*SQUL(1,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(1,2) + Cqq1p_ud_LNP*SQDL(1,2)*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(1,2) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(1,2)).real();
1105 Cqq1_1323i_LNP = (Cqq1_dd_LNP*SQDL(0,2)*SQDL(1,2) + Cqq1_ud_LNP*SQDL(1,2)*SQUL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(1,2) + Cqq1_uu_LNP*SQUL(0,2)*SQUL(1,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(1,2) + Cqq1p_ud_LNP*SQDL(1,2)*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(1,2) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(1,2)).imag();
1106 Cqq1_1331r_LNP = (Cqq1_dd_LNP*SQDL(0,2)*SQDL(2,0) + Cqq1_ud_LNP*SQDL(2,0)*SQUL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(2,0) + Cqq1_uu_LNP*SQUL(0,2)*SQUL(2,0) + Cqq1p_00_LNP + Cqq1p_d0_LNP*SQDL(0,0) + Cqq1p_d0_LNP*SQDL(2,2) + Cqq1p_dd_LNP*SQDL(0,0)*SQDL(2,2) + Cqq1p_u0_LNP*SQUL(0,0) + Cqq1p_ud_LNP*SQDL(2,2)*SQUL(0,0) + Cqq1p_u0_LNP*SQUL(2,2) + Cqq1p_ud_LNP*SQDL(0,0)*SQUL(2,2) + Cqq1p_uu_LNP*SQUL(0,0)*SQUL(2,2)).real();
1107 Cqq1_1332r_LNP = (Cqq1_dd_LNP*SQDL(0,2)*SQDL(2,1) + Cqq1_ud_LNP*SQDL(2,1)*SQUL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(2,1) + Cqq1_uu_LNP*SQUL(0,2)*SQUL(2,1) + Cqq1p_d0_LNP*SQDL(0,1) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(2,2) + Cqq1p_u0_LNP*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(2,2)*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(2,2) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(2,2)).real();
1108 Cqq1_1332i_LNP = (Cqq1_dd_LNP*SQDL(0,2)*SQDL(2,1) + Cqq1_ud_LNP*SQDL(2,1)*SQUL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(2,1) + Cqq1_uu_LNP*SQUL(0,2)*SQUL(2,1) + Cqq1p_d0_LNP*SQDL(0,1) + Cqq1p_dd_LNP*SQDL(0,1)*SQDL(2,2) + Cqq1p_u0_LNP*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(2,2)*SQUL(0,1) + Cqq1p_ud_LNP*SQDL(0,1)*SQUL(2,2) + Cqq1p_uu_LNP*SQUL(0,1)*SQUL(2,2)).imag();
1109 Cqq1_1333r_LNP = (Cqq1_d0_LNP*SQDL(0,2) + Cqq1_dd_LNP*SQDL(0,2)*SQDL(2,2) + Cqq1_u0_LNP*SQUL(0,2) + Cqq1_ud_LNP*SQDL(2,2)*SQUL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(2,2) + Cqq1_uu_LNP*SQUL(0,2)*SQUL(2,2) + Cqq1p_d0_LNP*SQDL(0,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(2,2) + Cqq1p_u0_LNP*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(2,2)*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(2,2) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(2,2)).real();
1110 Cqq1_1333i_LNP = (Cqq1_d0_LNP*SQDL(0,2) + Cqq1_dd_LNP*SQDL(0,2)*SQDL(2,2) + Cqq1_u0_LNP*SQUL(0,2) + Cqq1_ud_LNP*SQDL(2,2)*SQUL(0,2) + Cqq1_ud_LNP*SQDL(0,2)*SQUL(2,2) + Cqq1_uu_LNP*SQUL(0,2)*SQUL(2,2) + Cqq1p_d0_LNP*SQDL(0,2) + Cqq1p_dd_LNP*SQDL(0,2)*SQDL(2,2) + Cqq1p_u0_LNP*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(2,2)*SQUL(0,2) + Cqq1p_ud_LNP*SQDL(0,2)*SQUL(2,2) + Cqq1p_uu_LNP*SQUL(0,2)*SQUL(2,2)).imag();
1111 Cqq1_2222r_LNP = (Cqq1_00_LNP + 2*Cqq1_d0_LNP*SQDL(1,1) + Cqq1_dd_LNP*SQDL(1,1)*SQDL(1,1) + 2*Cqq1_u0_LNP*SQUL(1,1) + 2*Cqq1_ud_LNP*SQDL(1,1)*SQUL(1,1) + Cqq1_uu_LNP*SQUL(1,1)*SQUL(1,1) + Cqq1p_00_LNP + 2*Cqq1p_d0_LNP*SQDL(1,1) + Cqq1p_dd_LNP*SQDL(1,1)*SQDL(1,1) + 2*Cqq1p_u0_LNP*SQUL(1,1) + 2*Cqq1p_ud_LNP*SQDL(1,1)*SQUL(1,1) + Cqq1p_uu_LNP*SQUL(1,1)*SQUL(1,1)).real();
1112 Cqq1_2223r_LNP = (Cqq1_d0_LNP*SQDL(1,2) + Cqq1_dd_LNP*SQDL(1,1)*SQDL(1,2) + Cqq1_ud_LNP*SQDL(1,2)*SQUL(1,1) + Cqq1_u0_LNP*SQUL(1,2) + Cqq1_ud_LNP*SQDL(1,1)*SQUL(1,2) + Cqq1_uu_LNP*SQUL(1,1)*SQUL(1,2) + Cqq1p_d0_LNP*SQDL(1,2) + Cqq1p_dd_LNP*SQDL(1,1)*SQDL(1,2) + Cqq1p_ud_LNP*SQDL(1,2)*SQUL(1,1) + Cqq1p_u0_LNP*SQUL(1,2) + Cqq1p_ud_LNP*SQDL(1,1)*SQUL(1,2) + Cqq1p_uu_LNP*SQUL(1,1)*SQUL(1,2)).real();
1113 Cqq1_2223i_LNP = (Cqq1_d0_LNP*SQDL(1,2) + Cqq1_dd_LNP*SQDL(1,1)*SQDL(1,2) + Cqq1_ud_LNP*SQDL(1,2)*SQUL(1,1) + Cqq1_u0_LNP*SQUL(1,2) + Cqq1_ud_LNP*SQDL(1,1)*SQUL(1,2) + Cqq1_uu_LNP*SQUL(1,1)*SQUL(1,2) + Cqq1p_d0_LNP*SQDL(1,2) + Cqq1p_dd_LNP*SQDL(1,1)*SQDL(1,2) + Cqq1p_ud_LNP*SQDL(1,2)*SQUL(1,1) + Cqq1p_u0_LNP*SQUL(1,2) + Cqq1p_ud_LNP*SQDL(1,1)*SQUL(1,2) + Cqq1p_uu_LNP*SQUL(1,1)*SQUL(1,2)).imag();
1114 Cqq1_2233r_LNP = (Cqq1_00_LNP + Cqq1_d0_LNP*SQDL(1,1) + Cqq1_d0_LNP*SQDL(2,2) + Cqq1_dd_LNP*SQDL(1,1)*SQDL(2,2) + Cqq1_u0_LNP*SQUL(1,1) + Cqq1_ud_LNP*SQDL(2,2)*SQUL(1,1) + Cqq1_u0_LNP*SQUL(2,2) + Cqq1_ud_LNP*SQDL(1,1)*SQUL(2,2) + Cqq1_uu_LNP*SQUL(1,1)*SQUL(2,2) + Cqq1p_dd_LNP*SQDL(1,2)*SQDL(2,1) + Cqq1p_ud_LNP*SQDL(2,1)*SQUL(1,2) + Cqq1p_ud_LNP*SQDL(1,2)*SQUL(2,1) + Cqq1p_uu_LNP*SQUL(1,2)*SQUL(2,1)).real();
1115 Cqq1_2323r_LNP = (Cqq1_dd_LNP*SQDL(1,2)*SQDL(1,2) + 2*Cqq1_ud_LNP*SQDL(1,2)*SQUL(1,2) + Cqq1_uu_LNP*SQUL(1,2)*SQUL(1,2) + Cqq1p_dd_LNP*SQDL(1,2)*SQDL(1,2) + 2*Cqq1p_ud_LNP*SQDL(1,2)*SQUL(1,2) + Cqq1p_uu_LNP*SQUL(1,2)*SQUL(1,2)).real();
1116 Cqq1_2323i_LNP = (Cqq1_dd_LNP*SQDL(1,2)*SQDL(1,2) + 2*Cqq1_ud_LNP*SQDL(1,2)*SQUL(1,2) + Cqq1_uu_LNP*SQUL(1,2)*SQUL(1,2) + Cqq1p_dd_LNP*SQDL(1,2)*SQDL(1,2) + 2*Cqq1p_ud_LNP*SQDL(1,2)*SQUL(1,2) + Cqq1p_uu_LNP*SQUL(1,2)*SQUL(1,2)).imag();
1117 Cqq1_2332r_LNP = (Cqq1_dd_LNP*SQDL(1,2)*SQDL(2,1) + Cqq1_ud_LNP*SQDL(2,1)*SQUL(1,2) + Cqq1_ud_LNP*SQDL(1,2)*SQUL(2,1) + Cqq1_uu_LNP*SQUL(1,2)*SQUL(2,1) + Cqq1p_00_LNP + Cqq1p_d0_LNP*SQDL(1,1) + Cqq1p_d0_LNP*SQDL(2,2) + Cqq1p_dd_LNP*SQDL(1,1)*SQDL(2,2) + Cqq1p_u0_LNP*SQUL(1,1) + Cqq1p_ud_LNP*SQDL(2,2)*SQUL(1,1) + Cqq1p_u0_LNP*SQUL(2,2) + Cqq1p_ud_LNP*SQDL(1,1)*SQUL(2,2) + Cqq1p_uu_LNP*SQUL(1,1)*SQUL(2,2)).real();
1118 Cqq1_2333r_LNP = (Cqq1_d0_LNP*SQDL(1,2) + Cqq1_dd_LNP*SQDL(1,2)*SQDL(2,2) + Cqq1_u0_LNP*SQUL(1,2) + Cqq1_ud_LNP*SQDL(2,2)*SQUL(1,2) + Cqq1_ud_LNP*SQDL(1,2)*SQUL(2,2) + Cqq1_uu_LNP*SQUL(1,2)*SQUL(2,2) + Cqq1p_d0_LNP*SQDL(1,2) + Cqq1p_dd_LNP*SQDL(1,2)*SQDL(2,2) + Cqq1p_u0_LNP*SQUL(1,2) + Cqq1p_ud_LNP*SQDL(2,2)*SQUL(1,2) + Cqq1p_ud_LNP*SQDL(1,2)*SQUL(2,2) + Cqq1p_uu_LNP*SQUL(1,2)*SQUL(2,2)).real();
1119 Cqq1_2333i_LNP = (Cqq1_d0_LNP*SQDL(1,2) + Cqq1_dd_LNP*SQDL(1,2)*SQDL(2,2) + Cqq1_u0_LNP*SQUL(1,2) + Cqq1_ud_LNP*SQDL(2,2)*SQUL(1,2) + Cqq1_ud_LNP*SQDL(1,2)*SQUL(2,2) + Cqq1_uu_LNP*SQUL(1,2)*SQUL(2,2) + Cqq1p_d0_LNP*SQDL(1,2) + Cqq1p_dd_LNP*SQDL(1,2)*SQDL(2,2) + Cqq1p_u0_LNP*SQUL(1,2) + Cqq1p_ud_LNP*SQDL(2,2)*SQUL(1,2) + Cqq1p_ud_LNP*SQDL(1,2)*SQUL(2,2) + Cqq1p_uu_LNP*SQUL(1,2)*SQUL(2,2)).imag();
1120 Cqq1_3333r_LNP = (Cqq1_00_LNP + 2*Cqq1_d0_LNP*SQDL(2,2) + Cqq1_dd_LNP*SQDL(2,2)*SQDL(2,2) + 2*Cqq1_u0_LNP*SQUL(2,2) + 2*Cqq1_ud_LNP*SQDL(2,2)*SQUL(2,2) + Cqq1_uu_LNP*SQUL(2,2)*SQUL(2,2) + Cqq1p_00_LNP + 2*Cqq1p_d0_LNP*SQDL(2,2) + Cqq1p_dd_LNP*SQDL(2,2)*SQDL(2,2) + 2*Cqq1p_u0_LNP*SQUL(2,2) + 2*Cqq1p_ud_LNP*SQDL(2,2)*SQUL(2,2) + Cqq1p_uu_LNP*SQUL(2,2)*SQUL(2,2)).real();
1121
1122 Cqq3_1111r_LNP = (Cqq3_00_LNP + 2*Cqq3_d0_LNP*SQDL(0,0) + Cqq3_dd_LNP*SQDL(0,0)*SQDL(0,0) + 2*Cqq3_u0_LNP*SQUL(0,0) + 2*Cqq3_ud_LNP*SQDL(0,0)*SQUL(0,0) + Cqq3_uu_LNP*SQUL(0,0)*SQUL(0,0) + Cqq3p_00_LNP + 2*Cqq3p_d0_LNP*SQDL(0,0) + Cqq3p_dd_LNP*SQDL(0,0)*SQDL(0,0) + 2*Cqq3p_u0_LNP*SQUL(0,0) + 2*Cqq3p_ud_LNP*SQDL(0,0)*SQUL(0,0) + Cqq3p_uu_LNP*SQUL(0,0)*SQUL(0,0)).real();
1123 Cqq3_1112r_LNP = (Cqq3_d0_LNP*SQDL(0,1) + Cqq3_dd_LNP*SQDL(0,0)*SQDL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(0,0) + Cqq3_u0_LNP*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,0)*SQUL(0,1) + Cqq3_uu_LNP*SQUL(0,0)*SQUL(0,1) + Cqq3p_d0_LNP*SQDL(0,1) + Cqq3p_dd_LNP*SQDL(0,0)*SQDL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(0,0) + Cqq3p_u0_LNP*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,0)*SQUL(0,1) + Cqq3p_uu_LNP*SQUL(0,0)*SQUL(0,1)).real();
1124 Cqq3_1112i_LNP = (Cqq3_d0_LNP*SQDL(0,1) + Cqq3_dd_LNP*SQDL(0,0)*SQDL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(0,0) + Cqq3_u0_LNP*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,0)*SQUL(0,1) + Cqq3_uu_LNP*SQUL(0,0)*SQUL(0,1) + Cqq3p_d0_LNP*SQDL(0,1) + Cqq3p_dd_LNP*SQDL(0,0)*SQDL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(0,0) + Cqq3p_u0_LNP*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,0)*SQUL(0,1) + Cqq3p_uu_LNP*SQUL(0,0)*SQUL(0,1)).imag();
1125 Cqq3_1113r_LNP = (Cqq3_d0_LNP*SQDL(0,2) + Cqq3_dd_LNP*SQDL(0,0)*SQDL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(0,0) + Cqq3_u0_LNP*SQUL(0,2) + Cqq3_ud_LNP*SQDL(0,0)*SQUL(0,2) + Cqq3_uu_LNP*SQUL(0,0)*SQUL(0,2) + Cqq3p_d0_LNP*SQDL(0,2) + Cqq3p_dd_LNP*SQDL(0,0)*SQDL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(0,0) + Cqq3p_u0_LNP*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,0)*SQUL(0,2) + Cqq3p_uu_LNP*SQUL(0,0)*SQUL(0,2)).real();
1126 Cqq3_1113i_LNP = (Cqq3_d0_LNP*SQDL(0,2) + Cqq3_dd_LNP*SQDL(0,0)*SQDL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(0,0) + Cqq3_u0_LNP*SQUL(0,2) + Cqq3_ud_LNP*SQDL(0,0)*SQUL(0,2) + Cqq3_uu_LNP*SQUL(0,0)*SQUL(0,2) + Cqq3p_d0_LNP*SQDL(0,2) + Cqq3p_dd_LNP*SQDL(0,0)*SQDL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(0,0) + Cqq3p_u0_LNP*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,0)*SQUL(0,2) + Cqq3p_uu_LNP*SQUL(0,0)*SQUL(0,2)).imag();
1127 Cqq3_1122r_LNP = (Cqq3_00_LNP + Cqq3_d0_LNP*SQDL(0,0) + Cqq3_d0_LNP*SQDL(1,1) + Cqq3_dd_LNP*SQDL(0,0)*SQDL(1,1) + Cqq3_u0_LNP*SQUL(0,0) + Cqq3_ud_LNP*SQDL(1,1)*SQUL(0,0) + Cqq3_u0_LNP*SQUL(1,1) + Cqq3_ud_LNP*SQDL(0,0)*SQUL(1,1) + Cqq3_uu_LNP*SQUL(0,0)*SQUL(1,1) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(1,0) + Cqq3p_ud_LNP*SQDL(1,0)*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(1,0) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(1,0)).real();
1128 Cqq3_1123r_LNP = (Cqq3_d0_LNP*SQDL(1,2) + Cqq3_dd_LNP*SQDL(0,0)*SQDL(1,2) + Cqq3_ud_LNP*SQDL(1,2)*SQUL(0,0) + Cqq3_u0_LNP*SQUL(1,2) + Cqq3_ud_LNP*SQDL(0,0)*SQUL(1,2) + Cqq3_uu_LNP*SQUL(0,0)*SQUL(1,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(1,0) + Cqq3p_ud_LNP*SQDL(1,0)*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(1,0) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(1,0)).real();
1129 Cqq3_1123i_LNP = (Cqq3_d0_LNP*SQDL(1,2) + Cqq3_dd_LNP*SQDL(0,0)*SQDL(1,2) + Cqq3_ud_LNP*SQDL(1,2)*SQUL(0,0) + Cqq3_u0_LNP*SQUL(1,2) + Cqq3_ud_LNP*SQDL(0,0)*SQUL(1,2) + Cqq3_uu_LNP*SQUL(0,0)*SQUL(1,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(1,0) + Cqq3p_ud_LNP*SQDL(1,0)*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(1,0) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(1,0)).imag();
1130 Cqq3_1133r_LNP = (Cqq3_00_LNP + Cqq3_d0_LNP*SQDL(0,0) + Cqq3_d0_LNP*SQDL(2,2) + Cqq3_dd_LNP*SQDL(0,0)*SQDL(2,2) + Cqq3_u0_LNP*SQUL(0,0) + Cqq3_ud_LNP*SQDL(2,2)*SQUL(0,0) + Cqq3_u0_LNP*SQUL(2,2) + Cqq3_ud_LNP*SQDL(0,0)*SQUL(2,2) + Cqq3_uu_LNP*SQUL(0,0)*SQUL(2,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(2,0) + Cqq3p_ud_LNP*SQDL(2,0)*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(2,0) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(2,0)).real();
1131 Cqq3_1212r_LNP = (Cqq3_dd_LNP*SQDL(0,1)*SQDL(0,1) + 2*Cqq3_ud_LNP*SQDL(0,1)*SQUL(0,1) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(0,1) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(0,1) + 2*Cqq3p_ud_LNP*SQDL(0,1)*SQUL(0,1) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(0,1)).real();
1132 Cqq3_1212i_LNP = (Cqq3_dd_LNP*SQDL(0,1)*SQDL(0,1) + 2*Cqq3_ud_LNP*SQDL(0,1)*SQUL(0,1) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(0,1) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(0,1) + 2*Cqq3p_ud_LNP*SQDL(0,1)*SQUL(0,1) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(0,1)).imag();
1133 Cqq3_1213r_LNP = (Cqq3_dd_LNP*SQDL(0,1)*SQDL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(0,2) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(0,2) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(0,2) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(0,2)).real();
1134 Cqq3_1213i_LNP = (Cqq3_dd_LNP*SQDL(0,1)*SQDL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(0,2) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(0,2) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(0,2) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(0,2)).imag();
1135 Cqq3_1221r_LNP = (Cqq3_dd_LNP*SQDL(0,1)*SQDL(1,0) + Cqq3_ud_LNP*SQDL(1,0)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(1,0) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(1,0) + Cqq3p_00_LNP + Cqq3p_d0_LNP*SQDL(0,0) + Cqq3p_d0_LNP*SQDL(1,1) + Cqq3p_dd_LNP*SQDL(0,0)*SQDL(1,1) + Cqq3p_u0_LNP*SQUL(0,0) + Cqq3p_ud_LNP*SQDL(1,1)*SQUL(0,0) + Cqq3p_u0_LNP*SQUL(1,1) + Cqq3p_ud_LNP*SQDL(0,0)*SQUL(1,1) + Cqq3p_uu_LNP*SQUL(0,0)*SQUL(1,1)).real();
1136 Cqq3_1222r_LNP = (Cqq3_d0_LNP*SQDL(0,1) + Cqq3_dd_LNP*SQDL(0,1)*SQDL(1,1) + Cqq3_u0_LNP*SQUL(0,1) + Cqq3_ud_LNP*SQDL(1,1)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(1,1) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(1,1) + Cqq3p_d0_LNP*SQDL(0,1) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(1,1) + Cqq3p_u0_LNP*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(1,1)*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(1,1) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(1,1)).real();
1137 Cqq3_1222i_LNP = (Cqq3_d0_LNP*SQDL(0,1) + Cqq3_dd_LNP*SQDL(0,1)*SQDL(1,1) + Cqq3_u0_LNP*SQUL(0,1) + Cqq3_ud_LNP*SQDL(1,1)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(1,1) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(1,1) + Cqq3p_d0_LNP*SQDL(0,1) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(1,1) + Cqq3p_u0_LNP*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(1,1)*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(1,1) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(1,1)).imag();
1138 Cqq3_1223r_LNP = (Cqq3_dd_LNP*SQDL(0,1)*SQDL(1,2) + Cqq3_ud_LNP*SQDL(1,2)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(1,2) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(1,2) + Cqq3p_d0_LNP*SQDL(0,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(1,1) + Cqq3p_u0_LNP*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(1,1)*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(1,1) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(1,1)).real();
1139 Cqq3_1223i_LNP = (Cqq3_dd_LNP*SQDL(0,1)*SQDL(1,2) + Cqq3_ud_LNP*SQDL(1,2)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(1,2) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(1,2) + Cqq3p_d0_LNP*SQDL(0,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(1,1) + Cqq3p_u0_LNP*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(1,1)*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(1,1) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(1,1)).imag();
1140 Cqq3_1231r_LNP = (Cqq3_dd_LNP*SQDL(0,1)*SQDL(2,0) + Cqq3_ud_LNP*SQDL(2,0)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(2,0) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(2,0) + Cqq3p_d0_LNP*SQDL(2,1) + Cqq3p_dd_LNP*SQDL(0,0)*SQDL(2,1) + Cqq3p_ud_LNP*SQDL(2,1)*SQUL(0,0) + Cqq3p_u0_LNP*SQUL(2,1) + Cqq3p_ud_LNP*SQDL(0,0)*SQUL(2,1) + Cqq3p_uu_LNP*SQUL(0,0)*SQUL(2,1)).real();
1141 Cqq3_1231i_LNP = (Cqq3_dd_LNP*SQDL(0,1)*SQDL(2,0) + Cqq3_ud_LNP*SQDL(2,0)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(2,0) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(2,0) + Cqq3p_d0_LNP*SQDL(2,1) + Cqq3p_dd_LNP*SQDL(0,0)*SQDL(2,1) + Cqq3p_ud_LNP*SQDL(2,1)*SQUL(0,0) + Cqq3p_u0_LNP*SQUL(2,1) + Cqq3p_ud_LNP*SQDL(0,0)*SQUL(2,1) + Cqq3p_uu_LNP*SQUL(0,0)*SQUL(2,1)).imag();
1142 Cqq3_1232r_LNP = (Cqq3_dd_LNP*SQDL(0,1)*SQDL(2,1) + Cqq3_ud_LNP*SQDL(2,1)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(2,1) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(2,1) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(2,1) + Cqq3p_ud_LNP*SQDL(2,1)*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(2,1) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(2,1)).real();
1143 Cqq3_1232i_LNP = (Cqq3_dd_LNP*SQDL(0,1)*SQDL(2,1) + Cqq3_ud_LNP*SQDL(2,1)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(2,1) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(2,1) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(2,1) + Cqq3p_ud_LNP*SQDL(2,1)*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(2,1) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(2,1)).imag();
1144 Cqq3_1233r_LNP = (Cqq3_d0_LNP*SQDL(0,1) + Cqq3_dd_LNP*SQDL(0,1)*SQDL(2,2) + Cqq3_u0_LNP*SQUL(0,1) + Cqq3_ud_LNP*SQDL(2,2)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(2,2) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(2,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(2,1) + Cqq3p_ud_LNP*SQDL(2,1)*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(2,1) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(2,1)).real();
1145 Cqq3_1233i_LNP = (Cqq3_d0_LNP*SQDL(0,1) + Cqq3_dd_LNP*SQDL(0,1)*SQDL(2,2) + Cqq3_u0_LNP*SQUL(0,1) + Cqq3_ud_LNP*SQDL(2,2)*SQUL(0,1) + Cqq3_ud_LNP*SQDL(0,1)*SQUL(2,2) + Cqq3_uu_LNP*SQUL(0,1)*SQUL(2,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(2,1) + Cqq3p_ud_LNP*SQDL(2,1)*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(2,1) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(2,1)).imag();
1146 Cqq3_1313r_LNP = (Cqq3_dd_LNP*SQDL(0,2)*SQDL(0,2) + 2*Cqq3_ud_LNP*SQDL(0,2)*SQUL(0,2) + Cqq3_uu_LNP*SQUL(0,2)*SQUL(0,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(0,2) + 2*Cqq3p_ud_LNP*SQDL(0,2)*SQUL(0,2) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(0,2)).real();
1147 Cqq3_1313i_LNP = (Cqq3_dd_LNP*SQDL(0,2)*SQDL(0,2) + 2*Cqq3_ud_LNP*SQDL(0,2)*SQUL(0,2) + Cqq3_uu_LNP*SQUL(0,2)*SQUL(0,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(0,2) + 2*Cqq3p_ud_LNP*SQDL(0,2)*SQUL(0,2) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(0,2)).imag();
1148 Cqq3_1322r_LNP = (Cqq3_d0_LNP*SQDL(0,2) + Cqq3_dd_LNP*SQDL(0,2)*SQDL(1,1) + Cqq3_u0_LNP*SQUL(0,2) + Cqq3_ud_LNP*SQDL(1,1)*SQUL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(1,1) + Cqq3_uu_LNP*SQUL(0,2)*SQUL(1,1) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(1,2) + Cqq3p_ud_LNP*SQDL(1,2)*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(1,2) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(1,2)).real();
1149 Cqq3_1322i_LNP = (Cqq3_d0_LNP*SQDL(0,2) + Cqq3_dd_LNP*SQDL(0,2)*SQDL(1,1) + Cqq3_u0_LNP*SQUL(0,2) + Cqq3_ud_LNP*SQDL(1,1)*SQUL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(1,1) + Cqq3_uu_LNP*SQUL(0,2)*SQUL(1,1) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(1,2) + Cqq3p_ud_LNP*SQDL(1,2)*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(1,2) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(1,2)).imag();
1150 Cqq3_1323r_LNP = (Cqq3_dd_LNP*SQDL(0,2)*SQDL(1,2) + Cqq3_ud_LNP*SQDL(1,2)*SQUL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(1,2) + Cqq3_uu_LNP*SQUL(0,2)*SQUL(1,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(1,2) + Cqq3p_ud_LNP*SQDL(1,2)*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(1,2) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(1,2)).real();
1151 Cqq3_1323i_LNP = (Cqq3_dd_LNP*SQDL(0,2)*SQDL(1,2) + Cqq3_ud_LNP*SQDL(1,2)*SQUL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(1,2) + Cqq3_uu_LNP*SQUL(0,2)*SQUL(1,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(1,2) + Cqq3p_ud_LNP*SQDL(1,2)*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(1,2) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(1,2)).imag();
1152 Cqq3_1331r_LNP = (Cqq3_dd_LNP*SQDL(0,2)*SQDL(2,0) + Cqq3_ud_LNP*SQDL(2,0)*SQUL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(2,0) + Cqq3_uu_LNP*SQUL(0,2)*SQUL(2,0) + Cqq3p_00_LNP + Cqq3p_d0_LNP*SQDL(0,0) + Cqq3p_d0_LNP*SQDL(2,2) + Cqq3p_dd_LNP*SQDL(0,0)*SQDL(2,2) + Cqq3p_u0_LNP*SQUL(0,0) + Cqq3p_ud_LNP*SQDL(2,2)*SQUL(0,0) + Cqq3p_u0_LNP*SQUL(2,2) + Cqq3p_ud_LNP*SQDL(0,0)*SQUL(2,2) + Cqq3p_uu_LNP*SQUL(0,0)*SQUL(2,2)).real();
1153 Cqq3_1332r_LNP = (Cqq3_dd_LNP*SQDL(0,2)*SQDL(2,1) + Cqq3_ud_LNP*SQDL(2,1)*SQUL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(2,1) + Cqq3_uu_LNP*SQUL(0,2)*SQUL(2,1) + Cqq3p_d0_LNP*SQDL(0,1) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(2,2) + Cqq3p_u0_LNP*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(2,2)*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(2,2) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(2,2)).real();
1154 Cqq3_1332i_LNP = (Cqq3_dd_LNP*SQDL(0,2)*SQDL(2,1) + Cqq3_ud_LNP*SQDL(2,1)*SQUL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(2,1) + Cqq3_uu_LNP*SQUL(0,2)*SQUL(2,1) + Cqq3p_d0_LNP*SQDL(0,1) + Cqq3p_dd_LNP*SQDL(0,1)*SQDL(2,2) + Cqq3p_u0_LNP*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(2,2)*SQUL(0,1) + Cqq3p_ud_LNP*SQDL(0,1)*SQUL(2,2) + Cqq3p_uu_LNP*SQUL(0,1)*SQUL(2,2)).imag();
1155 Cqq3_1333r_LNP = (Cqq3_d0_LNP*SQDL(0,2) + Cqq3_dd_LNP*SQDL(0,2)*SQDL(2,2) + Cqq3_u0_LNP*SQUL(0,2) + Cqq3_ud_LNP*SQDL(2,2)*SQUL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(2,2) + Cqq3_uu_LNP*SQUL(0,2)*SQUL(2,2) + Cqq3p_d0_LNP*SQDL(0,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(2,2) + Cqq3p_u0_LNP*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(2,2)*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(2,2) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(2,2)).real();
1156 Cqq3_1333i_LNP = (Cqq3_d0_LNP*SQDL(0,2) + Cqq3_dd_LNP*SQDL(0,2)*SQDL(2,2) + Cqq3_u0_LNP*SQUL(0,2) + Cqq3_ud_LNP*SQDL(2,2)*SQUL(0,2) + Cqq3_ud_LNP*SQDL(0,2)*SQUL(2,2) + Cqq3_uu_LNP*SQUL(0,2)*SQUL(2,2) + Cqq3p_d0_LNP*SQDL(0,2) + Cqq3p_dd_LNP*SQDL(0,2)*SQDL(2,2) + Cqq3p_u0_LNP*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(2,2)*SQUL(0,2) + Cqq3p_ud_LNP*SQDL(0,2)*SQUL(2,2) + Cqq3p_uu_LNP*SQUL(0,2)*SQUL(2,2)).imag();
1157 Cqq3_2222r_LNP = (Cqq3_00_LNP + 2*Cqq3_d0_LNP*SQDL(1,1) + Cqq3_dd_LNP*SQDL(1,1)*SQDL(1,1) + 2*Cqq3_u0_LNP*SQUL(1,1) + 2*Cqq3_ud_LNP*SQDL(1,1)*SQUL(1,1) + Cqq3_uu_LNP*SQUL(1,1)*SQUL(1,1) + Cqq3p_00_LNP + 2*Cqq3p_d0_LNP*SQDL(1,1) + Cqq3p_dd_LNP*SQDL(1,1)*SQDL(1,1) + 2*Cqq3p_u0_LNP*SQUL(1,1) + 2*Cqq3p_ud_LNP*SQDL(1,1)*SQUL(1,1) + Cqq3p_uu_LNP*SQUL(1,1)*SQUL(1,1)).real();
1158 Cqq3_2223r_LNP = (Cqq3_d0_LNP*SQDL(1,2) + Cqq3_dd_LNP*SQDL(1,1)*SQDL(1,2) + Cqq3_ud_LNP*SQDL(1,2)*SQUL(1,1) + Cqq3_u0_LNP*SQUL(1,2) + Cqq3_ud_LNP*SQDL(1,1)*SQUL(1,2) + Cqq3_uu_LNP*SQUL(1,1)*SQUL(1,2) + Cqq3p_d0_LNP*SQDL(1,2) + Cqq3p_dd_LNP*SQDL(1,1)*SQDL(1,2) + Cqq3p_ud_LNP*SQDL(1,2)*SQUL(1,1) + Cqq3p_u0_LNP*SQUL(1,2) + Cqq3p_ud_LNP*SQDL(1,1)*SQUL(1,2) + Cqq3p_uu_LNP*SQUL(1,1)*SQUL(1,2)).real();
1159 Cqq3_2223i_LNP = (Cqq3_d0_LNP*SQDL(1,2) + Cqq3_dd_LNP*SQDL(1,1)*SQDL(1,2) + Cqq3_ud_LNP*SQDL(1,2)*SQUL(1,1) + Cqq3_u0_LNP*SQUL(1,2) + Cqq3_ud_LNP*SQDL(1,1)*SQUL(1,2) + Cqq3_uu_LNP*SQUL(1,1)*SQUL(1,2) + Cqq3p_d0_LNP*SQDL(1,2) + Cqq3p_dd_LNP*SQDL(1,1)*SQDL(1,2) + Cqq3p_ud_LNP*SQDL(1,2)*SQUL(1,1) + Cqq3p_u0_LNP*SQUL(1,2) + Cqq3p_ud_LNP*SQDL(1,1)*SQUL(1,2) + Cqq3p_uu_LNP*SQUL(1,1)*SQUL(1,2)).imag();
1160 Cqq3_2233r_LNP = (Cqq3_00_LNP + Cqq3_d0_LNP*SQDL(1,1) + Cqq3_d0_LNP*SQDL(2,2) + Cqq3_dd_LNP*SQDL(1,1)*SQDL(2,2) + Cqq3_u0_LNP*SQUL(1,1) + Cqq3_ud_LNP*SQDL(2,2)*SQUL(1,1) + Cqq3_u0_LNP*SQUL(2,2) + Cqq3_ud_LNP*SQDL(1,1)*SQUL(2,2) + Cqq3_uu_LNP*SQUL(1,1)*SQUL(2,2) + Cqq3p_dd_LNP*SQDL(1,2)*SQDL(2,1) + Cqq3p_ud_LNP*SQDL(2,1)*SQUL(1,2) + Cqq3p_ud_LNP*SQDL(1,2)*SQUL(2,1) + Cqq3p_uu_LNP*SQUL(1,2)*SQUL(2,1)).real();
1161 Cqq3_2323r_LNP = (Cqq3_dd_LNP*SQDL(1,2)*SQDL(1,2) + 2*Cqq3_ud_LNP*SQDL(1,2)*SQUL(1,2) + Cqq3_uu_LNP*SQUL(1,2)*SQUL(1,2) + Cqq3p_dd_LNP*SQDL(1,2)*SQDL(1,2) + 2*Cqq3p_ud_LNP*SQDL(1,2)*SQUL(1,2) + Cqq3p_uu_LNP*SQUL(1,2)*SQUL(1,2)).real();
1162 Cqq3_2323i_LNP = (Cqq3_dd_LNP*SQDL(1,2)*SQDL(1,2) + 2*Cqq3_ud_LNP*SQDL(1,2)*SQUL(1,2) + Cqq3_uu_LNP*SQUL(1,2)*SQUL(1,2) + Cqq3p_dd_LNP*SQDL(1,2)*SQDL(1,2) + 2*Cqq3p_ud_LNP*SQDL(1,2)*SQUL(1,2) + Cqq3p_uu_LNP*SQUL(1,2)*SQUL(1,2)).imag();
1163 Cqq3_2332r_LNP = (Cqq3_dd_LNP*SQDL(1,2)*SQDL(2,1) + Cqq3_ud_LNP*SQDL(2,1)*SQUL(1,2) + Cqq3_ud_LNP*SQDL(1,2)*SQUL(2,1) + Cqq3_uu_LNP*SQUL(1,2)*SQUL(2,1) + Cqq3p_00_LNP + Cqq3p_d0_LNP*SQDL(1,1) + Cqq3p_d0_LNP*SQDL(2,2) + Cqq3p_dd_LNP*SQDL(1,1)*SQDL(2,2) + Cqq3p_u0_LNP*SQUL(1,1) + Cqq3p_ud_LNP*SQDL(2,2)*SQUL(1,1) + Cqq3p_u0_LNP*SQUL(2,2) + Cqq3p_ud_LNP*SQDL(1,1)*SQUL(2,2) + Cqq3p_uu_LNP*SQUL(1,1)*SQUL(2,2)).real();
1164 Cqq3_2333r_LNP = (Cqq3_d0_LNP*SQDL(1,2) + Cqq3_dd_LNP*SQDL(1,2)*SQDL(2,2) + Cqq3_u0_LNP*SQUL(1,2) + Cqq3_ud_LNP*SQDL(2,2)*SQUL(1,2) + Cqq3_ud_LNP*SQDL(1,2)*SQUL(2,2) + Cqq3_uu_LNP*SQUL(1,2)*SQUL(2,2) + Cqq3p_d0_LNP*SQDL(1,2) + Cqq3p_dd_LNP*SQDL(1,2)*SQDL(2,2) + Cqq3p_u0_LNP*SQUL(1,2) + Cqq3p_ud_LNP*SQDL(2,2)*SQUL(1,2) + Cqq3p_ud_LNP*SQDL(1,2)*SQUL(2,2) + Cqq3p_uu_LNP*SQUL(1,2)*SQUL(2,2)).real();
1165 Cqq3_2333i_LNP = (Cqq3_d0_LNP*SQDL(1,2) + Cqq3_dd_LNP*SQDL(1,2)*SQDL(2,2) + Cqq3_u0_LNP*SQUL(1,2) + Cqq3_ud_LNP*SQDL(2,2)*SQUL(1,2) + Cqq3_ud_LNP*SQDL(1,2)*SQUL(2,2) + Cqq3_uu_LNP*SQUL(1,2)*SQUL(2,2) + Cqq3p_d0_LNP*SQDL(1,2) + Cqq3p_dd_LNP*SQDL(1,2)*SQDL(2,2) + Cqq3p_u0_LNP*SQUL(1,2) + Cqq3p_ud_LNP*SQDL(2,2)*SQUL(1,2) + Cqq3p_ud_LNP*SQDL(1,2)*SQUL(2,2) + Cqq3p_uu_LNP*SQUL(1,2)*SQUL(2,2)).imag();
1166 Cqq3_3333r_LNP = (Cqq3_00_LNP + 2*Cqq3_d0_LNP*SQDL(2,2) + Cqq3_dd_LNP*SQDL(2,2)*SQDL(2,2) + 2*Cqq3_u0_LNP*SQUL(2,2) + 2*Cqq3_ud_LNP*SQDL(2,2)*SQUL(2,2) + Cqq3_uu_LNP*SQUL(2,2)*SQUL(2,2) + Cqq3p_00_LNP + 2*Cqq3p_d0_LNP*SQDL(2,2) + Cqq3p_dd_LNP*SQDL(2,2)*SQDL(2,2) + 2*Cqq3p_u0_LNP*SQUL(2,2) + 2*Cqq3p_ud_LNP*SQDL(2,2)*SQUL(2,2) + Cqq3p_uu_LNP*SQUL(2,2)*SQUL(2,2)).real();
1167
1168 Cuu_1111r_LNP = (Cuu_00_LNP + 2*Cuu_u0_LNP*SUL(0,0) + Cuu_uu_LNP*SUL(0,0)*SUL(0,0) + Cuup_00_LNP + 2*Cuup_u0_LNP*SUL(0,0) + Cuup_uu_LNP*SUL(0,0)*SUL(0,0)).real();
1169 Cuu_1112r_LNP = (Cuu_u0_LNP*SUL(0,1) + Cuu_uu_LNP*SUL(0,0)*SUL(0,1) + Cuup_u0_LNP*SUL(0,1) + Cuup_uu_LNP*SUL(0,0)*SUL(0,1)).real();
1170 Cuu_1112i_LNP = (Cuu_u0_LNP*SUL(0,1) + Cuu_uu_LNP*SUL(0,0)*SUL(0,1) + Cuup_u0_LNP*SUL(0,1) + Cuup_uu_LNP*SUL(0,0)*SUL(0,1)).imag();
1171 Cuu_1113r_LNP = (Cuu_u0_LNP*SUL(0,2) + Cuu_uu_LNP*SUL(0,0)*SUL(0,2) + Cuup_u0_LNP*SUL(0,2) + Cuup_uu_LNP*SUL(0,0)*SUL(0,2)).real();
1172 Cuu_1113i_LNP = (Cuu_u0_LNP*SUL(0,2) + Cuu_uu_LNP*SUL(0,0)*SUL(0,2) + Cuup_u0_LNP*SUL(0,2) + Cuup_uu_LNP*SUL(0,0)*SUL(0,2)).imag();
1173 Cuu_1122r_LNP = (Cuu_00_LNP + Cuu_u0_LNP*SUL(0,0) + Cuu_u0_LNP*SUL(1,1) + Cuu_uu_LNP*SUL(0,0)*SUL(1,1) + Cuup_uu_LNP*SUL(0,1)*SUL(1,0)).real();
1174 Cuu_1123r_LNP = (Cuu_u0_LNP*SUL(1,2) + Cuu_uu_LNP*SUL(0,0)*SUL(1,2) + Cuup_uu_LNP*SUL(0,2)*SUL(1,0)).real();
1175 Cuu_1123i_LNP = (Cuu_u0_LNP*SUL(1,2) + Cuu_uu_LNP*SUL(0,0)*SUL(1,2) + Cuup_uu_LNP*SUL(0,2)*SUL(1,0)).imag();
1176 Cuu_1133r_LNP = (Cuu_00_LNP + Cuu_u0_LNP*SUL(0,0) + Cuu_u0_LNP*SUL(2,2) + Cuu_uu_LNP*SUL(0,0)*SUL(2,2) + Cuup_uu_LNP*SUL(0,2)*SUL(2,0)).real();
1177 Cuu_1212r_LNP = (Cuu_uu_LNP*SUL(0,1)*SUL(0,1) + Cuup_uu_LNP*SUL(0,1)*SUL(0,1)).real();
1178 Cuu_1212i_LNP = (Cuu_uu_LNP*SUL(0,1)*SUL(0,1) + Cuup_uu_LNP*SUL(0,1)*SUL(0,1)).imag();
1179 Cuu_1213r_LNP = (Cuu_uu_LNP*SUL(0,1)*SUL(0,2) + Cuup_uu_LNP*SUL(0,1)*SUL(0,2)).real();
1180 Cuu_1213i_LNP = (Cuu_uu_LNP*SUL(0,1)*SUL(0,2) + Cuup_uu_LNP*SUL(0,1)*SUL(0,2)).imag();
1181 Cuu_1221r_LNP = (Cuu_uu_LNP*SUL(0,1)*SUL(1,0) + Cuup_00_LNP + Cuup_u0_LNP*SUL(0,0) + Cuup_u0_LNP*SUL(1,1) + Cuup_uu_LNP*SUL(0,0)*SUL(1,1)).real();
1182 Cuu_1222r_LNP = (Cuu_u0_LNP*SUL(0,1) + Cuu_uu_LNP*SUL(0,1)*SUL(1,1) + Cuup_u0_LNP*SUL(0,1) + Cuup_uu_LNP*SUL(0,1)*SUL(1,1)).real();
1183 Cuu_1222i_LNP = (Cuu_u0_LNP*SUL(0,1) + Cuu_uu_LNP*SUL(0,1)*SUL(1,1) + Cuup_u0_LNP*SUL(0,1) + Cuup_uu_LNP*SUL(0,1)*SUL(1,1)).imag();
1184 Cuu_1223r_LNP = (Cuu_uu_LNP*SUL(0,1)*SUL(1,2) + Cuup_u0_LNP*SUL(0,2) + Cuup_uu_LNP*SUL(0,2)*SUL(1,1)).real();
1185 Cuu_1223i_LNP = (Cuu_uu_LNP*SUL(0,1)*SUL(1,2) + Cuup_u0_LNP*SUL(0,2) + Cuup_uu_LNP*SUL(0,2)*SUL(1,1)).imag();
1186 Cuu_1231r_LNP = (Cuu_uu_LNP*SUL(0,1)*SUL(2,0) + Cuup_u0_LNP*SUL(2,1) + Cuup_uu_LNP*SUL(0,0)*SUL(2,1)).real();
1187 Cuu_1231i_LNP = (Cuu_uu_LNP*SUL(0,1)*SUL(2,0) + Cuup_u0_LNP*SUL(2,1) + Cuup_uu_LNP*SUL(0,0)*SUL(2,1)).imag();
1188 Cuu_1232r_LNP = (Cuu_uu_LNP*SUL(0,1)*SUL(2,1) + Cuup_uu_LNP*SUL(0,1)*SUL(2,1)).real();
1189 Cuu_1232i_LNP = (Cuu_uu_LNP*SUL(0,1)*SUL(2,1) + Cuup_uu_LNP*SUL(0,1)*SUL(2,1)).imag();
1190 Cuu_1233r_LNP = (Cuu_u0_LNP*SUL(0,1) + Cuu_uu_LNP*SUL(0,1)*SUL(2,2) + Cuup_uu_LNP*SUL(0,2)*SUL(2,1)).real();
1191 Cuu_1233i_LNP = (Cuu_u0_LNP*SUL(0,1) + Cuu_uu_LNP*SUL(0,1)*SUL(2,2) + Cuup_uu_LNP*SUL(0,2)*SUL(2,1)).imag();
1192 Cuu_1313r_LNP = (Cuu_uu_LNP*SUL(0,2)*SUL(0,2) + Cuup_uu_LNP*SUL(0,2)*SUL(0,2)).real();
1193 Cuu_1313i_LNP = (Cuu_uu_LNP*SUL(0,2)*SUL(0,2) + Cuup_uu_LNP*SUL(0,2)*SUL(0,2)).imag();
1194 Cuu_1322r_LNP = (Cuu_u0_LNP*SUL(0,2) + Cuu_uu_LNP*SUL(0,2)*SUL(1,1) + Cuup_uu_LNP*SUL(0,1)*SUL(1,2)).real();
1195 Cuu_1322i_LNP = (Cuu_u0_LNP*SUL(0,2) + Cuu_uu_LNP*SUL(0,2)*SUL(1,1) + Cuup_uu_LNP*SUL(0,1)*SUL(1,2)).imag();
1196 Cuu_1323r_LNP = (Cuu_uu_LNP*SUL(0,2)*SUL(1,2) + Cuup_uu_LNP*SUL(0,2)*SUL(1,2)).real();
1197 Cuu_1323i_LNP = (Cuu_uu_LNP*SUL(0,2)*SUL(1,2) + Cuup_uu_LNP*SUL(0,2)*SUL(1,2)).imag();
1198 Cuu_1331r_LNP = (Cuu_uu_LNP*SUL(0,2)*SUL(2,0) + Cuup_00_LNP + Cuup_u0_LNP*SUL(0,0) + Cuup_u0_LNP*SUL(2,2) + Cuup_uu_LNP*SUL(0,0)*SUL(2,2)).real();
1199 Cuu_1332r_LNP = (Cuu_uu_LNP*SUL(0,2)*SUL(2,1) + Cuup_u0_LNP*SUL(0,1) + Cuup_uu_LNP*SUL(0,1)*SUL(2,2)).real();
1200 Cuu_1332i_LNP = (Cuu_uu_LNP*SUL(0,2)*SUL(2,1) + Cuup_u0_LNP*SUL(0,1) + Cuup_uu_LNP*SUL(0,1)*SUL(2,2)).imag();
1201 Cuu_1333r_LNP = (Cuu_u0_LNP*SUL(0,2) + Cuu_uu_LNP*SUL(0,2)*SUL(2,2) + Cuup_u0_LNP*SUL(0,2) + Cuup_uu_LNP*SUL(0,2)*SUL(2,2)).real();
1202 Cuu_1333i_LNP = (Cuu_u0_LNP*SUL(0,2) + Cuu_uu_LNP*SUL(0,2)*SUL(2,2) + Cuup_u0_LNP*SUL(0,2) + Cuup_uu_LNP*SUL(0,2)*SUL(2,2)).imag();
1203 Cuu_2222r_LNP = (Cuu_00_LNP + 2*Cuu_u0_LNP*SUL(1,1) + Cuu_uu_LNP*SUL(1,1)*SUL(1,1) + Cuup_00_LNP + 2*Cuup_u0_LNP*SUL(1,1) + Cuup_uu_LNP*SUL(1,1)*SUL(1,1)).real();
1204 Cuu_2223r_LNP = (Cuu_u0_LNP*SUL(1,2) + Cuu_uu_LNP*SUL(1,1)*SUL(1,2) + Cuup_u0_LNP*SUL(1,2) + Cuup_uu_LNP*SUL(1,1)*SUL(1,2)).real();
1205 Cuu_2223i_LNP = (Cuu_u0_LNP*SUL(1,2) + Cuu_uu_LNP*SUL(1,1)*SUL(1,2) + Cuup_u0_LNP*SUL(1,2) + Cuup_uu_LNP*SUL(1,1)*SUL(1,2)).imag();
1206 Cuu_2233r_LNP = (Cuu_00_LNP + Cuu_u0_LNP*SUL(1,1) + Cuu_u0_LNP*SUL(2,2) + Cuu_uu_LNP*SUL(1,1)*SUL(2,2) + Cuup_uu_LNP*SUL(1,2)*SUL(2,1)).real();
1207 Cuu_2323r_LNP = (Cuu_uu_LNP*SUL(1,2)*SUL(1,2) + Cuup_uu_LNP*SUL(1,2)*SUL(1,2)).real();
1208 Cuu_2323i_LNP = (Cuu_uu_LNP*SUL(1,2)*SUL(1,2) + Cuup_uu_LNP*SUL(1,2)*SUL(1,2)).imag();
1209 Cuu_2332r_LNP = (Cuu_uu_LNP*SUL(1,2)*SUL(2,1) + Cuup_00_LNP + Cuup_u0_LNP*SUL(1,1) + Cuup_u0_LNP*SUL(2,2) + Cuup_uu_LNP*SUL(1,1)*SUL(2,2)).real();
1210 Cuu_2333r_LNP = (Cuu_u0_LNP*SUL(1,2) + Cuu_uu_LNP*SUL(1,2)*SUL(2,2) + Cuup_u0_LNP*SUL(1,2) + Cuup_uu_LNP*SUL(1,2)*SUL(2,2)).real();
1211 Cuu_2333i_LNP = (Cuu_u0_LNP*SUL(1,2) + Cuu_uu_LNP*SUL(1,2)*SUL(2,2) + Cuup_u0_LNP*SUL(1,2) + Cuup_uu_LNP*SUL(1,2)*SUL(2,2)).imag();
1212 Cuu_3333r_LNP = (Cuu_00_LNP + 2*Cuu_u0_LNP*SUL(2,2) + Cuu_uu_LNP*SUL(2,2)*SUL(2,2) + Cuup_00_LNP + 2*Cuup_u0_LNP*SUL(2,2) + Cuup_uu_LNP*SUL(2,2)*SUL(2,2)).real();
1213
1214 Cdd_1111r_LNP = (Cdd_00_LNP + 2*Cdd_d0_LNP*SDL(0,0) + Cdd_dd_LNP*SDL(0,0)*SDL(0,0) + Cddp_00_LNP + 2*Cddp_d0_LNP*SDL(0,0) + Cddp_dd_LNP*SDL(0,0)*SDL(0,0)).real();
1215 Cdd_1112r_LNP = (Cdd_d0_LNP*SDL(0,1) + Cdd_dd_LNP*SDL(0,0)*SDL(0,1) + Cddp_d0_LNP*SDL(0,1) + Cddp_dd_LNP*SDL(0,0)*SDL(0,1)).real();
1216 Cdd_1112i_LNP = (Cdd_d0_LNP*SDL(0,1) + Cdd_dd_LNP*SDL(0,0)*SDL(0,1) + Cddp_d0_LNP*SDL(0,1) + Cddp_dd_LNP*SDL(0,0)*SDL(0,1)).imag();
1217 Cdd_1113r_LNP = (Cdd_d0_LNP*SDL(0,2) + Cdd_dd_LNP*SDL(0,0)*SDL(0,2) + Cddp_d0_LNP*SDL(0,2) + Cddp_dd_LNP*SDL(0,0)*SDL(0,2)).real();
1218 Cdd_1113i_LNP = (Cdd_d0_LNP*SDL(0,2) + Cdd_dd_LNP*SDL(0,0)*SDL(0,2) + Cddp_d0_LNP*SDL(0,2) + Cddp_dd_LNP*SDL(0,0)*SDL(0,2)).imag();
1219 Cdd_1122r_LNP = (Cdd_00_LNP + Cdd_d0_LNP*SDL(0,0) + Cdd_d0_LNP*SDL(1,1) + Cdd_dd_LNP*SDL(0,0)*SDL(1,1) + Cddp_dd_LNP*SDL(0,1)*SDL(1,0)).real();
1220 Cdd_1123r_LNP = (Cdd_d0_LNP*SDL(1,2) + Cdd_dd_LNP*SDL(0,0)*SDL(1,2) + Cddp_dd_LNP*SDL(0,2)*SDL(1,0)).real();
1221 Cdd_1123i_LNP = (Cdd_d0_LNP*SDL(1,2) + Cdd_dd_LNP*SDL(0,0)*SDL(1,2) + Cddp_dd_LNP*SDL(0,2)*SDL(1,0)).imag();
1222 Cdd_1133r_LNP = (Cdd_00_LNP + Cdd_d0_LNP*SDL(0,0) + Cdd_d0_LNP*SDL(2,2) + Cdd_dd_LNP*SDL(0,0)*SDL(2,2) + Cddp_dd_LNP*SDL(0,2)*SDL(2,0)).real();
1223 Cdd_1212r_LNP = (Cdd_dd_LNP*SDL(0,1)*SDL(0,1) + Cddp_dd_LNP*SDL(0,1)*SDL(0,1)).real();
1224 Cdd_1212i_LNP = (Cdd_dd_LNP*SDL(0,1)*SDL(0,1) + Cddp_dd_LNP*SDL(0,1)*SDL(0,1)).imag();
1225 Cdd_1213r_LNP = (Cdd_dd_LNP*SDL(0,1)*SDL(0,2) + Cddp_dd_LNP*SDL(0,1)*SDL(0,2)).real();
1226 Cdd_1213i_LNP = (Cdd_dd_LNP*SDL(0,1)*SDL(0,2) + Cddp_dd_LNP*SDL(0,1)*SDL(0,2)).imag();
1227 Cdd_1221r_LNP = (Cdd_dd_LNP*SDL(0,1)*SDL(1,0) + Cddp_00_LNP + Cddp_d0_LNP*SDL(0,0) + Cddp_d0_LNP*SDL(1,1) + Cddp_dd_LNP*SDL(0,0)*SDL(1,1)).real();
1228 Cdd_1222r_LNP = (Cdd_d0_LNP*SDL(0,1) + Cdd_dd_LNP*SDL(0,1)*SDL(1,1) + Cddp_d0_LNP*SDL(0,1) + Cddp_dd_LNP*SDL(0,1)*SDL(1,1)).real();
1229 Cdd_1222i_LNP = (Cdd_d0_LNP*SDL(0,1) + Cdd_dd_LNP*SDL(0,1)*SDL(1,1) + Cddp_d0_LNP*SDL(0,1) + Cddp_dd_LNP*SDL(0,1)*SDL(1,1)).imag();
1230 Cdd_1223r_LNP = (Cdd_dd_LNP*SDL(0,1)*SDL(1,2) + Cddp_d0_LNP*SDL(0,2) + Cddp_dd_LNP*SDL(0,2)*SDL(1,1)).real();
1231 Cdd_1223i_LNP = (Cdd_dd_LNP*SDL(0,1)*SDL(1,2) + Cddp_d0_LNP*SDL(0,2) + Cddp_dd_LNP*SDL(0,2)*SDL(1,1)).imag();
1232 Cdd_1231r_LNP = (Cdd_dd_LNP*SDL(0,1)*SDL(2,0) + Cddp_d0_LNP*SDL(2,1) + Cddp_dd_LNP*SDL(0,0)*SDL(2,1)).real();
1233 Cdd_1231i_LNP = (Cdd_dd_LNP*SDL(0,1)*SDL(2,0) + Cddp_d0_LNP*SDL(2,1) + Cddp_dd_LNP*SDL(0,0)*SDL(2,1)).imag();
1234 Cdd_1232r_LNP = (Cdd_dd_LNP*SDL(0,1)*SDL(2,1) + Cddp_dd_LNP*SDL(0,1)*SDL(2,1)).real();
1235 Cdd_1232i_LNP = (Cdd_dd_LNP*SDL(0,1)*SDL(2,1) + Cddp_dd_LNP*SDL(0,1)*SDL(2,1)).imag();
1236 Cdd_1233r_LNP = (Cdd_d0_LNP*SDL(0,1) + Cdd_dd_LNP*SDL(0,1)*SDL(2,2) + Cddp_dd_LNP*SDL(0,2)*SDL(2,1)).real();
1237 Cdd_1233i_LNP = (Cdd_d0_LNP*SDL(0,1) + Cdd_dd_LNP*SDL(0,1)*SDL(2,2) + Cddp_dd_LNP*SDL(0,2)*SDL(2,1)).imag();
1238 Cdd_1313r_LNP = (Cdd_dd_LNP*SDL(0,2)*SDL(0,2) + Cddp_dd_LNP*SDL(0,2)*SDL(0,2)).real();
1239 Cdd_1313i_LNP = (Cdd_dd_LNP*SDL(0,2)*SDL(0,2) + Cddp_dd_LNP*SDL(0,2)*SDL(0,2)).imag();
1240 Cdd_1322r_LNP = (Cdd_d0_LNP*SDL(0,2) + Cdd_dd_LNP*SDL(0,2)*SDL(1,1) + Cddp_dd_LNP*SDL(0,1)*SDL(1,2)).real();
1241 Cdd_1322i_LNP = (Cdd_d0_LNP*SDL(0,2) + Cdd_dd_LNP*SDL(0,2)*SDL(1,1) + Cddp_dd_LNP*SDL(0,1)*SDL(1,2)).imag();
1242 Cdd_1323r_LNP = (Cdd_dd_LNP*SDL(0,2)*SDL(1,2) + Cddp_dd_LNP*SDL(0,2)*SDL(1,2)).real();
1243 Cdd_1323i_LNP = (Cdd_dd_LNP*SDL(0,2)*SDL(1,2) + Cddp_dd_LNP*SDL(0,2)*SDL(1,2)).imag();
1244 Cdd_1331r_LNP = (Cdd_dd_LNP*SDL(0,2)*SDL(2,0) + Cddp_00_LNP + Cddp_d0_LNP*SDL(0,0) + Cddp_d0_LNP*SDL(2,2) + Cddp_dd_LNP*SDL(0,0)*SDL(2,2)).real();
1245 Cdd_1332r_LNP = (Cdd_dd_LNP*SDL(0,2)*SDL(2,1) + Cddp_d0_LNP*SDL(0,1) + Cddp_dd_LNP*SDL(0,1)*SDL(2,2)).real();
1246 Cdd_1332i_LNP = (Cdd_dd_LNP*SDL(0,2)*SDL(2,1) + Cddp_d0_LNP*SDL(0,1) + Cddp_dd_LNP*SDL(0,1)*SDL(2,2)).imag();
1247 Cdd_1333r_LNP = (Cdd_d0_LNP*SDL(0,2) + Cdd_dd_LNP*SDL(0,2)*SDL(2,2) + Cddp_d0_LNP*SDL(0,2) + Cddp_dd_LNP*SDL(0,2)*SDL(2,2)).real();
1248 Cdd_1333i_LNP = (Cdd_d0_LNP*SDL(0,2) + Cdd_dd_LNP*SDL(0,2)*SDL(2,2) + Cddp_d0_LNP*SDL(0,2) + Cddp_dd_LNP*SDL(0,2)*SDL(2,2)).imag();
1249 Cdd_2222r_LNP = (Cdd_00_LNP + 2*Cdd_d0_LNP*SDL(1,1) + Cdd_dd_LNP*SDL(1,1)*SDL(1,1) + Cddp_00_LNP + 2*Cddp_d0_LNP*SDL(1,1) + Cddp_dd_LNP*SDL(1,1)*SDL(1,1)).real();
1250 Cdd_2223r_LNP = (Cdd_d0_LNP*SDL(1,2) + Cdd_dd_LNP*SDL(1,1)*SDL(1,2) + Cddp_d0_LNP*SDL(1,2) + Cddp_dd_LNP*SDL(1,1)*SDL(1,2)).real();
1251 Cdd_2223i_LNP = (Cdd_d0_LNP*SDL(1,2) + Cdd_dd_LNP*SDL(1,1)*SDL(1,2) + Cddp_d0_LNP*SDL(1,2) + Cddp_dd_LNP*SDL(1,1)*SDL(1,2)).imag();
1252 Cdd_2233r_LNP = (Cdd_00_LNP + Cdd_d0_LNP*SDL(1,1) + Cdd_d0_LNP*SDL(2,2) + Cdd_dd_LNP*SDL(1,1)*SDL(2,2) + Cddp_dd_LNP*SDL(1,2)*SDL(2,1)).real();
1253 Cdd_2323r_LNP = (Cdd_dd_LNP*SDL(1,2)*SDL(1,2) + Cddp_dd_LNP*SDL(1,2)*SDL(1,2)).real();
1254 Cdd_2323i_LNP = (Cdd_dd_LNP*SDL(1,2)*SDL(1,2) + Cddp_dd_LNP*SDL(1,2)*SDL(1,2)).imag();
1255 Cdd_2332r_LNP = (Cdd_dd_LNP*SDL(1,2)*SDL(2,1) + Cddp_00_LNP + Cddp_d0_LNP*SDL(1,1) + Cddp_d0_LNP*SDL(2,2) + Cddp_dd_LNP*SDL(1,1)*SDL(2,2)).real();
1256 Cdd_2333r_LNP = (Cdd_d0_LNP*SDL(1,2) + Cdd_dd_LNP*SDL(1,2)*SDL(2,2) + Cddp_d0_LNP*SDL(1,2) + Cddp_dd_LNP*SDL(1,2)*SDL(2,2)).real();
1257 Cdd_2333i_LNP = (Cdd_d0_LNP*SDL(1,2) + Cdd_dd_LNP*SDL(1,2)*SDL(2,2) + Cddp_d0_LNP*SDL(1,2) + Cddp_dd_LNP*SDL(1,2)*SDL(2,2)).imag();
1258 Cdd_3333r_LNP = (Cdd_00_LNP + 2*Cdd_d0_LNP*SDL(2,2) + Cdd_dd_LNP*SDL(2,2)*SDL(2,2) + Cddp_00_LNP + 2*Cddp_d0_LNP*SDL(2,2) + Cddp_dd_LNP*SDL(2,2)*SDL(2,2)).real();
1259
1260 Cud1_1111r_LNP = (Cud1_00_LNP + Cud1_0d_LNP*SDL(0,0) + Cud1p_ud_LNP*SUDcL(0,0)*SUDL(0,0) + Cud1_u0_LNP*SUL(0,0) + Cud1_ud_LNP*SDL(0,0)*SUL(0,0)).real();
1261 Cud1_1112r_LNP = (Cud1_0d_LNP*SDL(0,1) + Cud1p_ud_LNP*SUDcL(0,0)*SUDL(0,1) + Cud1_ud_LNP*SDL(0,1)*SUL(0,0)).real();
1262 Cud1_1112i_LNP = (Cud1_0d_LNP*SDL(0,1) + Cud1p_ud_LNP*SUDcL(0,0)*SUDL(0,1) + Cud1_ud_LNP*SDL(0,1)*SUL(0,0)).imag();
1263 Cud1_1113r_LNP = (Cud1_0d_LNP*SDL(0,2) + Cud1p_ud_LNP*SUDcL(0,0)*SUDL(0,2) + Cud1_ud_LNP*SDL(0,2)*SUL(0,0)).real();
1264 Cud1_1113i_LNP = (Cud1_0d_LNP*SDL(0,2) + Cud1p_ud_LNP*SUDcL(0,0)*SUDL(0,2) + Cud1_ud_LNP*SDL(0,2)*SUL(0,0)).imag();
1265 Cud1_1122r_LNP = (Cud1_00_LNP + Cud1_0d_LNP*SDL(1,1) + Cud1p_ud_LNP*SUDcL(1,0)*SUDL(0,1) + Cud1_u0_LNP*SUL(0,0) + Cud1_ud_LNP*SDL(1,1)*SUL(0,0)).real();
1266 Cud1_1123r_LNP = (Cud1_0d_LNP*SDL(1,2) + Cud1p_ud_LNP*SUDcL(1,0)*SUDL(0,2) + Cud1_ud_LNP*SDL(1,2)*SUL(0,0)).real();
1267 Cud1_1123i_LNP = (Cud1_0d_LNP*SDL(1,2) + Cud1p_ud_LNP*SUDcL(1,0)*SUDL(0,2) + Cud1_ud_LNP*SDL(1,2)*SUL(0,0)).imag();
1268 Cud1_1133r_LNP = (Cud1_00_LNP + Cud1_0d_LNP*SDL(2,2) + Cud1p_ud_LNP*SUDcL(2,0)*SUDL(0,2) + Cud1_u0_LNP*SUL(0,0) + Cud1_ud_LNP*SDL(2,2)*SUL(0,0)).real();
1269 Cud1_1211r_LNP = (Cud1p_ud_LNP*SUDcL(0,1)*SUDL(0,0) + Cud1_u0_LNP*SUL(0,1) + Cud1_ud_LNP*SDL(0,0)*SUL(0,1)).real();
1270 Cud1_1211i_LNP = (Cud1p_ud_LNP*SUDcL(0,1)*SUDL(0,0) + Cud1_u0_LNP*SUL(0,1) + Cud1_ud_LNP*SDL(0,0)*SUL(0,1)).imag();
1271 Cud1_1212r_LNP = (Cud1p_ud_LNP*SUDcL(0,1)*SUDL(0,1) + Cud1_ud_LNP*SDL(0,1)*SUL(0,1)).real();
1272 Cud1_1212i_LNP = (Cud1p_ud_LNP*SUDcL(0,1)*SUDL(0,1) + Cud1_ud_LNP*SDL(0,1)*SUL(0,1)).imag();
1273 Cud1_1213r_LNP = (Cud1p_ud_LNP*SUDcL(0,1)*SUDL(0,2) + Cud1_ud_LNP*SDL(0,2)*SUL(0,1)).real();
1274 Cud1_1213i_LNP = (Cud1p_ud_LNP*SUDcL(0,1)*SUDL(0,2) + Cud1_ud_LNP*SDL(0,2)*SUL(0,1)).imag();
1275 Cud1_1221r_LNP = (Cud1p_ud_LNP*SUDcL(1,1)*SUDL(0,0) + Cud1_ud_LNP*SDL(1,0)*SUL(0,1)).real();
1276 Cud1_1221i_LNP = (Cud1p_ud_LNP*SUDcL(1,1)*SUDL(0,0) + Cud1_ud_LNP*SDL(1,0)*SUL(0,1)).imag();
1277 Cud1_1222r_LNP = (Cud1p_ud_LNP*SUDcL(1,1)*SUDL(0,1) + Cud1_u0_LNP*SUL(0,1) + Cud1_ud_LNP*SDL(1,1)*SUL(0,1)).real();
1278 Cud1_1222i_LNP = (Cud1p_ud_LNP*SUDcL(1,1)*SUDL(0,1) + Cud1_u0_LNP*SUL(0,1) + Cud1_ud_LNP*SDL(1,1)*SUL(0,1)).imag();
1279 Cud1_1223r_LNP = (Cud1p_ud_LNP*SUDcL(1,1)*SUDL(0,2) + Cud1_ud_LNP*SDL(1,2)*SUL(0,1)).real();
1280 Cud1_1223i_LNP = (Cud1p_ud_LNP*SUDcL(1,1)*SUDL(0,2) + Cud1_ud_LNP*SDL(1,2)*SUL(0,1)).imag();
1281 Cud1_1231r_LNP = (Cud1p_ud_LNP*SUDcL(2,1)*SUDL(0,0) + Cud1_ud_LNP*SDL(2,0)*SUL(0,1)).real();
1282 Cud1_1231i_LNP = (Cud1p_ud_LNP*SUDcL(2,1)*SUDL(0,0) + Cud1_ud_LNP*SDL(2,0)*SUL(0,1)).imag();
1283 Cud1_1232r_LNP = (Cud1p_ud_LNP*SUDcL(2,1)*SUDL(0,1) + Cud1_ud_LNP*SDL(2,1)*SUL(0,1)).real();
1284 Cud1_1232i_LNP = (Cud1p_ud_LNP*SUDcL(2,1)*SUDL(0,1) + Cud1_ud_LNP*SDL(2,1)*SUL(0,1)).imag();
1285 Cud1_1233r_LNP = (Cud1p_ud_LNP*SUDcL(2,1)*SUDL(0,2) + Cud1_u0_LNP*SUL(0,1) + Cud1_ud_LNP*SDL(2,2)*SUL(0,1)).real();
1286 Cud1_1233i_LNP = (Cud1p_ud_LNP*SUDcL(2,1)*SUDL(0,2) + Cud1_u0_LNP*SUL(0,1) + Cud1_ud_LNP*SDL(2,2)*SUL(0,1)).imag();
1287 Cud1_1311r_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(0,0) + Cud1_u0_LNP*SUL(0,2) + Cud1_ud_LNP*SDL(0,0)*SUL(0,2)).real();
1288 Cud1_1311i_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(0,0) + Cud1_u0_LNP*SUL(0,2) + Cud1_ud_LNP*SDL(0,0)*SUL(0,2)).imag();
1289 Cud1_1312r_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(0,1) + Cud1_ud_LNP*SDL(0,1)*SUL(0,2)).real();
1290 Cud1_1312i_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(0,1) + Cud1_ud_LNP*SDL(0,1)*SUL(0,2)).imag();
1291 Cud1_1313r_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(0,2) + Cud1_ud_LNP*SDL(0,2)*SUL(0,2)).real();
1292 Cud1_1313i_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(0,2) + Cud1_ud_LNP*SDL(0,2)*SUL(0,2)).imag();
1293 Cud1_1321r_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(0,0) + Cud1_ud_LNP*SDL(1,0)*SUL(0,2)).real();
1294 Cud1_1321i_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(0,0) + Cud1_ud_LNP*SDL(1,0)*SUL(0,2)).imag();
1295 Cud1_1322r_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(0,1) + Cud1_u0_LNP*SUL(0,2) + Cud1_ud_LNP*SDL(1,1)*SUL(0,2)).real();
1296 Cud1_1322i_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(0,1) + Cud1_u0_LNP*SUL(0,2) + Cud1_ud_LNP*SDL(1,1)*SUL(0,2)).imag();
1297 Cud1_1323r_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(0,2) + Cud1_ud_LNP*SDL(1,2)*SUL(0,2)).real();
1298 Cud1_1323i_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(0,2) + Cud1_ud_LNP*SDL(1,2)*SUL(0,2)).imag();
1299 Cud1_1331r_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(0,0) + Cud1_ud_LNP*SDL(2,0)*SUL(0,2)).real();
1300 Cud1_1331i_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(0,0) + Cud1_ud_LNP*SDL(2,0)*SUL(0,2)).imag();
1301 Cud1_1332r_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(0,1) + Cud1_ud_LNP*SDL(2,1)*SUL(0,2)).real();
1302 Cud1_1332i_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(0,1) + Cud1_ud_LNP*SDL(2,1)*SUL(0,2)).imag();
1303 Cud1_1333r_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(0,2) + Cud1_u0_LNP*SUL(0,2) + Cud1_ud_LNP*SDL(2,2)*SUL(0,2)).real();
1304 Cud1_1333i_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(0,2) + Cud1_u0_LNP*SUL(0,2) + Cud1_ud_LNP*SDL(2,2)*SUL(0,2)).imag();
1305 Cud1_2211r_LNP = (Cud1_00_LNP + Cud1_0d_LNP*SDL(0,0) + Cud1p_ud_LNP*SUDcL(0,1)*SUDL(1,0) + Cud1_u0_LNP*SUL(1,1) + Cud1_ud_LNP*SDL(0,0)*SUL(1,1)).real();
1306 Cud1_2212r_LNP = (Cud1_0d_LNP*SDL(0,1) + Cud1p_ud_LNP*SUDcL(0,1)*SUDL(1,1) + Cud1_ud_LNP*SDL(0,1)*SUL(1,1)).real();
1307 Cud1_2212i_LNP = (Cud1_0d_LNP*SDL(0,1) + Cud1p_ud_LNP*SUDcL(0,1)*SUDL(1,1) + Cud1_ud_LNP*SDL(0,1)*SUL(1,1)).imag();
1308 Cud1_2213r_LNP = (Cud1_0d_LNP*SDL(0,2) + Cud1p_ud_LNP*SUDcL(0,1)*SUDL(1,2) + Cud1_ud_LNP*SDL(0,2)*SUL(1,1)).real();
1309 Cud1_2213i_LNP = (Cud1_0d_LNP*SDL(0,2) + Cud1p_ud_LNP*SUDcL(0,1)*SUDL(1,2) + Cud1_ud_LNP*SDL(0,2)*SUL(1,1)).imag();
1310 Cud1_2222r_LNP = (Cud1_00_LNP + Cud1_0d_LNP*SDL(1,1) + Cud1p_ud_LNP*SUDcL(1,1)*SUDL(1,1) + Cud1_u0_LNP*SUL(1,1) + Cud1_ud_LNP*SDL(1,1)*SUL(1,1)).real();
1311 Cud1_2223r_LNP = (Cud1_0d_LNP*SDL(1,2) + Cud1p_ud_LNP*SUDcL(1,1)*SUDL(1,2) + Cud1_ud_LNP*SDL(1,2)*SUL(1,1)).real();
1312 Cud1_2223i_LNP = (Cud1_0d_LNP*SDL(1,2) + Cud1p_ud_LNP*SUDcL(1,1)*SUDL(1,2) + Cud1_ud_LNP*SDL(1,2)*SUL(1,1)).imag();
1313 Cud1_2233r_LNP = (Cud1_00_LNP + Cud1_0d_LNP*SDL(2,2) + Cud1p_ud_LNP*SUDcL(2,1)*SUDL(1,2) + Cud1_u0_LNP*SUL(1,1) + Cud1_ud_LNP*SDL(2,2)*SUL(1,1)).real();
1314 Cud1_2311r_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(1,0) + Cud1_u0_LNP*SUL(1,2) + Cud1_ud_LNP*SDL(0,0)*SUL(1,2)).real();
1315 Cud1_2311i_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(1,0) + Cud1_u0_LNP*SUL(1,2) + Cud1_ud_LNP*SDL(0,0)*SUL(1,2)).imag();
1316 Cud1_2312r_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(1,1) + Cud1_ud_LNP*SDL(0,1)*SUL(1,2)).real();
1317 Cud1_2312i_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(1,1) + Cud1_ud_LNP*SDL(0,1)*SUL(1,2)).imag();
1318 Cud1_2313r_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(1,2) + Cud1_ud_LNP*SDL(0,2)*SUL(1,2)).real();
1319 Cud1_2313i_LNP = (Cud1p_ud_LNP*SUDcL(0,2)*SUDL(1,2) + Cud1_ud_LNP*SDL(0,2)*SUL(1,2)).imag();
1320 Cud1_2321r_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(1,0) + Cud1_ud_LNP*SDL(1,0)*SUL(1,2)).real();
1321 Cud1_2321i_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(1,0) + Cud1_ud_LNP*SDL(1,0)*SUL(1,2)).imag();
1322 Cud1_2322r_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(1,1) + Cud1_u0_LNP*SUL(1,2) + Cud1_ud_LNP*SDL(1,1)*SUL(1,2)).real();
1323 Cud1_2322i_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(1,1) + Cud1_u0_LNP*SUL(1,2) + Cud1_ud_LNP*SDL(1,1)*SUL(1,2)).imag();
1324 Cud1_2323r_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(1,2) + Cud1_ud_LNP*SDL(1,2)*SUL(1,2)).real();
1325 Cud1_2323i_LNP = (Cud1p_ud_LNP*SUDcL(1,2)*SUDL(1,2) + Cud1_ud_LNP*SDL(1,2)*SUL(1,2)).imag();
1326 Cud1_2331r_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(1,0) + Cud1_ud_LNP*SDL(2,0)*SUL(1,2)).real();
1327 Cud1_2331i_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(1,0) + Cud1_ud_LNP*SDL(2,0)*SUL(1,2)).imag();
1328 Cud1_2332r_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(1,1) + Cud1_ud_LNP*SDL(2,1)*SUL(1,2)).real();
1329 Cud1_2332i_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(1,1) + Cud1_ud_LNP*SDL(2,1)*SUL(1,2)).imag();
1330 Cud1_2333r_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(1,2) + Cud1_u0_LNP*SUL(1,2) + Cud1_ud_LNP*SDL(2,2)*SUL(1,2)).real();
1331 Cud1_2333i_LNP = (Cud1p_ud_LNP*SUDcL(2,2)*SUDL(1,2) + Cud1_u0_LNP*SUL(1,2) + Cud1_ud_LNP*SDL(2,2)*SUL(1,2)).imag();
1332 Cud1_3311r_LNP = (Cud1_00_LNP + Cud1_0d_LNP*SDL(0,0) + Cud1p_ud_LNP*SUDcL(0,2)*SUDL(2,0) + Cud1_u0_LNP*SUL(2,2) + Cud1_ud_LNP*SDL(0,0)*SUL(2,2)).real();
1333 Cud1_3312r_LNP = (Cud1_0d_LNP*SDL(0,1) + Cud1p_ud_LNP*SUDcL(0,2)*SUDL(2,1) + Cud1_ud_LNP*SDL(0,1)*SUL(2,2)).real();
1334 Cud1_3312i_LNP = (Cud1_0d_LNP*SDL(0,1) + Cud1p_ud_LNP*SUDcL(0,2)*SUDL(2,1) + Cud1_ud_LNP*SDL(0,1)*SUL(2,2)).imag();
1335 Cud1_3313r_LNP = (Cud1_0d_LNP*SDL(0,2) + Cud1p_ud_LNP*SUDcL(0,2)*SUDL(2,2) + Cud1_ud_LNP*SDL(0,2)*SUL(2,2)).real();
1336 Cud1_3313i_LNP = (Cud1_0d_LNP*SDL(0,2) + Cud1p_ud_LNP*SUDcL(0,2)*SUDL(2,2) + Cud1_ud_LNP*SDL(0,2)*SUL(2,2)).imag();
1337 Cud1_3322r_LNP = (Cud1_00_LNP + Cud1_0d_LNP*SDL(1,1) + Cud1p_ud_LNP*SUDcL(1,2)*SUDL(2,1) + Cud1_u0_LNP*SUL(2,2) + Cud1_ud_LNP*SDL(1,1)*SUL(2,2)).real();
1338 Cud1_3323r_LNP = (Cud1_0d_LNP*SDL(1,2) + Cud1p_ud_LNP*SUDcL(1,2)*SUDL(2,2) + Cud1_ud_LNP*SDL(1,2)*SUL(2,2)).real();
1339 Cud1_3323i_LNP = (Cud1_0d_LNP*SDL(1,2) + Cud1p_ud_LNP*SUDcL(1,2)*SUDL(2,2) + Cud1_ud_LNP*SDL(1,2)*SUL(2,2)).imag();
1340 Cud1_3333r_LNP = (Cud1_00_LNP + Cud1_0d_LNP*SDL(2,2) + Cud1p_ud_LNP*SUDcL(2,2)*SUDL(2,2) + Cud1_u0_LNP*SUL(2,2) + Cud1_ud_LNP*SDL(2,2)*SUL(2,2)).real();
1341
1342 Cud8_1111r_LNP = (Cud8_00_LNP + Cud8_0d_LNP*SDL(0,0) + Cud8p_ud_LNP*SUDcL(0,0)*SUDL(0,0) + Cud8_u0_LNP*SUL(0,0) + Cud8_ud_LNP*SDL(0,0)*SUL(0,0)).real();
1343 Cud8_1112r_LNP = (Cud8_0d_LNP*SDL(0,1) + Cud8p_ud_LNP*SUDcL(0,0)*SUDL(0,1) + Cud8_ud_LNP*SDL(0,1)*SUL(0,0)).real();
1344 Cud8_1112i_LNP = (Cud8_0d_LNP*SDL(0,1) + Cud8p_ud_LNP*SUDcL(0,0)*SUDL(0,1) + Cud8_ud_LNP*SDL(0,1)*SUL(0,0)).imag();
1345 Cud8_1113r_LNP = (Cud8_0d_LNP*SDL(0,2) + Cud8p_ud_LNP*SUDcL(0,0)*SUDL(0,2) + Cud8_ud_LNP*SDL(0,2)*SUL(0,0)).real();
1346 Cud8_1113i_LNP = (Cud8_0d_LNP*SDL(0,2) + Cud8p_ud_LNP*SUDcL(0,0)*SUDL(0,2) + Cud8_ud_LNP*SDL(0,2)*SUL(0,0)).imag();
1347 Cud8_1122r_LNP = (Cud8_00_LNP + Cud8_0d_LNP*SDL(1,1) + Cud8p_ud_LNP*SUDcL(1,0)*SUDL(0,1) + Cud8_u0_LNP*SUL(0,0) + Cud8_ud_LNP*SDL(1,1)*SUL(0,0)).real();
1348 Cud8_1123r_LNP = (Cud8_0d_LNP*SDL(1,2) + Cud8p_ud_LNP*SUDcL(1,0)*SUDL(0,2) + Cud8_ud_LNP*SDL(1,2)*SUL(0,0)).real();
1349 Cud8_1123i_LNP = (Cud8_0d_LNP*SDL(1,2) + Cud8p_ud_LNP*SUDcL(1,0)*SUDL(0,2) + Cud8_ud_LNP*SDL(1,2)*SUL(0,0)).imag();
1350 Cud8_1133r_LNP = (Cud8_00_LNP + Cud8_0d_LNP*SDL(2,2) + Cud8p_ud_LNP*SUDcL(2,0)*SUDL(0,2) + Cud8_u0_LNP*SUL(0,0) + Cud8_ud_LNP*SDL(2,2)*SUL(0,0)).real();
1351 Cud8_1211r_LNP = (Cud8p_ud_LNP*SUDcL(0,1)*SUDL(0,0) + Cud8_u0_LNP*SUL(0,1) + Cud8_ud_LNP*SDL(0,0)*SUL(0,1)).real();
1352 Cud8_1211i_LNP = (Cud8p_ud_LNP*SUDcL(0,1)*SUDL(0,0) + Cud8_u0_LNP*SUL(0,1) + Cud8_ud_LNP*SDL(0,0)*SUL(0,1)).imag();
1353 Cud8_1212r_LNP = (Cud8p_ud_LNP*SUDcL(0,1)*SUDL(0,1) + Cud8_ud_LNP*SDL(0,1)*SUL(0,1)).real();
1354 Cud8_1212i_LNP = (Cud8p_ud_LNP*SUDcL(0,1)*SUDL(0,1) + Cud8_ud_LNP*SDL(0,1)*SUL(0,1)).imag();
1355 Cud8_1213r_LNP = (Cud8p_ud_LNP*SUDcL(0,1)*SUDL(0,2) + Cud8_ud_LNP*SDL(0,2)*SUL(0,1)).real();
1356 Cud8_1213i_LNP = (Cud8p_ud_LNP*SUDcL(0,1)*SUDL(0,2) + Cud8_ud_LNP*SDL(0,2)*SUL(0,1)).imag();
1357 Cud8_1221r_LNP = (Cud8p_ud_LNP*SUDcL(1,1)*SUDL(0,0) + Cud8_ud_LNP*SDL(1,0)*SUL(0,1)).real();
1358 Cud8_1221i_LNP = (Cud8p_ud_LNP*SUDcL(1,1)*SUDL(0,0) + Cud8_ud_LNP*SDL(1,0)*SUL(0,1)).imag();
1359 Cud8_1222r_LNP = (Cud8p_ud_LNP*SUDcL(1,1)*SUDL(0,1) + Cud8_u0_LNP*SUL(0,1) + Cud8_ud_LNP*SDL(1,1)*SUL(0,1)).real();
1360 Cud8_1222i_LNP = (Cud8p_ud_LNP*SUDcL(1,1)*SUDL(0,1) + Cud8_u0_LNP*SUL(0,1) + Cud8_ud_LNP*SDL(1,1)*SUL(0,1)).imag();
1361 Cud8_1223r_LNP = (Cud8p_ud_LNP*SUDcL(1,1)*SUDL(0,2) + Cud8_ud_LNP*SDL(1,2)*SUL(0,1)).real();
1362 Cud8_1223i_LNP = (Cud8p_ud_LNP*SUDcL(1,1)*SUDL(0,2) + Cud8_ud_LNP*SDL(1,2)*SUL(0,1)).imag();
1363 Cud8_1231r_LNP = (Cud8p_ud_LNP*SUDcL(2,1)*SUDL(0,0) + Cud8_ud_LNP*SDL(2,0)*SUL(0,1)).real();
1364 Cud8_1231i_LNP = (Cud8p_ud_LNP*SUDcL(2,1)*SUDL(0,0) + Cud8_ud_LNP*SDL(2,0)*SUL(0,1)).imag();
1365 Cud8_1232r_LNP = (Cud8p_ud_LNP*SUDcL(2,1)*SUDL(0,1) + Cud8_ud_LNP*SDL(2,1)*SUL(0,1)).real();
1366 Cud8_1232i_LNP = (Cud8p_ud_LNP*SUDcL(2,1)*SUDL(0,1) + Cud8_ud_LNP*SDL(2,1)*SUL(0,1)).imag();
1367 Cud8_1233r_LNP = (Cud8p_ud_LNP*SUDcL(2,1)*SUDL(0,2) + Cud8_u0_LNP*SUL(0,1) + Cud8_ud_LNP*SDL(2,2)*SUL(0,1)).real();
1368 Cud8_1233i_LNP = (Cud8p_ud_LNP*SUDcL(2,1)*SUDL(0,2) + Cud8_u0_LNP*SUL(0,1) + Cud8_ud_LNP*SDL(2,2)*SUL(0,1)).imag();
1369 Cud8_1311r_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(0,0) + Cud8_u0_LNP*SUL(0,2) + Cud8_ud_LNP*SDL(0,0)*SUL(0,2)).real();
1370 Cud8_1311i_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(0,0) + Cud8_u0_LNP*SUL(0,2) + Cud8_ud_LNP*SDL(0,0)*SUL(0,2)).imag();
1371 Cud8_1312r_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(0,1) + Cud8_ud_LNP*SDL(0,1)*SUL(0,2)).real();
1372 Cud8_1312i_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(0,1) + Cud8_ud_LNP*SDL(0,1)*SUL(0,2)).imag();
1373 Cud8_1313r_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(0,2) + Cud8_ud_LNP*SDL(0,2)*SUL(0,2)).real();
1374 Cud8_1313i_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(0,2) + Cud8_ud_LNP*SDL(0,2)*SUL(0,2)).imag();
1375 Cud8_1321r_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(0,0) + Cud8_ud_LNP*SDL(1,0)*SUL(0,2)).real();
1376 Cud8_1321i_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(0,0) + Cud8_ud_LNP*SDL(1,0)*SUL(0,2)).imag();
1377 Cud8_1322r_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(0,1) + Cud8_u0_LNP*SUL(0,2) + Cud8_ud_LNP*SDL(1,1)*SUL(0,2)).real();
1378 Cud8_1322i_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(0,1) + Cud8_u0_LNP*SUL(0,2) + Cud8_ud_LNP*SDL(1,1)*SUL(0,2)).imag();
1379 Cud8_1323r_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(0,2) + Cud8_ud_LNP*SDL(1,2)*SUL(0,2)).real();
1380 Cud8_1323i_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(0,2) + Cud8_ud_LNP*SDL(1,2)*SUL(0,2)).imag();
1381 Cud8_1331r_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(0,0) + Cud8_ud_LNP*SDL(2,0)*SUL(0,2)).real();
1382 Cud8_1331i_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(0,0) + Cud8_ud_LNP*SDL(2,0)*SUL(0,2)).imag();
1383 Cud8_1332r_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(0,1) + Cud8_ud_LNP*SDL(2,1)*SUL(0,2)).real();
1384 Cud8_1332i_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(0,1) + Cud8_ud_LNP*SDL(2,1)*SUL(0,2)).imag();
1385 Cud8_1333r_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(0,2) + Cud8_u0_LNP*SUL(0,2) + Cud8_ud_LNP*SDL(2,2)*SUL(0,2)).real();
1386 Cud8_1333i_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(0,2) + Cud8_u0_LNP*SUL(0,2) + Cud8_ud_LNP*SDL(2,2)*SUL(0,2)).imag();
1387 Cud8_2211r_LNP = (Cud8_00_LNP + Cud8_0d_LNP*SDL(0,0) + Cud8p_ud_LNP*SUDcL(0,1)*SUDL(1,0) + Cud8_u0_LNP*SUL(1,1) + Cud8_ud_LNP*SDL(0,0)*SUL(1,1)).real();
1388 Cud8_2212r_LNP = (Cud8_0d_LNP*SDL(0,1) + Cud8p_ud_LNP*SUDcL(0,1)*SUDL(1,1) + Cud8_ud_LNP*SDL(0,1)*SUL(1,1)).real();
1389 Cud8_2212i_LNP = (Cud8_0d_LNP*SDL(0,1) + Cud8p_ud_LNP*SUDcL(0,1)*SUDL(1,1) + Cud8_ud_LNP*SDL(0,1)*SUL(1,1)).imag();
1390 Cud8_2213r_LNP = (Cud8_0d_LNP*SDL(0,2) + Cud8p_ud_LNP*SUDcL(0,1)*SUDL(1,2) + Cud8_ud_LNP*SDL(0,2)*SUL(1,1)).real();
1391 Cud8_2213i_LNP = (Cud8_0d_LNP*SDL(0,2) + Cud8p_ud_LNP*SUDcL(0,1)*SUDL(1,2) + Cud8_ud_LNP*SDL(0,2)*SUL(1,1)).imag();
1392 Cud8_2222r_LNP = (Cud8_00_LNP + Cud8_0d_LNP*SDL(1,1) + Cud8p_ud_LNP*SUDcL(1,1)*SUDL(1,1) + Cud8_u0_LNP*SUL(1,1) + Cud8_ud_LNP*SDL(1,1)*SUL(1,1)).real();
1393 Cud8_2223r_LNP = (Cud8_0d_LNP*SDL(1,2) + Cud8p_ud_LNP*SUDcL(1,1)*SUDL(1,2) + Cud8_ud_LNP*SDL(1,2)*SUL(1,1)).real();
1394 Cud8_2223i_LNP = (Cud8_0d_LNP*SDL(1,2) + Cud8p_ud_LNP*SUDcL(1,1)*SUDL(1,2) + Cud8_ud_LNP*SDL(1,2)*SUL(1,1)).imag();
1395 Cud8_2233r_LNP = (Cud8_00_LNP + Cud8_0d_LNP*SDL(2,2) + Cud8p_ud_LNP*SUDcL(2,1)*SUDL(1,2) + Cud8_u0_LNP*SUL(1,1) + Cud8_ud_LNP*SDL(2,2)*SUL(1,1)).real();
1396 Cud8_2311r_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(1,0) + Cud8_u0_LNP*SUL(1,2) + Cud8_ud_LNP*SDL(0,0)*SUL(1,2)).real();
1397 Cud8_2311i_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(1,0) + Cud8_u0_LNP*SUL(1,2) + Cud8_ud_LNP*SDL(0,0)*SUL(1,2)).imag();
1398 Cud8_2312r_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(1,1) + Cud8_ud_LNP*SDL(0,1)*SUL(1,2)).real();
1399 Cud8_2312i_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(1,1) + Cud8_ud_LNP*SDL(0,1)*SUL(1,2)).imag();
1400 Cud8_2313r_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(1,2) + Cud8_ud_LNP*SDL(0,2)*SUL(1,2)).real();
1401 Cud8_2313i_LNP = (Cud8p_ud_LNP*SUDcL(0,2)*SUDL(1,2) + Cud8_ud_LNP*SDL(0,2)*SUL(1,2)).imag();
1402 Cud8_2321r_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(1,0) + Cud8_ud_LNP*SDL(1,0)*SUL(1,2)).real();
1403 Cud8_2321i_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(1,0) + Cud8_ud_LNP*SDL(1,0)*SUL(1,2)).imag();
1404 Cud8_2322r_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(1,1) + Cud8_u0_LNP*SUL(1,2) + Cud8_ud_LNP*SDL(1,1)*SUL(1,2)).real();
1405 Cud8_2322i_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(1,1) + Cud8_u0_LNP*SUL(1,2) + Cud8_ud_LNP*SDL(1,1)*SUL(1,2)).imag();
1406 Cud8_2323r_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(1,2) + Cud8_ud_LNP*SDL(1,2)*SUL(1,2)).real();
1407 Cud8_2323i_LNP = (Cud8p_ud_LNP*SUDcL(1,2)*SUDL(1,2) + Cud8_ud_LNP*SDL(1,2)*SUL(1,2)).imag();
1408 Cud8_2331r_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(1,0) + Cud8_ud_LNP*SDL(2,0)*SUL(1,2)).real();
1409 Cud8_2331i_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(1,0) + Cud8_ud_LNP*SDL(2,0)*SUL(1,2)).imag();
1410 Cud8_2332r_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(1,1) + Cud8_ud_LNP*SDL(2,1)*SUL(1,2)).real();
1411 Cud8_2332i_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(1,1) + Cud8_ud_LNP*SDL(2,1)*SUL(1,2)).imag();
1412 Cud8_2333r_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(1,2) + Cud8_u0_LNP*SUL(1,2) + Cud8_ud_LNP*SDL(2,2)*SUL(1,2)).real();
1413 Cud8_2333i_LNP = (Cud8p_ud_LNP*SUDcL(2,2)*SUDL(1,2) + Cud8_u0_LNP*SUL(1,2) + Cud8_ud_LNP*SDL(2,2)*SUL(1,2)).imag();
1414 Cud8_3311r_LNP = (Cud8_00_LNP + Cud8_0d_LNP*SDL(0,0) + Cud8p_ud_LNP*SUDcL(0,2)*SUDL(2,0) + Cud8_u0_LNP*SUL(2,2) + Cud8_ud_LNP*SDL(0,0)*SUL(2,2)).real();
1415 Cud8_3312r_LNP = (Cud8_0d_LNP*SDL(0,1) + Cud8p_ud_LNP*SUDcL(0,2)*SUDL(2,1) + Cud8_ud_LNP*SDL(0,1)*SUL(2,2)).real();
1416 Cud8_3312i_LNP = (Cud8_0d_LNP*SDL(0,1) + Cud8p_ud_LNP*SUDcL(0,2)*SUDL(2,1) + Cud8_ud_LNP*SDL(0,1)*SUL(2,2)).imag();
1417 Cud8_3313r_LNP = (Cud8_0d_LNP*SDL(0,2) + Cud8p_ud_LNP*SUDcL(0,2)*SUDL(2,2) + Cud8_ud_LNP*SDL(0,2)*SUL(2,2)).real();
1418 Cud8_3313i_LNP = (Cud8_0d_LNP*SDL(0,2) + Cud8p_ud_LNP*SUDcL(0,2)*SUDL(2,2) + Cud8_ud_LNP*SDL(0,2)*SUL(2,2)).imag();
1419 Cud8_3322r_LNP = (Cud8_00_LNP + Cud8_0d_LNP*SDL(1,1) + Cud8p_ud_LNP*SUDcL(1,2)*SUDL(2,1) + Cud8_u0_LNP*SUL(2,2) + Cud8_ud_LNP*SDL(1,1)*SUL(2,2)).real();
1420 Cud8_3323r_LNP = (Cud8_0d_LNP*SDL(1,2) + Cud8p_ud_LNP*SUDcL(1,2)*SUDL(2,2) + Cud8_ud_LNP*SDL(1,2)*SUL(2,2)).real();
1421 Cud8_3323i_LNP = (Cud8_0d_LNP*SDL(1,2) + Cud8p_ud_LNP*SUDcL(1,2)*SUDL(2,2) + Cud8_ud_LNP*SDL(1,2)*SUL(2,2)).imag();
1422 Cud8_3333r_LNP = (Cud8_00_LNP + Cud8_0d_LNP*SDL(2,2) + Cud8p_ud_LNP*SUDcL(2,2)*SUDL(2,2) + Cud8_u0_LNP*SUL(2,2) + Cud8_ud_LNP*SDL(2,2)*SUL(2,2)).real();
1423
1424 Cqu1_1111r_LNP = (Cqu1_00_LNP + Cqu1_d0_LNP*SQDL(0,0) + Cqu1_u0_LNP*SQUL(0,0) + Cqu1_0u_LNP*SUL(0,0) + Cqu1_du_LNP*SQDL(0,0)*SUL(0,0) + Cqu1_uu_LNP*SQUL(0,0)*SUL(0,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(0,0) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(0,0) + Cqu1_y_LNP*YucL(0,0)*YuL(0,0) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(0,0) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(0,0)).real();
1425 Cqu1_1112r_LNP = (Cqu1_0u_LNP*SUL(0,1) + Cqu1_du_LNP*SQDL(0,0)*SUL(0,1) + Cqu1_uu_LNP*SQUL(0,0)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(0,0) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(0,0) + Cqu1_y_LNP*YucL(0,1)*YuL(0,0) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(0,0) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(0,0)).real();
1426 Cqu1_1112i_LNP = (Cqu1_0u_LNP*SUL(0,1) + Cqu1_du_LNP*SQDL(0,0)*SUL(0,1) + Cqu1_uu_LNP*SQUL(0,0)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(0,0) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(0,0) + Cqu1_y_LNP*YucL(0,1)*YuL(0,0) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(0,0) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(0,0)).imag();
1427 Cqu1_1113r_LNP = (Cqu1_0u_LNP*SUL(0,2) + Cqu1_du_LNP*SQDL(0,0)*SUL(0,2) + Cqu1_uu_LNP*SQUL(0,0)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(0,0) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(0,0) + Cqu1_y_LNP*YucL(0,2)*YuL(0,0) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(0,0) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(0,0)).real();
1428 Cqu1_1113i_LNP = (Cqu1_0u_LNP*SUL(0,2) + Cqu1_du_LNP*SQDL(0,0)*SUL(0,2) + Cqu1_uu_LNP*SQUL(0,0)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(0,0) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(0,0) + Cqu1_y_LNP*YucL(0,2)*YuL(0,0) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(0,0) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(0,0)).imag();
1429 Cqu1_1122r_LNP = (Cqu1_00_LNP + Cqu1_d0_LNP*SQDL(0,0) + Cqu1_u0_LNP*SQUL(0,0) + Cqu1_0u_LNP*SUL(1,1) + Cqu1_du_LNP*SQDL(0,0)*SUL(1,1) + Cqu1_uu_LNP*SQUL(0,0)*SUL(1,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(1,0) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(1,0) + Cqu1_y_LNP*YucL(0,1)*YuL(1,0) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(1,0) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(1,0)).real();
1430 Cqu1_1123r_LNP = (Cqu1_0u_LNP*SUL(1,2) + Cqu1_du_LNP*SQDL(0,0)*SUL(1,2) + Cqu1_uu_LNP*SQUL(0,0)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(1,0) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(1,0) + Cqu1_y_LNP*YucL(0,2)*YuL(1,0) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(1,0) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(1,0)).real();
1431 Cqu1_1123i_LNP = (Cqu1_0u_LNP*SUL(1,2) + Cqu1_du_LNP*SQDL(0,0)*SUL(1,2) + Cqu1_uu_LNP*SQUL(0,0)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(1,0) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(1,0) + Cqu1_y_LNP*YucL(0,2)*YuL(1,0) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(1,0) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(1,0)).imag();
1432 Cqu1_1133r_LNP = (Cqu1_00_LNP + Cqu1_d0_LNP*SQDL(0,0) + Cqu1_u0_LNP*SQUL(0,0) + Cqu1_0u_LNP*SUL(2,2) + Cqu1_du_LNP*SQDL(0,0)*SUL(2,2) + Cqu1_uu_LNP*SQUL(0,0)*SUL(2,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(2,0) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(2,0) + Cqu1_y_LNP*YucL(0,2)*YuL(2,0) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(2,0) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(2,0)).real();
1433 Cqu1_1211r_LNP = (Cqu1_d0_LNP*SQDL(0,1) + Cqu1_u0_LNP*SQUL(0,1) + Cqu1_du_LNP*SQDL(0,1)*SUL(0,0) + Cqu1_uu_LNP*SQUL(0,1)*SUL(0,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(0,1) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(0,1) + Cqu1_y_LNP*YucL(0,0)*YuL(0,1) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(0,1) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(0,1)).real();
1434 Cqu1_1211i_LNP = (Cqu1_d0_LNP*SQDL(0,1) + Cqu1_u0_LNP*SQUL(0,1) + Cqu1_du_LNP*SQDL(0,1)*SUL(0,0) + Cqu1_uu_LNP*SQUL(0,1)*SUL(0,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(0,1) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(0,1) + Cqu1_y_LNP*YucL(0,0)*YuL(0,1) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(0,1) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(0,1)).imag();
1435 Cqu1_1212r_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(0,1) + Cqu1_uu_LNP*SQUL(0,1)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(0,1) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(0,1) + Cqu1_y_LNP*YucL(0,1)*YuL(0,1) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(0,1) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(0,1)).real();
1436 Cqu1_1212i_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(0,1) + Cqu1_uu_LNP*SQUL(0,1)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(0,1) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(0,1) + Cqu1_y_LNP*YucL(0,1)*YuL(0,1) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(0,1) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(0,1)).imag();
1437 Cqu1_1213r_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(0,2) + Cqu1_uu_LNP*SQUL(0,1)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(0,1) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(0,1) + Cqu1_y_LNP*YucL(0,2)*YuL(0,1) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(0,1) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(0,1)).real();
1438 Cqu1_1213i_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(0,2) + Cqu1_uu_LNP*SQUL(0,1)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(0,1) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(0,1) + Cqu1_y_LNP*YucL(0,2)*YuL(0,1) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(0,1) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(0,1)).imag();
1439 Cqu1_1221r_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(1,0) + Cqu1_uu_LNP*SQUL(0,1)*SUL(1,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(1,1) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(1,1) + Cqu1_y_LNP*YucL(0,0)*YuL(1,1) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(1,1) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(1,1)).real();
1440 Cqu1_1221i_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(1,0) + Cqu1_uu_LNP*SQUL(0,1)*SUL(1,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(1,1) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(1,1) + Cqu1_y_LNP*YucL(0,0)*YuL(1,1) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(1,1) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(1,1)).imag();
1441 Cqu1_1222r_LNP = (Cqu1_d0_LNP*SQDL(0,1) + Cqu1_u0_LNP*SQUL(0,1) + Cqu1_du_LNP*SQDL(0,1)*SUL(1,1) + Cqu1_uu_LNP*SQUL(0,1)*SUL(1,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(1,1) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(1,1) + Cqu1_y_LNP*YucL(0,1)*YuL(1,1) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(1,1) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(1,1)).real();
1442 Cqu1_1222i_LNP = (Cqu1_d0_LNP*SQDL(0,1) + Cqu1_u0_LNP*SQUL(0,1) + Cqu1_du_LNP*SQDL(0,1)*SUL(1,1) + Cqu1_uu_LNP*SQUL(0,1)*SUL(1,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(1,1) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(1,1) + Cqu1_y_LNP*YucL(0,1)*YuL(1,1) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(1,1) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(1,1)).imag();
1443 Cqu1_1223r_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(1,2) + Cqu1_uu_LNP*SQUL(0,1)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(1,1) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(1,1) + Cqu1_y_LNP*YucL(0,2)*YuL(1,1) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(1,1) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(1,1)).real();
1444 Cqu1_1223i_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(1,2) + Cqu1_uu_LNP*SQUL(0,1)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(1,1) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(1,1) + Cqu1_y_LNP*YucL(0,2)*YuL(1,1) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(1,1) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(1,1)).imag();
1445 Cqu1_1231r_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(2,0) + Cqu1_uu_LNP*SQUL(0,1)*SUL(2,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(2,1) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(2,1) + Cqu1_y_LNP*YucL(0,0)*YuL(2,1) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(2,1) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(2,1)).real();
1446 Cqu1_1231i_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(2,0) + Cqu1_uu_LNP*SQUL(0,1)*SUL(2,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(2,1) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(2,1) + Cqu1_y_LNP*YucL(0,0)*YuL(2,1) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(2,1) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(2,1)).imag();
1447 Cqu1_1232r_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(2,1) + Cqu1_uu_LNP*SQUL(0,1)*SUL(2,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(2,1) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(2,1) + Cqu1_y_LNP*YucL(0,1)*YuL(2,1) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(2,1) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(2,1)).real();
1448 Cqu1_1232i_LNP = (Cqu1_du_LNP*SQDL(0,1)*SUL(2,1) + Cqu1_uu_LNP*SQUL(0,1)*SUL(2,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(2,1) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(2,1) + Cqu1_y_LNP*YucL(0,1)*YuL(2,1) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(2,1) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(2,1)).imag();
1449 Cqu1_1233r_LNP = (Cqu1_d0_LNP*SQDL(0,1) + Cqu1_u0_LNP*SQUL(0,1) + Cqu1_du_LNP*SQDL(0,1)*SUL(2,2) + Cqu1_uu_LNP*SQUL(0,1)*SUL(2,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(2,1) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(2,1) + Cqu1_y_LNP*YucL(0,2)*YuL(2,1) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(2,1) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(2,1)).real();
1450 Cqu1_1233i_LNP = (Cqu1_d0_LNP*SQDL(0,1) + Cqu1_u0_LNP*SQUL(0,1) + Cqu1_du_LNP*SQDL(0,1)*SUL(2,2) + Cqu1_uu_LNP*SQUL(0,1)*SUL(2,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(2,1) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(2,1) + Cqu1_y_LNP*YucL(0,2)*YuL(2,1) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(2,1) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(2,1)).imag();
1451 Cqu1_1311r_LNP = (Cqu1_d0_LNP*SQDL(0,2) + Cqu1_u0_LNP*SQUL(0,2) + Cqu1_du_LNP*SQDL(0,2)*SUL(0,0) + Cqu1_uu_LNP*SQUL(0,2)*SUL(0,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(0,2) + Cqu1_y_LNP*YucL(0,0)*YuL(0,2) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(0,2)).real();
1452 Cqu1_1311i_LNP = (Cqu1_d0_LNP*SQDL(0,2) + Cqu1_u0_LNP*SQUL(0,2) + Cqu1_du_LNP*SQDL(0,2)*SUL(0,0) + Cqu1_uu_LNP*SQUL(0,2)*SUL(0,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(0,2) + Cqu1_y_LNP*YucL(0,0)*YuL(0,2) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(0,2)).imag();
1453 Cqu1_1312r_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(0,1) + Cqu1_uu_LNP*SQUL(0,2)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(0,2) + Cqu1_y_LNP*YucL(0,1)*YuL(0,2) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(0,2)).real();
1454 Cqu1_1312i_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(0,1) + Cqu1_uu_LNP*SQUL(0,2)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(0,2) + Cqu1_y_LNP*YucL(0,1)*YuL(0,2) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(0,2)).imag();
1455 Cqu1_1313r_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(0,2) + Cqu1_uu_LNP*SQUL(0,2)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(0,2) + Cqu1_y_LNP*YucL(0,2)*YuL(0,2) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(0,2)).real();
1456 Cqu1_1313i_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(0,2) + Cqu1_uu_LNP*SQUL(0,2)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(0,2) + Cqu1_y_LNP*YucL(0,2)*YuL(0,2) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(0,2)).imag();
1457 Cqu1_1321r_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(1,0) + Cqu1_uu_LNP*SQUL(0,2)*SUL(1,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(1,2) + Cqu1_y_LNP*YucL(0,0)*YuL(1,2) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(1,2)).real();
1458 Cqu1_1321i_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(1,0) + Cqu1_uu_LNP*SQUL(0,2)*SUL(1,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(1,2) + Cqu1_y_LNP*YucL(0,0)*YuL(1,2) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(1,2)).imag();
1459 Cqu1_1322r_LNP = (Cqu1_d0_LNP*SQDL(0,2) + Cqu1_u0_LNP*SQUL(0,2) + Cqu1_du_LNP*SQDL(0,2)*SUL(1,1) + Cqu1_uu_LNP*SQUL(0,2)*SUL(1,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(1,2) + Cqu1_y_LNP*YucL(0,1)*YuL(1,2) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(1,2)).real();
1460 Cqu1_1322i_LNP = (Cqu1_d0_LNP*SQDL(0,2) + Cqu1_u0_LNP*SQUL(0,2) + Cqu1_du_LNP*SQDL(0,2)*SUL(1,1) + Cqu1_uu_LNP*SQUL(0,2)*SUL(1,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(1,2) + Cqu1_y_LNP*YucL(0,1)*YuL(1,2) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(1,2)).imag();
1461 Cqu1_1323r_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(1,2) + Cqu1_uu_LNP*SQUL(0,2)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(1,2) + Cqu1_y_LNP*YucL(0,2)*YuL(1,2) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(1,2)).real();
1462 Cqu1_1323i_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(1,2) + Cqu1_uu_LNP*SQUL(0,2)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(1,2) + Cqu1_y_LNP*YucL(0,2)*YuL(1,2) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(1,2)).imag();
1463 Cqu1_1331r_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(2,0) + Cqu1_uu_LNP*SQUL(0,2)*SUL(2,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(2,2) + Cqu1_y_LNP*YucL(0,0)*YuL(2,2) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(2,2)).real();
1464 Cqu1_1331i_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(2,0) + Cqu1_uu_LNP*SQUL(0,2)*SUL(2,0) + Cqu1_dy_LNP*SQDYucL(0,0)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(0,0)*YuL(2,2) + Cqu1_y_LNP*YucL(0,0)*YuL(2,2) + Cqu1_yd_LNP*YucL(0,0)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(0,0)*YuSQUL(2,2)).imag();
1465 Cqu1_1332r_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(2,1) + Cqu1_uu_LNP*SQUL(0,2)*SUL(2,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(2,2) + Cqu1_y_LNP*YucL(0,1)*YuL(2,2) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(2,2)).real();
1466 Cqu1_1332i_LNP = (Cqu1_du_LNP*SQDL(0,2)*SUL(2,1) + Cqu1_uu_LNP*SQUL(0,2)*SUL(2,1) + Cqu1_dy_LNP*SQDYucL(0,1)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(0,1)*YuL(2,2) + Cqu1_y_LNP*YucL(0,1)*YuL(2,2) + Cqu1_yd_LNP*YucL(0,1)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(0,1)*YuSQUL(2,2)).imag();
1467 Cqu1_1333r_LNP = (Cqu1_d0_LNP*SQDL(0,2) + Cqu1_u0_LNP*SQUL(0,2) + Cqu1_du_LNP*SQDL(0,2)*SUL(2,2) + Cqu1_uu_LNP*SQUL(0,2)*SUL(2,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(2,2) + Cqu1_y_LNP*YucL(0,2)*YuL(2,2) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(2,2)).real();
1468 Cqu1_1333i_LNP = (Cqu1_d0_LNP*SQDL(0,2) + Cqu1_u0_LNP*SQUL(0,2) + Cqu1_du_LNP*SQDL(0,2)*SUL(2,2) + Cqu1_uu_LNP*SQUL(0,2)*SUL(2,2) + Cqu1_dy_LNP*SQDYucL(0,2)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(0,2)*YuL(2,2) + Cqu1_y_LNP*YucL(0,2)*YuL(2,2) + Cqu1_yd_LNP*YucL(0,2)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(0,2)*YuSQUL(2,2)).imag();
1469 Cqu1_2211r_LNP = (Cqu1_00_LNP + Cqu1_d0_LNP*SQDL(1,1) + Cqu1_u0_LNP*SQUL(1,1) + Cqu1_0u_LNP*SUL(0,0) + Cqu1_du_LNP*SQDL(1,1)*SUL(0,0) + Cqu1_uu_LNP*SQUL(1,1)*SUL(0,0) + Cqu1_dy_LNP*SQDYucL(1,0)*YuL(0,1) + Cqu1_uy_LNP*SQUYucL(1,0)*YuL(0,1) + Cqu1_y_LNP*YucL(1,0)*YuL(0,1) + Cqu1_yd_LNP*YucL(1,0)*YuSQDL(0,1) + Cqu1_yu_LNP*YucL(1,0)*YuSQUL(0,1)).real();
1470 Cqu1_2212r_LNP = (Cqu1_0u_LNP*SUL(0,1) + Cqu1_du_LNP*SQDL(1,1)*SUL(0,1) + Cqu1_uu_LNP*SQUL(1,1)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(1,1)*YuL(0,1) + Cqu1_uy_LNP*SQUYucL(1,1)*YuL(0,1) + Cqu1_y_LNP*YucL(1,1)*YuL(0,1) + Cqu1_yd_LNP*YucL(1,1)*YuSQDL(0,1) + Cqu1_yu_LNP*YucL(1,1)*YuSQUL(0,1)).real();
1471 Cqu1_2212i_LNP = (Cqu1_0u_LNP*SUL(0,1) + Cqu1_du_LNP*SQDL(1,1)*SUL(0,1) + Cqu1_uu_LNP*SQUL(1,1)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(1,1)*YuL(0,1) + Cqu1_uy_LNP*SQUYucL(1,1)*YuL(0,1) + Cqu1_y_LNP*YucL(1,1)*YuL(0,1) + Cqu1_yd_LNP*YucL(1,1)*YuSQDL(0,1) + Cqu1_yu_LNP*YucL(1,1)*YuSQUL(0,1)).imag();
1472 Cqu1_2213r_LNP = (Cqu1_0u_LNP*SUL(0,2) + Cqu1_du_LNP*SQDL(1,1)*SUL(0,2) + Cqu1_uu_LNP*SQUL(1,1)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(1,2)*YuL(0,1) + Cqu1_uy_LNP*SQUYucL(1,2)*YuL(0,1) + Cqu1_y_LNP*YucL(1,2)*YuL(0,1) + Cqu1_yd_LNP*YucL(1,2)*YuSQDL(0,1) + Cqu1_yu_LNP*YucL(1,2)*YuSQUL(0,1)).real();
1473 Cqu1_2213i_LNP = (Cqu1_0u_LNP*SUL(0,2) + Cqu1_du_LNP*SQDL(1,1)*SUL(0,2) + Cqu1_uu_LNP*SQUL(1,1)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(1,2)*YuL(0,1) + Cqu1_uy_LNP*SQUYucL(1,2)*YuL(0,1) + Cqu1_y_LNP*YucL(1,2)*YuL(0,1) + Cqu1_yd_LNP*YucL(1,2)*YuSQDL(0,1) + Cqu1_yu_LNP*YucL(1,2)*YuSQUL(0,1)).imag();
1474 Cqu1_2222r_LNP = (Cqu1_00_LNP + Cqu1_d0_LNP*SQDL(1,1) + Cqu1_u0_LNP*SQUL(1,1) + Cqu1_0u_LNP*SUL(1,1) + Cqu1_du_LNP*SQDL(1,1)*SUL(1,1) + Cqu1_uu_LNP*SQUL(1,1)*SUL(1,1) + Cqu1_dy_LNP*SQDYucL(1,1)*YuL(1,1) + Cqu1_uy_LNP*SQUYucL(1,1)*YuL(1,1) + Cqu1_y_LNP*YucL(1,1)*YuL(1,1) + Cqu1_yd_LNP*YucL(1,1)*YuSQDL(1,1) + Cqu1_yu_LNP*YucL(1,1)*YuSQUL(1,1)).real();
1475 Cqu1_2223r_LNP = (Cqu1_0u_LNP*SUL(1,2) + Cqu1_du_LNP*SQDL(1,1)*SUL(1,2) + Cqu1_uu_LNP*SQUL(1,1)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(1,2)*YuL(1,1) + Cqu1_uy_LNP*SQUYucL(1,2)*YuL(1,1) + Cqu1_y_LNP*YucL(1,2)*YuL(1,1) + Cqu1_yd_LNP*YucL(1,2)*YuSQDL(1,1) + Cqu1_yu_LNP*YucL(1,2)*YuSQUL(1,1)).real();
1476 Cqu1_2223i_LNP = (Cqu1_0u_LNP*SUL(1,2) + Cqu1_du_LNP*SQDL(1,1)*SUL(1,2) + Cqu1_uu_LNP*SQUL(1,1)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(1,2)*YuL(1,1) + Cqu1_uy_LNP*SQUYucL(1,2)*YuL(1,1) + Cqu1_y_LNP*YucL(1,2)*YuL(1,1) + Cqu1_yd_LNP*YucL(1,2)*YuSQDL(1,1) + Cqu1_yu_LNP*YucL(1,2)*YuSQUL(1,1)).imag();
1477 Cqu1_2233r_LNP = (Cqu1_00_LNP + Cqu1_d0_LNP*SQDL(1,1) + Cqu1_u0_LNP*SQUL(1,1) + Cqu1_0u_LNP*SUL(2,2) + Cqu1_du_LNP*SQDL(1,1)*SUL(2,2) + Cqu1_uu_LNP*SQUL(1,1)*SUL(2,2) + Cqu1_dy_LNP*SQDYucL(1,2)*YuL(2,1) + Cqu1_uy_LNP*SQUYucL(1,2)*YuL(2,1) + Cqu1_y_LNP*YucL(1,2)*YuL(2,1) + Cqu1_yd_LNP*YucL(1,2)*YuSQDL(2,1) + Cqu1_yu_LNP*YucL(1,2)*YuSQUL(2,1)).real();
1478 Cqu1_2311r_LNP = (Cqu1_d0_LNP*SQDL(1,2) + Cqu1_u0_LNP*SQUL(1,2) + Cqu1_du_LNP*SQDL(1,2)*SUL(0,0) + Cqu1_uu_LNP*SQUL(1,2)*SUL(0,0) + Cqu1_dy_LNP*SQDYucL(1,0)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(1,0)*YuL(0,2) + Cqu1_y_LNP*YucL(1,0)*YuL(0,2) + Cqu1_yd_LNP*YucL(1,0)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(1,0)*YuSQUL(0,2)).real();
1479 Cqu1_2311i_LNP = (Cqu1_d0_LNP*SQDL(1,2) + Cqu1_u0_LNP*SQUL(1,2) + Cqu1_du_LNP*SQDL(1,2)*SUL(0,0) + Cqu1_uu_LNP*SQUL(1,2)*SUL(0,0) + Cqu1_dy_LNP*SQDYucL(1,0)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(1,0)*YuL(0,2) + Cqu1_y_LNP*YucL(1,0)*YuL(0,2) + Cqu1_yd_LNP*YucL(1,0)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(1,0)*YuSQUL(0,2)).imag();
1480 Cqu1_2312r_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(0,1) + Cqu1_uu_LNP*SQUL(1,2)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(1,1)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(1,1)*YuL(0,2) + Cqu1_y_LNP*YucL(1,1)*YuL(0,2) + Cqu1_yd_LNP*YucL(1,1)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(1,1)*YuSQUL(0,2)).real();
1481 Cqu1_2312i_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(0,1) + Cqu1_uu_LNP*SQUL(1,2)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(1,1)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(1,1)*YuL(0,2) + Cqu1_y_LNP*YucL(1,1)*YuL(0,2) + Cqu1_yd_LNP*YucL(1,1)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(1,1)*YuSQUL(0,2)).imag();
1482 Cqu1_2313r_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(0,2) + Cqu1_uu_LNP*SQUL(1,2)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(1,2)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(1,2)*YuL(0,2) + Cqu1_y_LNP*YucL(1,2)*YuL(0,2) + Cqu1_yd_LNP*YucL(1,2)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(1,2)*YuSQUL(0,2)).real();
1483 Cqu1_2313i_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(0,2) + Cqu1_uu_LNP*SQUL(1,2)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(1,2)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(1,2)*YuL(0,2) + Cqu1_y_LNP*YucL(1,2)*YuL(0,2) + Cqu1_yd_LNP*YucL(1,2)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(1,2)*YuSQUL(0,2)).imag();
1484 Cqu1_2321r_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(1,0) + Cqu1_uu_LNP*SQUL(1,2)*SUL(1,0) + Cqu1_dy_LNP*SQDYucL(1,0)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(1,0)*YuL(1,2) + Cqu1_y_LNP*YucL(1,0)*YuL(1,2) + Cqu1_yd_LNP*YucL(1,0)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(1,0)*YuSQUL(1,2)).real();
1485 Cqu1_2321i_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(1,0) + Cqu1_uu_LNP*SQUL(1,2)*SUL(1,0) + Cqu1_dy_LNP*SQDYucL(1,0)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(1,0)*YuL(1,2) + Cqu1_y_LNP*YucL(1,0)*YuL(1,2) + Cqu1_yd_LNP*YucL(1,0)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(1,0)*YuSQUL(1,2)).imag();
1486 Cqu1_2322r_LNP = (Cqu1_d0_LNP*SQDL(1,2) + Cqu1_u0_LNP*SQUL(1,2) + Cqu1_du_LNP*SQDL(1,2)*SUL(1,1) + Cqu1_uu_LNP*SQUL(1,2)*SUL(1,1) + Cqu1_dy_LNP*SQDYucL(1,1)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(1,1)*YuL(1,2) + Cqu1_y_LNP*YucL(1,1)*YuL(1,2) + Cqu1_yd_LNP*YucL(1,1)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(1,1)*YuSQUL(1,2)).real();
1487 Cqu1_2322i_LNP = (Cqu1_d0_LNP*SQDL(1,2) + Cqu1_u0_LNP*SQUL(1,2) + Cqu1_du_LNP*SQDL(1,2)*SUL(1,1) + Cqu1_uu_LNP*SQUL(1,2)*SUL(1,1) + Cqu1_dy_LNP*SQDYucL(1,1)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(1,1)*YuL(1,2) + Cqu1_y_LNP*YucL(1,1)*YuL(1,2) + Cqu1_yd_LNP*YucL(1,1)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(1,1)*YuSQUL(1,2)).imag();
1488 Cqu1_2323r_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(1,2) + Cqu1_uu_LNP*SQUL(1,2)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(1,2)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(1,2)*YuL(1,2) + Cqu1_y_LNP*YucL(1,2)*YuL(1,2) + Cqu1_yd_LNP*YucL(1,2)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(1,2)*YuSQUL(1,2)).real();
1489 Cqu1_2323i_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(1,2) + Cqu1_uu_LNP*SQUL(1,2)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(1,2)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(1,2)*YuL(1,2) + Cqu1_y_LNP*YucL(1,2)*YuL(1,2) + Cqu1_yd_LNP*YucL(1,2)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(1,2)*YuSQUL(1,2)).imag();
1490 Cqu1_2331r_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(2,0) + Cqu1_uu_LNP*SQUL(1,2)*SUL(2,0) + Cqu1_dy_LNP*SQDYucL(1,0)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(1,0)*YuL(2,2) + Cqu1_y_LNP*YucL(1,0)*YuL(2,2) + Cqu1_yd_LNP*YucL(1,0)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(1,0)*YuSQUL(2,2)).real();
1491 Cqu1_2331i_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(2,0) + Cqu1_uu_LNP*SQUL(1,2)*SUL(2,0) + Cqu1_dy_LNP*SQDYucL(1,0)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(1,0)*YuL(2,2) + Cqu1_y_LNP*YucL(1,0)*YuL(2,2) + Cqu1_yd_LNP*YucL(1,0)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(1,0)*YuSQUL(2,2)).imag();
1492 Cqu1_2332r_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(2,1) + Cqu1_uu_LNP*SQUL(1,2)*SUL(2,1) + Cqu1_dy_LNP*SQDYucL(1,1)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(1,1)*YuL(2,2) + Cqu1_y_LNP*YucL(1,1)*YuL(2,2) + Cqu1_yd_LNP*YucL(1,1)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(1,1)*YuSQUL(2,2)).real();
1493 Cqu1_2332i_LNP = (Cqu1_du_LNP*SQDL(1,2)*SUL(2,1) + Cqu1_uu_LNP*SQUL(1,2)*SUL(2,1) + Cqu1_dy_LNP*SQDYucL(1,1)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(1,1)*YuL(2,2) + Cqu1_y_LNP*YucL(1,1)*YuL(2,2) + Cqu1_yd_LNP*YucL(1,1)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(1,1)*YuSQUL(2,2)).imag();
1494 Cqu1_2333r_LNP = (Cqu1_d0_LNP*SQDL(1,2) + Cqu1_u0_LNP*SQUL(1,2) + Cqu1_du_LNP*SQDL(1,2)*SUL(2,2) + Cqu1_uu_LNP*SQUL(1,2)*SUL(2,2) + Cqu1_dy_LNP*SQDYucL(1,2)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(1,2)*YuL(2,2) + Cqu1_y_LNP*YucL(1,2)*YuL(2,2) + Cqu1_yd_LNP*YucL(1,2)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(1,2)*YuSQUL(2,2)).real();
1495 Cqu1_2333i_LNP = (Cqu1_d0_LNP*SQDL(1,2) + Cqu1_u0_LNP*SQUL(1,2) + Cqu1_du_LNP*SQDL(1,2)*SUL(2,2) + Cqu1_uu_LNP*SQUL(1,2)*SUL(2,2) + Cqu1_dy_LNP*SQDYucL(1,2)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(1,2)*YuL(2,2) + Cqu1_y_LNP*YucL(1,2)*YuL(2,2) + Cqu1_yd_LNP*YucL(1,2)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(1,2)*YuSQUL(2,2)).imag();
1496 Cqu1_3311r_LNP = (Cqu1_00_LNP + Cqu1_d0_LNP*SQDL(2,2) + Cqu1_u0_LNP*SQUL(2,2) + Cqu1_0u_LNP*SUL(0,0) + Cqu1_du_LNP*SQDL(2,2)*SUL(0,0) + Cqu1_uu_LNP*SQUL(2,2)*SUL(0,0) + Cqu1_dy_LNP*SQDYucL(2,0)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(2,0)*YuL(0,2) + Cqu1_y_LNP*YucL(2,0)*YuL(0,2) + Cqu1_yd_LNP*YucL(2,0)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(2,0)*YuSQUL(0,2)).real();
1497 Cqu1_3312r_LNP = (Cqu1_0u_LNP*SUL(0,1) + Cqu1_du_LNP*SQDL(2,2)*SUL(0,1) + Cqu1_uu_LNP*SQUL(2,2)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(2,1)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(2,1)*YuL(0,2) + Cqu1_y_LNP*YucL(2,1)*YuL(0,2) + Cqu1_yd_LNP*YucL(2,1)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(2,1)*YuSQUL(0,2)).real();
1498 Cqu1_3312i_LNP = (Cqu1_0u_LNP*SUL(0,1) + Cqu1_du_LNP*SQDL(2,2)*SUL(0,1) + Cqu1_uu_LNP*SQUL(2,2)*SUL(0,1) + Cqu1_dy_LNP*SQDYucL(2,1)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(2,1)*YuL(0,2) + Cqu1_y_LNP*YucL(2,1)*YuL(0,2) + Cqu1_yd_LNP*YucL(2,1)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(2,1)*YuSQUL(0,2)).imag();
1499 Cqu1_3313r_LNP = (Cqu1_0u_LNP*SUL(0,2) + Cqu1_du_LNP*SQDL(2,2)*SUL(0,2) + Cqu1_uu_LNP*SQUL(2,2)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(2,2)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(2,2)*YuL(0,2) + Cqu1_y_LNP*YucL(2,2)*YuL(0,2) + Cqu1_yd_LNP*YucL(2,2)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(2,2)*YuSQUL(0,2)).real();
1500 Cqu1_3313i_LNP = (Cqu1_0u_LNP*SUL(0,2) + Cqu1_du_LNP*SQDL(2,2)*SUL(0,2) + Cqu1_uu_LNP*SQUL(2,2)*SUL(0,2) + Cqu1_dy_LNP*SQDYucL(2,2)*YuL(0,2) + Cqu1_uy_LNP*SQUYucL(2,2)*YuL(0,2) + Cqu1_y_LNP*YucL(2,2)*YuL(0,2) + Cqu1_yd_LNP*YucL(2,2)*YuSQDL(0,2) + Cqu1_yu_LNP*YucL(2,2)*YuSQUL(0,2)).imag();
1501 Cqu1_3322r_LNP = (Cqu1_00_LNP + Cqu1_d0_LNP*SQDL(2,2) + Cqu1_u0_LNP*SQUL(2,2) + Cqu1_0u_LNP*SUL(1,1) + Cqu1_du_LNP*SQDL(2,2)*SUL(1,1) + Cqu1_uu_LNP*SQUL(2,2)*SUL(1,1) + Cqu1_dy_LNP*SQDYucL(2,1)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(2,1)*YuL(1,2) + Cqu1_y_LNP*YucL(2,1)*YuL(1,2) + Cqu1_yd_LNP*YucL(2,1)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(2,1)*YuSQUL(1,2)).real();
1502 Cqu1_3323r_LNP = (Cqu1_0u_LNP*SUL(1,2) + Cqu1_du_LNP*SQDL(2,2)*SUL(1,2) + Cqu1_uu_LNP*SQUL(2,2)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(2,2)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(2,2)*YuL(1,2) + Cqu1_y_LNP*YucL(2,2)*YuL(1,2) + Cqu1_yd_LNP*YucL(2,2)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(2,2)*YuSQUL(1,2)).real();
1503 Cqu1_3323i_LNP = (Cqu1_0u_LNP*SUL(1,2) + Cqu1_du_LNP*SQDL(2,2)*SUL(1,2) + Cqu1_uu_LNP*SQUL(2,2)*SUL(1,2) + Cqu1_dy_LNP*SQDYucL(2,2)*YuL(1,2) + Cqu1_uy_LNP*SQUYucL(2,2)*YuL(1,2) + Cqu1_y_LNP*YucL(2,2)*YuL(1,2) + Cqu1_yd_LNP*YucL(2,2)*YuSQDL(1,2) + Cqu1_yu_LNP*YucL(2,2)*YuSQUL(1,2)).imag();
1504 Cqu1_3333r_LNP = (Cqu1_00_LNP + Cqu1_d0_LNP*SQDL(2,2) + Cqu1_u0_LNP*SQUL(2,2) + Cqu1_0u_LNP*SUL(2,2) + Cqu1_du_LNP*SQDL(2,2)*SUL(2,2) + Cqu1_uu_LNP*SQUL(2,2)*SUL(2,2) + Cqu1_dy_LNP*SQDYucL(2,2)*YuL(2,2) + Cqu1_uy_LNP*SQUYucL(2,2)*YuL(2,2) + Cqu1_y_LNP*YucL(2,2)*YuL(2,2) + Cqu1_yd_LNP*YucL(2,2)*YuSQDL(2,2) + Cqu1_yu_LNP*YucL(2,2)*YuSQUL(2,2)).real();
1505
1506 Cqu8_1111r_LNP = (Cqu8_00_LNP + Cqu8_d0_LNP*SQDL(0,0) + Cqu8_u0_LNP*SQUL(0,0) + Cqu8_0u_LNP*SUL(0,0) + Cqu8_du_LNP*SQDL(0,0)*SUL(0,0) + Cqu8_uu_LNP*SQUL(0,0)*SUL(0,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(0,0) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(0,0) + Cqu8_y_LNP*YucL(0,0)*YuL(0,0) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(0,0) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(0,0)).real();
1507 Cqu8_1112r_LNP = (Cqu8_0u_LNP*SUL(0,1) + Cqu8_du_LNP*SQDL(0,0)*SUL(0,1) + Cqu8_uu_LNP*SQUL(0,0)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(0,0) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(0,0) + Cqu8_y_LNP*YucL(0,1)*YuL(0,0) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(0,0) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(0,0)).real();
1508 Cqu8_1112i_LNP = (Cqu8_0u_LNP*SUL(0,1) + Cqu8_du_LNP*SQDL(0,0)*SUL(0,1) + Cqu8_uu_LNP*SQUL(0,0)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(0,0) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(0,0) + Cqu8_y_LNP*YucL(0,1)*YuL(0,0) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(0,0) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(0,0)).imag();
1509 Cqu8_1113r_LNP = (Cqu8_0u_LNP*SUL(0,2) + Cqu8_du_LNP*SQDL(0,0)*SUL(0,2) + Cqu8_uu_LNP*SQUL(0,0)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(0,0) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(0,0) + Cqu8_y_LNP*YucL(0,2)*YuL(0,0) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(0,0) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(0,0)).real();
1510 Cqu8_1113i_LNP = (Cqu8_0u_LNP*SUL(0,2) + Cqu8_du_LNP*SQDL(0,0)*SUL(0,2) + Cqu8_uu_LNP*SQUL(0,0)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(0,0) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(0,0) + Cqu8_y_LNP*YucL(0,2)*YuL(0,0) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(0,0) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(0,0)).imag();
1511 Cqu8_1122r_LNP = (Cqu8_00_LNP + Cqu8_d0_LNP*SQDL(0,0) + Cqu8_u0_LNP*SQUL(0,0) + Cqu8_0u_LNP*SUL(1,1) + Cqu8_du_LNP*SQDL(0,0)*SUL(1,1) + Cqu8_uu_LNP*SQUL(0,0)*SUL(1,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(1,0) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(1,0) + Cqu8_y_LNP*YucL(0,1)*YuL(1,0) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(1,0) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(1,0)).real();
1512 Cqu8_1123r_LNP = (Cqu8_0u_LNP*SUL(1,2) + Cqu8_du_LNP*SQDL(0,0)*SUL(1,2) + Cqu8_uu_LNP*SQUL(0,0)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(1,0) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(1,0) + Cqu8_y_LNP*YucL(0,2)*YuL(1,0) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(1,0) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(1,0)).real();
1513 Cqu8_1123i_LNP = (Cqu8_0u_LNP*SUL(1,2) + Cqu8_du_LNP*SQDL(0,0)*SUL(1,2) + Cqu8_uu_LNP*SQUL(0,0)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(1,0) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(1,0) + Cqu8_y_LNP*YucL(0,2)*YuL(1,0) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(1,0) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(1,0)).imag();
1514 Cqu8_1133r_LNP = (Cqu8_00_LNP + Cqu8_d0_LNP*SQDL(0,0) + Cqu8_u0_LNP*SQUL(0,0) + Cqu8_0u_LNP*SUL(2,2) + Cqu8_du_LNP*SQDL(0,0)*SUL(2,2) + Cqu8_uu_LNP*SQUL(0,0)*SUL(2,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(2,0) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(2,0) + Cqu8_y_LNP*YucL(0,2)*YuL(2,0) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(2,0) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(2,0)).real();
1515 Cqu8_1211r_LNP = (Cqu8_d0_LNP*SQDL(0,1) + Cqu8_u0_LNP*SQUL(0,1) + Cqu8_du_LNP*SQDL(0,1)*SUL(0,0) + Cqu8_uu_LNP*SQUL(0,1)*SUL(0,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(0,1) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(0,1) + Cqu8_y_LNP*YucL(0,0)*YuL(0,1) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(0,1) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(0,1)).real();
1516 Cqu8_1211i_LNP = (Cqu8_d0_LNP*SQDL(0,1) + Cqu8_u0_LNP*SQUL(0,1) + Cqu8_du_LNP*SQDL(0,1)*SUL(0,0) + Cqu8_uu_LNP*SQUL(0,1)*SUL(0,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(0,1) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(0,1) + Cqu8_y_LNP*YucL(0,0)*YuL(0,1) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(0,1) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(0,1)).imag();
1517 Cqu8_1212r_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(0,1) + Cqu8_uu_LNP*SQUL(0,1)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(0,1) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(0,1) + Cqu8_y_LNP*YucL(0,1)*YuL(0,1) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(0,1) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(0,1)).real();
1518 Cqu8_1212i_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(0,1) + Cqu8_uu_LNP*SQUL(0,1)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(0,1) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(0,1) + Cqu8_y_LNP*YucL(0,1)*YuL(0,1) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(0,1) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(0,1)).imag();
1519 Cqu8_1213r_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(0,2) + Cqu8_uu_LNP*SQUL(0,1)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(0,1) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(0,1) + Cqu8_y_LNP*YucL(0,2)*YuL(0,1) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(0,1) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(0,1)).real();
1520 Cqu8_1213i_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(0,2) + Cqu8_uu_LNP*SQUL(0,1)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(0,1) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(0,1) + Cqu8_y_LNP*YucL(0,2)*YuL(0,1) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(0,1) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(0,1)).imag();
1521 Cqu8_1221r_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(1,0) + Cqu8_uu_LNP*SQUL(0,1)*SUL(1,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(1,1) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(1,1) + Cqu8_y_LNP*YucL(0,0)*YuL(1,1) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(1,1) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(1,1)).real();
1522 Cqu8_1221i_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(1,0) + Cqu8_uu_LNP*SQUL(0,1)*SUL(1,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(1,1) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(1,1) + Cqu8_y_LNP*YucL(0,0)*YuL(1,1) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(1,1) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(1,1)).imag();
1523 Cqu8_1222r_LNP = (Cqu8_d0_LNP*SQDL(0,1) + Cqu8_u0_LNP*SQUL(0,1) + Cqu8_du_LNP*SQDL(0,1)*SUL(1,1) + Cqu8_uu_LNP*SQUL(0,1)*SUL(1,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(1,1) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(1,1) + Cqu8_y_LNP*YucL(0,1)*YuL(1,1) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(1,1) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(1,1)).real();
1524 Cqu8_1222i_LNP = (Cqu8_d0_LNP*SQDL(0,1) + Cqu8_u0_LNP*SQUL(0,1) + Cqu8_du_LNP*SQDL(0,1)*SUL(1,1) + Cqu8_uu_LNP*SQUL(0,1)*SUL(1,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(1,1) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(1,1) + Cqu8_y_LNP*YucL(0,1)*YuL(1,1) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(1,1) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(1,1)).imag();
1525 Cqu8_1223r_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(1,2) + Cqu8_uu_LNP*SQUL(0,1)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(1,1) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(1,1) + Cqu8_y_LNP*YucL(0,2)*YuL(1,1) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(1,1) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(1,1)).real();
1526 Cqu8_1223i_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(1,2) + Cqu8_uu_LNP*SQUL(0,1)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(1,1) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(1,1) + Cqu8_y_LNP*YucL(0,2)*YuL(1,1) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(1,1) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(1,1)).imag();
1527 Cqu8_1231r_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(2,0) + Cqu8_uu_LNP*SQUL(0,1)*SUL(2,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(2,1) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(2,1) + Cqu8_y_LNP*YucL(0,0)*YuL(2,1) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(2,1) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(2,1)).real();
1528 Cqu8_1231i_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(2,0) + Cqu8_uu_LNP*SQUL(0,1)*SUL(2,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(2,1) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(2,1) + Cqu8_y_LNP*YucL(0,0)*YuL(2,1) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(2,1) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(2,1)).imag();
1529 Cqu8_1232r_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(2,1) + Cqu8_uu_LNP*SQUL(0,1)*SUL(2,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(2,1) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(2,1) + Cqu8_y_LNP*YucL(0,1)*YuL(2,1) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(2,1) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(2,1)).real();
1530 Cqu8_1232i_LNP = (Cqu8_du_LNP*SQDL(0,1)*SUL(2,1) + Cqu8_uu_LNP*SQUL(0,1)*SUL(2,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(2,1) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(2,1) + Cqu8_y_LNP*YucL(0,1)*YuL(2,1) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(2,1) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(2,1)).imag();
1531 Cqu8_1233r_LNP = (Cqu8_d0_LNP*SQDL(0,1) + Cqu8_u0_LNP*SQUL(0,1) + Cqu8_du_LNP*SQDL(0,1)*SUL(2,2) + Cqu8_uu_LNP*SQUL(0,1)*SUL(2,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(2,1) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(2,1) + Cqu8_y_LNP*YucL(0,2)*YuL(2,1) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(2,1) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(2,1)).real();
1532 Cqu8_1233i_LNP = (Cqu8_d0_LNP*SQDL(0,1) + Cqu8_u0_LNP*SQUL(0,1) + Cqu8_du_LNP*SQDL(0,1)*SUL(2,2) + Cqu8_uu_LNP*SQUL(0,1)*SUL(2,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(2,1) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(2,1) + Cqu8_y_LNP*YucL(0,2)*YuL(2,1) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(2,1) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(2,1)).imag();
1533 Cqu8_1311r_LNP = (Cqu8_d0_LNP*SQDL(0,2) + Cqu8_u0_LNP*SQUL(0,2) + Cqu8_du_LNP*SQDL(0,2)*SUL(0,0) + Cqu8_uu_LNP*SQUL(0,2)*SUL(0,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(0,2) + Cqu8_y_LNP*YucL(0,0)*YuL(0,2) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(0,2)).real();
1534 Cqu8_1311i_LNP = (Cqu8_d0_LNP*SQDL(0,2) + Cqu8_u0_LNP*SQUL(0,2) + Cqu8_du_LNP*SQDL(0,2)*SUL(0,0) + Cqu8_uu_LNP*SQUL(0,2)*SUL(0,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(0,2) + Cqu8_y_LNP*YucL(0,0)*YuL(0,2) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(0,2)).imag();
1535 Cqu8_1312r_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(0,1) + Cqu8_uu_LNP*SQUL(0,2)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(0,2) + Cqu8_y_LNP*YucL(0,1)*YuL(0,2) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(0,2)).real();
1536 Cqu8_1312i_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(0,1) + Cqu8_uu_LNP*SQUL(0,2)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(0,2) + Cqu8_y_LNP*YucL(0,1)*YuL(0,2) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(0,2)).imag();
1537 Cqu8_1313r_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(0,2) + Cqu8_uu_LNP*SQUL(0,2)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(0,2) + Cqu8_y_LNP*YucL(0,2)*YuL(0,2) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(0,2)).real();
1538 Cqu8_1313i_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(0,2) + Cqu8_uu_LNP*SQUL(0,2)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(0,2) + Cqu8_y_LNP*YucL(0,2)*YuL(0,2) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(0,2)).imag();
1539 Cqu8_1321r_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(1,0) + Cqu8_uu_LNP*SQUL(0,2)*SUL(1,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(1,2) + Cqu8_y_LNP*YucL(0,0)*YuL(1,2) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(1,2)).real();
1540 Cqu8_1321i_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(1,0) + Cqu8_uu_LNP*SQUL(0,2)*SUL(1,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(1,2) + Cqu8_y_LNP*YucL(0,0)*YuL(1,2) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(1,2)).imag();
1541 Cqu8_1322r_LNP = (Cqu8_d0_LNP*SQDL(0,2) + Cqu8_u0_LNP*SQUL(0,2) + Cqu8_du_LNP*SQDL(0,2)*SUL(1,1) + Cqu8_uu_LNP*SQUL(0,2)*SUL(1,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(1,2) + Cqu8_y_LNP*YucL(0,1)*YuL(1,2) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(1,2)).real();
1542 Cqu8_1322i_LNP = (Cqu8_d0_LNP*SQDL(0,2) + Cqu8_u0_LNP*SQUL(0,2) + Cqu8_du_LNP*SQDL(0,2)*SUL(1,1) + Cqu8_uu_LNP*SQUL(0,2)*SUL(1,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(1,2) + Cqu8_y_LNP*YucL(0,1)*YuL(1,2) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(1,2)).imag();
1543 Cqu8_1323r_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(1,2) + Cqu8_uu_LNP*SQUL(0,2)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(1,2) + Cqu8_y_LNP*YucL(0,2)*YuL(1,2) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(1,2)).real();
1544 Cqu8_1323i_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(1,2) + Cqu8_uu_LNP*SQUL(0,2)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(1,2) + Cqu8_y_LNP*YucL(0,2)*YuL(1,2) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(1,2)).imag();
1545 Cqu8_1331r_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(2,0) + Cqu8_uu_LNP*SQUL(0,2)*SUL(2,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(2,2) + Cqu8_y_LNP*YucL(0,0)*YuL(2,2) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(2,2)).real();
1546 Cqu8_1331i_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(2,0) + Cqu8_uu_LNP*SQUL(0,2)*SUL(2,0) + Cqu8_dy_LNP*SQDYucL(0,0)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(0,0)*YuL(2,2) + Cqu8_y_LNP*YucL(0,0)*YuL(2,2) + Cqu8_yd_LNP*YucL(0,0)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(0,0)*YuSQUL(2,2)).imag();
1547 Cqu8_1332r_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(2,1) + Cqu8_uu_LNP*SQUL(0,2)*SUL(2,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(2,2) + Cqu8_y_LNP*YucL(0,1)*YuL(2,2) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(2,2)).real();
1548 Cqu8_1332i_LNP = (Cqu8_du_LNP*SQDL(0,2)*SUL(2,1) + Cqu8_uu_LNP*SQUL(0,2)*SUL(2,1) + Cqu8_dy_LNP*SQDYucL(0,1)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(0,1)*YuL(2,2) + Cqu8_y_LNP*YucL(0,1)*YuL(2,2) + Cqu8_yd_LNP*YucL(0,1)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(0,1)*YuSQUL(2,2)).imag();
1549 Cqu8_1333r_LNP = (Cqu8_d0_LNP*SQDL(0,2) + Cqu8_u0_LNP*SQUL(0,2) + Cqu8_du_LNP*SQDL(0,2)*SUL(2,2) + Cqu8_uu_LNP*SQUL(0,2)*SUL(2,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(2,2) + Cqu8_y_LNP*YucL(0,2)*YuL(2,2) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(2,2)).real();
1550 Cqu8_1333i_LNP = (Cqu8_d0_LNP*SQDL(0,2) + Cqu8_u0_LNP*SQUL(0,2) + Cqu8_du_LNP*SQDL(0,2)*SUL(2,2) + Cqu8_uu_LNP*SQUL(0,2)*SUL(2,2) + Cqu8_dy_LNP*SQDYucL(0,2)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(0,2)*YuL(2,2) + Cqu8_y_LNP*YucL(0,2)*YuL(2,2) + Cqu8_yd_LNP*YucL(0,2)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(0,2)*YuSQUL(2,2)).imag();
1551 Cqu8_2211r_LNP = (Cqu8_00_LNP + Cqu8_d0_LNP*SQDL(1,1) + Cqu8_u0_LNP*SQUL(1,1) + Cqu8_0u_LNP*SUL(0,0) + Cqu8_du_LNP*SQDL(1,1)*SUL(0,0) + Cqu8_uu_LNP*SQUL(1,1)*SUL(0,0) + Cqu8_dy_LNP*SQDYucL(1,0)*YuL(0,1) + Cqu8_uy_LNP*SQUYucL(1,0)*YuL(0,1) + Cqu8_y_LNP*YucL(1,0)*YuL(0,1) + Cqu8_yd_LNP*YucL(1,0)*YuSQDL(0,1) + Cqu8_yu_LNP*YucL(1,0)*YuSQUL(0,1)).real();
1552 Cqu8_2212r_LNP = (Cqu8_0u_LNP*SUL(0,1) + Cqu8_du_LNP*SQDL(1,1)*SUL(0,1) + Cqu8_uu_LNP*SQUL(1,1)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(1,1)*YuL(0,1) + Cqu8_uy_LNP*SQUYucL(1,1)*YuL(0,1) + Cqu8_y_LNP*YucL(1,1)*YuL(0,1) + Cqu8_yd_LNP*YucL(1,1)*YuSQDL(0,1) + Cqu8_yu_LNP*YucL(1,1)*YuSQUL(0,1)).real();
1553 Cqu8_2212i_LNP = (Cqu8_0u_LNP*SUL(0,1) + Cqu8_du_LNP*SQDL(1,1)*SUL(0,1) + Cqu8_uu_LNP*SQUL(1,1)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(1,1)*YuL(0,1) + Cqu8_uy_LNP*SQUYucL(1,1)*YuL(0,1) + Cqu8_y_LNP*YucL(1,1)*YuL(0,1) + Cqu8_yd_LNP*YucL(1,1)*YuSQDL(0,1) + Cqu8_yu_LNP*YucL(1,1)*YuSQUL(0,1)).imag();
1554 Cqu8_2213r_LNP = (Cqu8_0u_LNP*SUL(0,2) + Cqu8_du_LNP*SQDL(1,1)*SUL(0,2) + Cqu8_uu_LNP*SQUL(1,1)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(1,2)*YuL(0,1) + Cqu8_uy_LNP*SQUYucL(1,2)*YuL(0,1) + Cqu8_y_LNP*YucL(1,2)*YuL(0,1) + Cqu8_yd_LNP*YucL(1,2)*YuSQDL(0,1) + Cqu8_yu_LNP*YucL(1,2)*YuSQUL(0,1)).real();
1555 Cqu8_2213i_LNP = (Cqu8_0u_LNP*SUL(0,2) + Cqu8_du_LNP*SQDL(1,1)*SUL(0,2) + Cqu8_uu_LNP*SQUL(1,1)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(1,2)*YuL(0,1) + Cqu8_uy_LNP*SQUYucL(1,2)*YuL(0,1) + Cqu8_y_LNP*YucL(1,2)*YuL(0,1) + Cqu8_yd_LNP*YucL(1,2)*YuSQDL(0,1) + Cqu8_yu_LNP*YucL(1,2)*YuSQUL(0,1)).imag();
1556 Cqu8_2222r_LNP = (Cqu8_00_LNP + Cqu8_d0_LNP*SQDL(1,1) + Cqu8_u0_LNP*SQUL(1,1) + Cqu8_0u_LNP*SUL(1,1) + Cqu8_du_LNP*SQDL(1,1)*SUL(1,1) + Cqu8_uu_LNP*SQUL(1,1)*SUL(1,1) + Cqu8_dy_LNP*SQDYucL(1,1)*YuL(1,1) + Cqu8_uy_LNP*SQUYucL(1,1)*YuL(1,1) + Cqu8_y_LNP*YucL(1,1)*YuL(1,1) + Cqu8_yd_LNP*YucL(1,1)*YuSQDL(1,1) + Cqu8_yu_LNP*YucL(1,1)*YuSQUL(1,1)).real();
1557 Cqu8_2223r_LNP = (Cqu8_0u_LNP*SUL(1,2) + Cqu8_du_LNP*SQDL(1,1)*SUL(1,2) + Cqu8_uu_LNP*SQUL(1,1)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(1,2)*YuL(1,1) + Cqu8_uy_LNP*SQUYucL(1,2)*YuL(1,1) + Cqu8_y_LNP*YucL(1,2)*YuL(1,1) + Cqu8_yd_LNP*YucL(1,2)*YuSQDL(1,1) + Cqu8_yu_LNP*YucL(1,2)*YuSQUL(1,1)).real();
1558 Cqu8_2223i_LNP = (Cqu8_0u_LNP*SUL(1,2) + Cqu8_du_LNP*SQDL(1,1)*SUL(1,2) + Cqu8_uu_LNP*SQUL(1,1)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(1,2)*YuL(1,1) + Cqu8_uy_LNP*SQUYucL(1,2)*YuL(1,1) + Cqu8_y_LNP*YucL(1,2)*YuL(1,1) + Cqu8_yd_LNP*YucL(1,2)*YuSQDL(1,1) + Cqu8_yu_LNP*YucL(1,2)*YuSQUL(1,1)).imag();
1559 Cqu8_2233r_LNP = (Cqu8_00_LNP + Cqu8_d0_LNP*SQDL(1,1) + Cqu8_u0_LNP*SQUL(1,1) + Cqu8_0u_LNP*SUL(2,2) + Cqu8_du_LNP*SQDL(1,1)*SUL(2,2) + Cqu8_uu_LNP*SQUL(1,1)*SUL(2,2) + Cqu8_dy_LNP*SQDYucL(1,2)*YuL(2,1) + Cqu8_uy_LNP*SQUYucL(1,2)*YuL(2,1) + Cqu8_y_LNP*YucL(1,2)*YuL(2,1) + Cqu8_yd_LNP*YucL(1,2)*YuSQDL(2,1) + Cqu8_yu_LNP*YucL(1,2)*YuSQUL(2,1)).real();
1560 Cqu8_2311r_LNP = (Cqu8_d0_LNP*SQDL(1,2) + Cqu8_u0_LNP*SQUL(1,2) + Cqu8_du_LNP*SQDL(1,2)*SUL(0,0) + Cqu8_uu_LNP*SQUL(1,2)*SUL(0,0) + Cqu8_dy_LNP*SQDYucL(1,0)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(1,0)*YuL(0,2) + Cqu8_y_LNP*YucL(1,0)*YuL(0,2) + Cqu8_yd_LNP*YucL(1,0)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(1,0)*YuSQUL(0,2)).real();
1561 Cqu8_2311i_LNP = (Cqu8_d0_LNP*SQDL(1,2) + Cqu8_u0_LNP*SQUL(1,2) + Cqu8_du_LNP*SQDL(1,2)*SUL(0,0) + Cqu8_uu_LNP*SQUL(1,2)*SUL(0,0) + Cqu8_dy_LNP*SQDYucL(1,0)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(1,0)*YuL(0,2) + Cqu8_y_LNP*YucL(1,0)*YuL(0,2) + Cqu8_yd_LNP*YucL(1,0)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(1,0)*YuSQUL(0,2)).imag();
1562 Cqu8_2312r_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(0,1) + Cqu8_uu_LNP*SQUL(1,2)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(1,1)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(1,1)*YuL(0,2) + Cqu8_y_LNP*YucL(1,1)*YuL(0,2) + Cqu8_yd_LNP*YucL(1,1)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(1,1)*YuSQUL(0,2)).real();
1563 Cqu8_2312i_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(0,1) + Cqu8_uu_LNP*SQUL(1,2)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(1,1)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(1,1)*YuL(0,2) + Cqu8_y_LNP*YucL(1,1)*YuL(0,2) + Cqu8_yd_LNP*YucL(1,1)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(1,1)*YuSQUL(0,2)).imag();
1564 Cqu8_2313r_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(0,2) + Cqu8_uu_LNP*SQUL(1,2)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(1,2)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(1,2)*YuL(0,2) + Cqu8_y_LNP*YucL(1,2)*YuL(0,2) + Cqu8_yd_LNP*YucL(1,2)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(1,2)*YuSQUL(0,2)).real();
1565 Cqu8_2313i_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(0,2) + Cqu8_uu_LNP*SQUL(1,2)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(1,2)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(1,2)*YuL(0,2) + Cqu8_y_LNP*YucL(1,2)*YuL(0,2) + Cqu8_yd_LNP*YucL(1,2)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(1,2)*YuSQUL(0,2)).imag();
1566 Cqu8_2321r_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(1,0) + Cqu8_uu_LNP*SQUL(1,2)*SUL(1,0) + Cqu8_dy_LNP*SQDYucL(1,0)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(1,0)*YuL(1,2) + Cqu8_y_LNP*YucL(1,0)*YuL(1,2) + Cqu8_yd_LNP*YucL(1,0)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(1,0)*YuSQUL(1,2)).real();
1567 Cqu8_2321i_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(1,0) + Cqu8_uu_LNP*SQUL(1,2)*SUL(1,0) + Cqu8_dy_LNP*SQDYucL(1,0)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(1,0)*YuL(1,2) + Cqu8_y_LNP*YucL(1,0)*YuL(1,2) + Cqu8_yd_LNP*YucL(1,0)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(1,0)*YuSQUL(1,2)).imag();
1568 Cqu8_2322r_LNP = (Cqu8_d0_LNP*SQDL(1,2) + Cqu8_u0_LNP*SQUL(1,2) + Cqu8_du_LNP*SQDL(1,2)*SUL(1,1) + Cqu8_uu_LNP*SQUL(1,2)*SUL(1,1) + Cqu8_dy_LNP*SQDYucL(1,1)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(1,1)*YuL(1,2) + Cqu8_y_LNP*YucL(1,1)*YuL(1,2) + Cqu8_yd_LNP*YucL(1,1)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(1,1)*YuSQUL(1,2)).real();
1569 Cqu8_2322i_LNP = (Cqu8_d0_LNP*SQDL(1,2) + Cqu8_u0_LNP*SQUL(1,2) + Cqu8_du_LNP*SQDL(1,2)*SUL(1,1) + Cqu8_uu_LNP*SQUL(1,2)*SUL(1,1) + Cqu8_dy_LNP*SQDYucL(1,1)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(1,1)*YuL(1,2) + Cqu8_y_LNP*YucL(1,1)*YuL(1,2) + Cqu8_yd_LNP*YucL(1,1)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(1,1)*YuSQUL(1,2)).imag();
1570 Cqu8_2323r_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(1,2) + Cqu8_uu_LNP*SQUL(1,2)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(1,2)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(1,2)*YuL(1,2) + Cqu8_y_LNP*YucL(1,2)*YuL(1,2) + Cqu8_yd_LNP*YucL(1,2)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(1,2)*YuSQUL(1,2)).real();
1571 Cqu8_2323i_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(1,2) + Cqu8_uu_LNP*SQUL(1,2)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(1,2)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(1,2)*YuL(1,2) + Cqu8_y_LNP*YucL(1,2)*YuL(1,2) + Cqu8_yd_LNP*YucL(1,2)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(1,2)*YuSQUL(1,2)).imag();
1572 Cqu8_2331r_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(2,0) + Cqu8_uu_LNP*SQUL(1,2)*SUL(2,0) + Cqu8_dy_LNP*SQDYucL(1,0)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(1,0)*YuL(2,2) + Cqu8_y_LNP*YucL(1,0)*YuL(2,2) + Cqu8_yd_LNP*YucL(1,0)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(1,0)*YuSQUL(2,2)).real();
1573 Cqu8_2331i_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(2,0) + Cqu8_uu_LNP*SQUL(1,2)*SUL(2,0) + Cqu8_dy_LNP*SQDYucL(1,0)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(1,0)*YuL(2,2) + Cqu8_y_LNP*YucL(1,0)*YuL(2,2) + Cqu8_yd_LNP*YucL(1,0)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(1,0)*YuSQUL(2,2)).imag();
1574 Cqu8_2332r_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(2,1) + Cqu8_uu_LNP*SQUL(1,2)*SUL(2,1) + Cqu8_dy_LNP*SQDYucL(1,1)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(1,1)*YuL(2,2) + Cqu8_y_LNP*YucL(1,1)*YuL(2,2) + Cqu8_yd_LNP*YucL(1,1)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(1,1)*YuSQUL(2,2)).real();
1575 Cqu8_2332i_LNP = (Cqu8_du_LNP*SQDL(1,2)*SUL(2,1) + Cqu8_uu_LNP*SQUL(1,2)*SUL(2,1) + Cqu8_dy_LNP*SQDYucL(1,1)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(1,1)*YuL(2,2) + Cqu8_y_LNP*YucL(1,1)*YuL(2,2) + Cqu8_yd_LNP*YucL(1,1)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(1,1)*YuSQUL(2,2)).imag();
1576 Cqu8_2333r_LNP = (Cqu8_d0_LNP*SQDL(1,2) + Cqu8_u0_LNP*SQUL(1,2) + Cqu8_du_LNP*SQDL(1,2)*SUL(2,2) + Cqu8_uu_LNP*SQUL(1,2)*SUL(2,2) + Cqu8_dy_LNP*SQDYucL(1,2)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(1,2)*YuL(2,2) + Cqu8_y_LNP*YucL(1,2)*YuL(2,2) + Cqu8_yd_LNP*YucL(1,2)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(1,2)*YuSQUL(2,2)).real();
1577 Cqu8_2333i_LNP = (Cqu8_d0_LNP*SQDL(1,2) + Cqu8_u0_LNP*SQUL(1,2) + Cqu8_du_LNP*SQDL(1,2)*SUL(2,2) + Cqu8_uu_LNP*SQUL(1,2)*SUL(2,2) + Cqu8_dy_LNP*SQDYucL(1,2)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(1,2)*YuL(2,2) + Cqu8_y_LNP*YucL(1,2)*YuL(2,2) + Cqu8_yd_LNP*YucL(1,2)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(1,2)*YuSQUL(2,2)).imag();
1578 Cqu8_3311r_LNP = (Cqu8_00_LNP + Cqu8_d0_LNP*SQDL(2,2) + Cqu8_u0_LNP*SQUL(2,2) + Cqu8_0u_LNP*SUL(0,0) + Cqu8_du_LNP*SQDL(2,2)*SUL(0,0) + Cqu8_uu_LNP*SQUL(2,2)*SUL(0,0) + Cqu8_dy_LNP*SQDYucL(2,0)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(2,0)*YuL(0,2) + Cqu8_y_LNP*YucL(2,0)*YuL(0,2) + Cqu8_yd_LNP*YucL(2,0)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(2,0)*YuSQUL(0,2)).real();
1579 Cqu8_3312r_LNP = (Cqu8_0u_LNP*SUL(0,1) + Cqu8_du_LNP*SQDL(2,2)*SUL(0,1) + Cqu8_uu_LNP*SQUL(2,2)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(2,1)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(2,1)*YuL(0,2) + Cqu8_y_LNP*YucL(2,1)*YuL(0,2) + Cqu8_yd_LNP*YucL(2,1)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(2,1)*YuSQUL(0,2)).real();
1580 Cqu8_3312i_LNP = (Cqu8_0u_LNP*SUL(0,1) + Cqu8_du_LNP*SQDL(2,2)*SUL(0,1) + Cqu8_uu_LNP*SQUL(2,2)*SUL(0,1) + Cqu8_dy_LNP*SQDYucL(2,1)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(2,1)*YuL(0,2) + Cqu8_y_LNP*YucL(2,1)*YuL(0,2) + Cqu8_yd_LNP*YucL(2,1)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(2,1)*YuSQUL(0,2)).imag();
1581 Cqu8_3313r_LNP = (Cqu8_0u_LNP*SUL(0,2) + Cqu8_du_LNP*SQDL(2,2)*SUL(0,2) + Cqu8_uu_LNP*SQUL(2,2)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(2,2)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(2,2)*YuL(0,2) + Cqu8_y_LNP*YucL(2,2)*YuL(0,2) + Cqu8_yd_LNP*YucL(2,2)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(2,2)*YuSQUL(0,2)).real();
1582 Cqu8_3313i_LNP = (Cqu8_0u_LNP*SUL(0,2) + Cqu8_du_LNP*SQDL(2,2)*SUL(0,2) + Cqu8_uu_LNP*SQUL(2,2)*SUL(0,2) + Cqu8_dy_LNP*SQDYucL(2,2)*YuL(0,2) + Cqu8_uy_LNP*SQUYucL(2,2)*YuL(0,2) + Cqu8_y_LNP*YucL(2,2)*YuL(0,2) + Cqu8_yd_LNP*YucL(2,2)*YuSQDL(0,2) + Cqu8_yu_LNP*YucL(2,2)*YuSQUL(0,2)).imag();
1583 Cqu8_3322r_LNP = (Cqu8_00_LNP + Cqu8_d0_LNP*SQDL(2,2) + Cqu8_u0_LNP*SQUL(2,2) + Cqu8_0u_LNP*SUL(1,1) + Cqu8_du_LNP*SQDL(2,2)*SUL(1,1) + Cqu8_uu_LNP*SQUL(2,2)*SUL(1,1) + Cqu8_dy_LNP*SQDYucL(2,1)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(2,1)*YuL(1,2) + Cqu8_y_LNP*YucL(2,1)*YuL(1,2) + Cqu8_yd_LNP*YucL(2,1)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(2,1)*YuSQUL(1,2)).real();
1584 Cqu8_3323r_LNP = (Cqu8_0u_LNP*SUL(1,2) + Cqu8_du_LNP*SQDL(2,2)*SUL(1,2) + Cqu8_uu_LNP*SQUL(2,2)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(2,2)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(2,2)*YuL(1,2) + Cqu8_y_LNP*YucL(2,2)*YuL(1,2) + Cqu8_yd_LNP*YucL(2,2)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(2,2)*YuSQUL(1,2)).real();
1585 Cqu8_3323i_LNP = (Cqu8_0u_LNP*SUL(1,2) + Cqu8_du_LNP*SQDL(2,2)*SUL(1,2) + Cqu8_uu_LNP*SQUL(2,2)*SUL(1,2) + Cqu8_dy_LNP*SQDYucL(2,2)*YuL(1,2) + Cqu8_uy_LNP*SQUYucL(2,2)*YuL(1,2) + Cqu8_y_LNP*YucL(2,2)*YuL(1,2) + Cqu8_yd_LNP*YucL(2,2)*YuSQDL(1,2) + Cqu8_yu_LNP*YucL(2,2)*YuSQUL(1,2)).imag();
1586 Cqu8_3333r_LNP = (Cqu8_00_LNP + Cqu8_d0_LNP*SQDL(2,2) + Cqu8_u0_LNP*SQUL(2,2) + Cqu8_0u_LNP*SUL(2,2) + Cqu8_du_LNP*SQDL(2,2)*SUL(2,2) + Cqu8_uu_LNP*SQUL(2,2)*SUL(2,2) + Cqu8_dy_LNP*SQDYucL(2,2)*YuL(2,2) + Cqu8_uy_LNP*SQUYucL(2,2)*YuL(2,2) + Cqu8_y_LNP*YucL(2,2)*YuL(2,2) + Cqu8_yd_LNP*YucL(2,2)*YuSQDL(2,2) + Cqu8_yu_LNP*YucL(2,2)*YuSQUL(2,2)).real();
1587
1588 Cqd1_1111r_LNP = (Cqd1_00_LNP + Cqd1_0d_LNP*SDL(0,0) + Cqd1_d0_LNP*SQDL(0,0) + Cqd1_dd_LNP*SDL(0,0)*SQDL(0,0) + Cqd1_u0_LNP*SQUL(0,0) + Cqd1_ud_LNP*SDL(0,0)*SQUL(0,0) + Cqd1_yd_LNP*SQDYdcL(0,0)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(0,0) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(0,0) + Cqd1_y_LNP*YdcL(0,0)*YdL(0,0) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(0,0)).real();
1589 Cqd1_1112r_LNP = (Cqd1_0d_LNP*SDL(0,1) + Cqd1_dd_LNP*SDL(0,1)*SQDL(0,0) + Cqd1_ud_LNP*SDL(0,1)*SQUL(0,0) + Cqd1_yd_LNP*SQDYdcL(0,0)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(0,0) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(0,0) + Cqd1_y_LNP*YdcL(0,1)*YdL(0,0) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(0,0)).real();
1590 Cqd1_1112i_LNP = (Cqd1_0d_LNP*SDL(0,1) + Cqd1_dd_LNP*SDL(0,1)*SQDL(0,0) + Cqd1_ud_LNP*SDL(0,1)*SQUL(0,0) + Cqd1_yd_LNP*SQDYdcL(0,0)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(0,0) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(0,0) + Cqd1_y_LNP*YdcL(0,1)*YdL(0,0) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(0,0)).imag();
1591 Cqd1_1113r_LNP = (Cqd1_0d_LNP*SDL(0,2) + Cqd1_dd_LNP*SDL(0,2)*SQDL(0,0) + Cqd1_ud_LNP*SDL(0,2)*SQUL(0,0) + Cqd1_yd_LNP*SQDYdcL(0,0)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(0,0) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(0,0) + Cqd1_y_LNP*YdcL(0,2)*YdL(0,0) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(0,0)).real();
1592 Cqd1_1113i_LNP = (Cqd1_0d_LNP*SDL(0,2) + Cqd1_dd_LNP*SDL(0,2)*SQDL(0,0) + Cqd1_ud_LNP*SDL(0,2)*SQUL(0,0) + Cqd1_yd_LNP*SQDYdcL(0,0)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(0,0) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(0,0) + Cqd1_y_LNP*YdcL(0,2)*YdL(0,0) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(0,0)).imag();
1593 Cqd1_1122r_LNP = (Cqd1_00_LNP + Cqd1_0d_LNP*SDL(1,1) + Cqd1_d0_LNP*SQDL(0,0) + Cqd1_dd_LNP*SDL(1,1)*SQDL(0,0) + Cqd1_u0_LNP*SQUL(0,0) + Cqd1_ud_LNP*SDL(1,1)*SQUL(0,0) + Cqd1_yd_LNP*SQDYdcL(1,0)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(1,0) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(1,0) + Cqd1_y_LNP*YdcL(0,1)*YdL(1,0) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(1,0)).real();
1594 Cqd1_1123r_LNP = (Cqd1_0d_LNP*SDL(1,2) + Cqd1_dd_LNP*SDL(1,2)*SQDL(0,0) + Cqd1_ud_LNP*SDL(1,2)*SQUL(0,0) + Cqd1_yd_LNP*SQDYdcL(1,0)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(1,0) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(1,0) + Cqd1_y_LNP*YdcL(0,2)*YdL(1,0) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(1,0)).real();
1595 Cqd1_1123i_LNP = (Cqd1_0d_LNP*SDL(1,2) + Cqd1_dd_LNP*SDL(1,2)*SQDL(0,0) + Cqd1_ud_LNP*SDL(1,2)*SQUL(0,0) + Cqd1_yd_LNP*SQDYdcL(1,0)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(1,0) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(1,0) + Cqd1_y_LNP*YdcL(0,2)*YdL(1,0) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(1,0)).imag();
1596 Cqd1_1133r_LNP = (Cqd1_00_LNP + Cqd1_0d_LNP*SDL(2,2) + Cqd1_d0_LNP*SQDL(0,0) + Cqd1_dd_LNP*SDL(2,2)*SQDL(0,0) + Cqd1_u0_LNP*SQUL(0,0) + Cqd1_ud_LNP*SDL(2,2)*SQUL(0,0) + Cqd1_yd_LNP*SQDYdcL(2,0)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(2,0) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(2,0) + Cqd1_y_LNP*YdcL(0,2)*YdL(2,0) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(2,0)).real();
1597 Cqd1_1211r_LNP = (Cqd1_d0_LNP*SQDL(0,1) + Cqd1_dd_LNP*SDL(0,0)*SQDL(0,1) + Cqd1_u0_LNP*SQUL(0,1) + Cqd1_ud_LNP*SDL(0,0)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(0,1)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(0,1) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(0,1) + Cqd1_y_LNP*YdcL(0,0)*YdL(0,1) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(0,1)).real();
1598 Cqd1_1211i_LNP = (Cqd1_d0_LNP*SQDL(0,1) + Cqd1_dd_LNP*SDL(0,0)*SQDL(0,1) + Cqd1_u0_LNP*SQUL(0,1) + Cqd1_ud_LNP*SDL(0,0)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(0,1)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(0,1) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(0,1) + Cqd1_y_LNP*YdcL(0,0)*YdL(0,1) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(0,1)).imag();
1599 Cqd1_1212r_LNP = (Cqd1_dd_LNP*SDL(0,1)*SQDL(0,1) + Cqd1_ud_LNP*SDL(0,1)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(0,1)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(0,1) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(0,1) + Cqd1_y_LNP*YdcL(0,1)*YdL(0,1) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(0,1)).real();
1600 Cqd1_1212i_LNP = (Cqd1_dd_LNP*SDL(0,1)*SQDL(0,1) + Cqd1_ud_LNP*SDL(0,1)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(0,1)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(0,1) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(0,1) + Cqd1_y_LNP*YdcL(0,1)*YdL(0,1) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(0,1)).imag();
1601 Cqd1_1213r_LNP = (Cqd1_dd_LNP*SDL(0,2)*SQDL(0,1) + Cqd1_ud_LNP*SDL(0,2)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(0,1)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(0,1) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(0,1) + Cqd1_y_LNP*YdcL(0,2)*YdL(0,1) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(0,1)).real();
1602 Cqd1_1213i_LNP = (Cqd1_dd_LNP*SDL(0,2)*SQDL(0,1) + Cqd1_ud_LNP*SDL(0,2)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(0,1)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(0,1) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(0,1) + Cqd1_y_LNP*YdcL(0,2)*YdL(0,1) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(0,1)).imag();
1603 Cqd1_1221r_LNP = (Cqd1_dd_LNP*SDL(1,0)*SQDL(0,1) + Cqd1_ud_LNP*SDL(1,0)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(1,1)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(1,1) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(1,1) + Cqd1_y_LNP*YdcL(0,0)*YdL(1,1) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(1,1)).real();
1604 Cqd1_1221i_LNP = (Cqd1_dd_LNP*SDL(1,0)*SQDL(0,1) + Cqd1_ud_LNP*SDL(1,0)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(1,1)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(1,1) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(1,1) + Cqd1_y_LNP*YdcL(0,0)*YdL(1,1) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(1,1)).imag();
1605 Cqd1_1222r_LNP = (Cqd1_d0_LNP*SQDL(0,1) + Cqd1_dd_LNP*SDL(1,1)*SQDL(0,1) + Cqd1_u0_LNP*SQUL(0,1) + Cqd1_ud_LNP*SDL(1,1)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(1,1)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(1,1) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(1,1) + Cqd1_y_LNP*YdcL(0,1)*YdL(1,1) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(1,1)).real();
1606 Cqd1_1222i_LNP = (Cqd1_d0_LNP*SQDL(0,1) + Cqd1_dd_LNP*SDL(1,1)*SQDL(0,1) + Cqd1_u0_LNP*SQUL(0,1) + Cqd1_ud_LNP*SDL(1,1)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(1,1)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(1,1) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(1,1) + Cqd1_y_LNP*YdcL(0,1)*YdL(1,1) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(1,1)).imag();
1607 Cqd1_1223r_LNP = (Cqd1_dd_LNP*SDL(1,2)*SQDL(0,1) + Cqd1_ud_LNP*SDL(1,2)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(1,1)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(1,1) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(1,1) + Cqd1_y_LNP*YdcL(0,2)*YdL(1,1) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(1,1)).real();
1608 Cqd1_1223i_LNP = (Cqd1_dd_LNP*SDL(1,2)*SQDL(0,1) + Cqd1_ud_LNP*SDL(1,2)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(1,1)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(1,1) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(1,1) + Cqd1_y_LNP*YdcL(0,2)*YdL(1,1) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(1,1)).imag();
1609 Cqd1_1231r_LNP = (Cqd1_dd_LNP*SDL(2,0)*SQDL(0,1) + Cqd1_ud_LNP*SDL(2,0)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(2,1)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(2,1) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(2,1) + Cqd1_y_LNP*YdcL(0,0)*YdL(2,1) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(2,1)).real();
1610 Cqd1_1231i_LNP = (Cqd1_dd_LNP*SDL(2,0)*SQDL(0,1) + Cqd1_ud_LNP*SDL(2,0)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(2,1)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(2,1) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(2,1) + Cqd1_y_LNP*YdcL(0,0)*YdL(2,1) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(2,1)).imag();
1611 Cqd1_1232r_LNP = (Cqd1_dd_LNP*SDL(2,1)*SQDL(0,1) + Cqd1_ud_LNP*SDL(2,1)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(2,1)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(2,1) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(2,1) + Cqd1_y_LNP*YdcL(0,1)*YdL(2,1) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(2,1)).real();
1612 Cqd1_1232i_LNP = (Cqd1_dd_LNP*SDL(2,1)*SQDL(0,1) + Cqd1_ud_LNP*SDL(2,1)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(2,1)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(2,1) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(2,1) + Cqd1_y_LNP*YdcL(0,1)*YdL(2,1) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(2,1)).imag();
1613 Cqd1_1233r_LNP = (Cqd1_d0_LNP*SQDL(0,1) + Cqd1_dd_LNP*SDL(2,2)*SQDL(0,1) + Cqd1_u0_LNP*SQUL(0,1) + Cqd1_ud_LNP*SDL(2,2)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(2,1)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(2,1) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(2,1) + Cqd1_y_LNP*YdcL(0,2)*YdL(2,1) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(2,1)).real();
1614 Cqd1_1233i_LNP = (Cqd1_d0_LNP*SQDL(0,1) + Cqd1_dd_LNP*SDL(2,2)*SQDL(0,1) + Cqd1_u0_LNP*SQUL(0,1) + Cqd1_ud_LNP*SDL(2,2)*SQUL(0,1) + Cqd1_yd_LNP*SQDYdcL(2,1)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(2,1) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(2,1) + Cqd1_y_LNP*YdcL(0,2)*YdL(2,1) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(2,1)).imag();
1615 Cqd1_1311r_LNP = (Cqd1_d0_LNP*SQDL(0,2) + Cqd1_dd_LNP*SDL(0,0)*SQDL(0,2) + Cqd1_u0_LNP*SQUL(0,2) + Cqd1_ud_LNP*SDL(0,0)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(0,2) + Cqd1_y_LNP*YdcL(0,0)*YdL(0,2) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(0,2)).real();
1616 Cqd1_1311i_LNP = (Cqd1_d0_LNP*SQDL(0,2) + Cqd1_dd_LNP*SDL(0,0)*SQDL(0,2) + Cqd1_u0_LNP*SQUL(0,2) + Cqd1_ud_LNP*SDL(0,0)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(0,2) + Cqd1_y_LNP*YdcL(0,0)*YdL(0,2) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(0,2)).imag();
1617 Cqd1_1312r_LNP = (Cqd1_dd_LNP*SDL(0,1)*SQDL(0,2) + Cqd1_ud_LNP*SDL(0,1)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(0,2) + Cqd1_y_LNP*YdcL(0,1)*YdL(0,2) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(0,2)).real();
1618 Cqd1_1312i_LNP = (Cqd1_dd_LNP*SDL(0,1)*SQDL(0,2) + Cqd1_ud_LNP*SDL(0,1)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(0,2) + Cqd1_y_LNP*YdcL(0,1)*YdL(0,2) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(0,2)).imag();
1619 Cqd1_1313r_LNP = (Cqd1_dd_LNP*SDL(0,2)*SQDL(0,2) + Cqd1_ud_LNP*SDL(0,2)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(0,2) + Cqd1_y_LNP*YdcL(0,2)*YdL(0,2) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(0,2)).real();
1620 Cqd1_1313i_LNP = (Cqd1_dd_LNP*SDL(0,2)*SQDL(0,2) + Cqd1_ud_LNP*SDL(0,2)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(0,2) + Cqd1_y_LNP*YdcL(0,2)*YdL(0,2) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(0,2)).imag();
1621 Cqd1_1321r_LNP = (Cqd1_dd_LNP*SDL(1,0)*SQDL(0,2) + Cqd1_ud_LNP*SDL(1,0)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(1,2) + Cqd1_y_LNP*YdcL(0,0)*YdL(1,2) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(1,2)).real();
1622 Cqd1_1321i_LNP = (Cqd1_dd_LNP*SDL(1,0)*SQDL(0,2) + Cqd1_ud_LNP*SDL(1,0)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(1,2) + Cqd1_y_LNP*YdcL(0,0)*YdL(1,2) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(1,2)).imag();
1623 Cqd1_1322r_LNP = (Cqd1_d0_LNP*SQDL(0,2) + Cqd1_dd_LNP*SDL(1,1)*SQDL(0,2) + Cqd1_u0_LNP*SQUL(0,2) + Cqd1_ud_LNP*SDL(1,1)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(1,2) + Cqd1_y_LNP*YdcL(0,1)*YdL(1,2) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(1,2)).real();
1624 Cqd1_1322i_LNP = (Cqd1_d0_LNP*SQDL(0,2) + Cqd1_dd_LNP*SDL(1,1)*SQDL(0,2) + Cqd1_u0_LNP*SQUL(0,2) + Cqd1_ud_LNP*SDL(1,1)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(1,2) + Cqd1_y_LNP*YdcL(0,1)*YdL(1,2) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(1,2)).imag();
1625 Cqd1_1323r_LNP = (Cqd1_dd_LNP*SDL(1,2)*SQDL(0,2) + Cqd1_ud_LNP*SDL(1,2)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(1,2) + Cqd1_y_LNP*YdcL(0,2)*YdL(1,2) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(1,2)).real();
1626 Cqd1_1323i_LNP = (Cqd1_dd_LNP*SDL(1,2)*SQDL(0,2) + Cqd1_ud_LNP*SDL(1,2)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(1,2) + Cqd1_y_LNP*YdcL(0,2)*YdL(1,2) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(1,2)).imag();
1627 Cqd1_1331r_LNP = (Cqd1_dd_LNP*SDL(2,0)*SQDL(0,2) + Cqd1_ud_LNP*SDL(2,0)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(2,2) + Cqd1_y_LNP*YdcL(0,0)*YdL(2,2) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(2,2)).real();
1628 Cqd1_1331i_LNP = (Cqd1_dd_LNP*SDL(2,0)*SQDL(0,2) + Cqd1_ud_LNP*SDL(2,0)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(0,0) + Cqd1_dy_LNP*SQDYdcL(0,0)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(0,0)*YdL(2,2) + Cqd1_y_LNP*YdcL(0,0)*YdL(2,2) + Cqd1_yu_LNP*YdcL(0,0)*YdSQUL(2,2)).imag();
1629 Cqd1_1332r_LNP = (Cqd1_dd_LNP*SDL(2,1)*SQDL(0,2) + Cqd1_ud_LNP*SDL(2,1)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(2,2) + Cqd1_y_LNP*YdcL(0,1)*YdL(2,2) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(2,2)).real();
1630 Cqd1_1332i_LNP = (Cqd1_dd_LNP*SDL(2,1)*SQDL(0,2) + Cqd1_ud_LNP*SDL(2,1)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(0,1) + Cqd1_dy_LNP*SQDYdcL(0,1)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(0,1)*YdL(2,2) + Cqd1_y_LNP*YdcL(0,1)*YdL(2,2) + Cqd1_yu_LNP*YdcL(0,1)*YdSQUL(2,2)).imag();
1631 Cqd1_1333r_LNP = (Cqd1_d0_LNP*SQDL(0,2) + Cqd1_dd_LNP*SDL(2,2)*SQDL(0,2) + Cqd1_u0_LNP*SQUL(0,2) + Cqd1_ud_LNP*SDL(2,2)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(2,2) + Cqd1_y_LNP*YdcL(0,2)*YdL(2,2) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(2,2)).real();
1632 Cqd1_1333i_LNP = (Cqd1_d0_LNP*SQDL(0,2) + Cqd1_dd_LNP*SDL(2,2)*SQDL(0,2) + Cqd1_u0_LNP*SQUL(0,2) + Cqd1_ud_LNP*SDL(2,2)*SQUL(0,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(0,2) + Cqd1_dy_LNP*SQDYdcL(0,2)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(0,2)*YdL(2,2) + Cqd1_y_LNP*YdcL(0,2)*YdL(2,2) + Cqd1_yu_LNP*YdcL(0,2)*YdSQUL(2,2)).imag();
1633 Cqd1_2211r_LNP = (Cqd1_00_LNP + Cqd1_0d_LNP*SDL(0,0) + Cqd1_d0_LNP*SQDL(1,1) + Cqd1_dd_LNP*SDL(0,0)*SQDL(1,1) + Cqd1_u0_LNP*SQUL(1,1) + Cqd1_ud_LNP*SDL(0,0)*SQUL(1,1) + Cqd1_yd_LNP*SQDYdcL(0,1)*YdcL(1,0) + Cqd1_dy_LNP*SQDYdcL(1,0)*YdL(0,1) + Cqd1_uy_LNP*SQUYdcL(1,0)*YdL(0,1) + Cqd1_y_LNP*YdcL(1,0)*YdL(0,1) + Cqd1_yu_LNP*YdcL(1,0)*YdSQUL(0,1)).real();
1634 Cqd1_2212r_LNP = (Cqd1_0d_LNP*SDL(0,1) + Cqd1_dd_LNP*SDL(0,1)*SQDL(1,1) + Cqd1_ud_LNP*SDL(0,1)*SQUL(1,1) + Cqd1_yd_LNP*SQDYdcL(0,1)*YdcL(1,1) + Cqd1_dy_LNP*SQDYdcL(1,1)*YdL(0,1) + Cqd1_uy_LNP*SQUYdcL(1,1)*YdL(0,1) + Cqd1_y_LNP*YdcL(1,1)*YdL(0,1) + Cqd1_yu_LNP*YdcL(1,1)*YdSQUL(0,1)).real();
1635 Cqd1_2212i_LNP = (Cqd1_0d_LNP*SDL(0,1) + Cqd1_dd_LNP*SDL(0,1)*SQDL(1,1) + Cqd1_ud_LNP*SDL(0,1)*SQUL(1,1) + Cqd1_yd_LNP*SQDYdcL(0,1)*YdcL(1,1) + Cqd1_dy_LNP*SQDYdcL(1,1)*YdL(0,1) + Cqd1_uy_LNP*SQUYdcL(1,1)*YdL(0,1) + Cqd1_y_LNP*YdcL(1,1)*YdL(0,1) + Cqd1_yu_LNP*YdcL(1,1)*YdSQUL(0,1)).imag();
1636 Cqd1_2213r_LNP = (Cqd1_0d_LNP*SDL(0,2) + Cqd1_dd_LNP*SDL(0,2)*SQDL(1,1) + Cqd1_ud_LNP*SDL(0,2)*SQUL(1,1) + Cqd1_yd_LNP*SQDYdcL(0,1)*YdcL(1,2) + Cqd1_dy_LNP*SQDYdcL(1,2)*YdL(0,1) + Cqd1_uy_LNP*SQUYdcL(1,2)*YdL(0,1) + Cqd1_y_LNP*YdcL(1,2)*YdL(0,1) + Cqd1_yu_LNP*YdcL(1,2)*YdSQUL(0,1)).real();
1637 Cqd1_2213i_LNP = (Cqd1_0d_LNP*SDL(0,2) + Cqd1_dd_LNP*SDL(0,2)*SQDL(1,1) + Cqd1_ud_LNP*SDL(0,2)*SQUL(1,1) + Cqd1_yd_LNP*SQDYdcL(0,1)*YdcL(1,2) + Cqd1_dy_LNP*SQDYdcL(1,2)*YdL(0,1) + Cqd1_uy_LNP*SQUYdcL(1,2)*YdL(0,1) + Cqd1_y_LNP*YdcL(1,2)*YdL(0,1) + Cqd1_yu_LNP*YdcL(1,2)*YdSQUL(0,1)).imag();
1638 Cqd1_2222r_LNP = (Cqd1_00_LNP + Cqd1_0d_LNP*SDL(1,1) + Cqd1_d0_LNP*SQDL(1,1) + Cqd1_dd_LNP*SDL(1,1)*SQDL(1,1) + Cqd1_u0_LNP*SQUL(1,1) + Cqd1_ud_LNP*SDL(1,1)*SQUL(1,1) + Cqd1_yd_LNP*SQDYdcL(1,1)*YdcL(1,1) + Cqd1_dy_LNP*SQDYdcL(1,1)*YdL(1,1) + Cqd1_uy_LNP*SQUYdcL(1,1)*YdL(1,1) + Cqd1_y_LNP*YdcL(1,1)*YdL(1,1) + Cqd1_yu_LNP*YdcL(1,1)*YdSQUL(1,1)).real();
1639 Cqd1_2223r_LNP = (Cqd1_0d_LNP*SDL(1,2) + Cqd1_dd_LNP*SDL(1,2)*SQDL(1,1) + Cqd1_ud_LNP*SDL(1,2)*SQUL(1,1) + Cqd1_yd_LNP*SQDYdcL(1,1)*YdcL(1,2) + Cqd1_dy_LNP*SQDYdcL(1,2)*YdL(1,1) + Cqd1_uy_LNP*SQUYdcL(1,2)*YdL(1,1) + Cqd1_y_LNP*YdcL(1,2)*YdL(1,1) + Cqd1_yu_LNP*YdcL(1,2)*YdSQUL(1,1)).real();
1640 Cqd1_2223i_LNP = (Cqd1_0d_LNP*SDL(1,2) + Cqd1_dd_LNP*SDL(1,2)*SQDL(1,1) + Cqd1_ud_LNP*SDL(1,2)*SQUL(1,1) + Cqd1_yd_LNP*SQDYdcL(1,1)*YdcL(1,2) + Cqd1_dy_LNP*SQDYdcL(1,2)*YdL(1,1) + Cqd1_uy_LNP*SQUYdcL(1,2)*YdL(1,1) + Cqd1_y_LNP*YdcL(1,2)*YdL(1,1) + Cqd1_yu_LNP*YdcL(1,2)*YdSQUL(1,1)).imag();
1641 Cqd1_2233r_LNP = (Cqd1_00_LNP + Cqd1_0d_LNP*SDL(2,2) + Cqd1_d0_LNP*SQDL(1,1) + Cqd1_dd_LNP*SDL(2,2)*SQDL(1,1) + Cqd1_u0_LNP*SQUL(1,1) + Cqd1_ud_LNP*SDL(2,2)*SQUL(1,1) + Cqd1_yd_LNP*SQDYdcL(2,1)*YdcL(1,2) + Cqd1_dy_LNP*SQDYdcL(1,2)*YdL(2,1) + Cqd1_uy_LNP*SQUYdcL(1,2)*YdL(2,1) + Cqd1_y_LNP*YdcL(1,2)*YdL(2,1) + Cqd1_yu_LNP*YdcL(1,2)*YdSQUL(2,1)).real();
1642 Cqd1_2311r_LNP = (Cqd1_d0_LNP*SQDL(1,2) + Cqd1_dd_LNP*SDL(0,0)*SQDL(1,2) + Cqd1_u0_LNP*SQUL(1,2) + Cqd1_ud_LNP*SDL(0,0)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(1,0) + Cqd1_dy_LNP*SQDYdcL(1,0)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(1,0)*YdL(0,2) + Cqd1_y_LNP*YdcL(1,0)*YdL(0,2) + Cqd1_yu_LNP*YdcL(1,0)*YdSQUL(0,2)).real();
1643 Cqd1_2311i_LNP = (Cqd1_d0_LNP*SQDL(1,2) + Cqd1_dd_LNP*SDL(0,0)*SQDL(1,2) + Cqd1_u0_LNP*SQUL(1,2) + Cqd1_ud_LNP*SDL(0,0)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(1,0) + Cqd1_dy_LNP*SQDYdcL(1,0)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(1,0)*YdL(0,2) + Cqd1_y_LNP*YdcL(1,0)*YdL(0,2) + Cqd1_yu_LNP*YdcL(1,0)*YdSQUL(0,2)).imag();
1644 Cqd1_2312r_LNP = (Cqd1_dd_LNP*SDL(0,1)*SQDL(1,2) + Cqd1_ud_LNP*SDL(0,1)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(1,1) + Cqd1_dy_LNP*SQDYdcL(1,1)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(1,1)*YdL(0,2) + Cqd1_y_LNP*YdcL(1,1)*YdL(0,2) + Cqd1_yu_LNP*YdcL(1,1)*YdSQUL(0,2)).real();
1645 Cqd1_2312i_LNP = (Cqd1_dd_LNP*SDL(0,1)*SQDL(1,2) + Cqd1_ud_LNP*SDL(0,1)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(1,1) + Cqd1_dy_LNP*SQDYdcL(1,1)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(1,1)*YdL(0,2) + Cqd1_y_LNP*YdcL(1,1)*YdL(0,2) + Cqd1_yu_LNP*YdcL(1,1)*YdSQUL(0,2)).imag();
1646 Cqd1_2313r_LNP = (Cqd1_dd_LNP*SDL(0,2)*SQDL(1,2) + Cqd1_ud_LNP*SDL(0,2)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(1,2) + Cqd1_dy_LNP*SQDYdcL(1,2)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(1,2)*YdL(0,2) + Cqd1_y_LNP*YdcL(1,2)*YdL(0,2) + Cqd1_yu_LNP*YdcL(1,2)*YdSQUL(0,2)).real();
1647 Cqd1_2313i_LNP = (Cqd1_dd_LNP*SDL(0,2)*SQDL(1,2) + Cqd1_ud_LNP*SDL(0,2)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(1,2) + Cqd1_dy_LNP*SQDYdcL(1,2)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(1,2)*YdL(0,2) + Cqd1_y_LNP*YdcL(1,2)*YdL(0,2) + Cqd1_yu_LNP*YdcL(1,2)*YdSQUL(0,2)).imag();
1648 Cqd1_2321r_LNP = (Cqd1_dd_LNP*SDL(1,0)*SQDL(1,2) + Cqd1_ud_LNP*SDL(1,0)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(1,0) + Cqd1_dy_LNP*SQDYdcL(1,0)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(1,0)*YdL(1,2) + Cqd1_y_LNP*YdcL(1,0)*YdL(1,2) + Cqd1_yu_LNP*YdcL(1,0)*YdSQUL(1,2)).real();
1649 Cqd1_2321i_LNP = (Cqd1_dd_LNP*SDL(1,0)*SQDL(1,2) + Cqd1_ud_LNP*SDL(1,0)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(1,0) + Cqd1_dy_LNP*SQDYdcL(1,0)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(1,0)*YdL(1,2) + Cqd1_y_LNP*YdcL(1,0)*YdL(1,2) + Cqd1_yu_LNP*YdcL(1,0)*YdSQUL(1,2)).imag();
1650 Cqd1_2322r_LNP = (Cqd1_d0_LNP*SQDL(1,2) + Cqd1_dd_LNP*SDL(1,1)*SQDL(1,2) + Cqd1_u0_LNP*SQUL(1,2) + Cqd1_ud_LNP*SDL(1,1)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(1,1) + Cqd1_dy_LNP*SQDYdcL(1,1)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(1,1)*YdL(1,2) + Cqd1_y_LNP*YdcL(1,1)*YdL(1,2) + Cqd1_yu_LNP*YdcL(1,1)*YdSQUL(1,2)).real();
1651 Cqd1_2322i_LNP = (Cqd1_d0_LNP*SQDL(1,2) + Cqd1_dd_LNP*SDL(1,1)*SQDL(1,2) + Cqd1_u0_LNP*SQUL(1,2) + Cqd1_ud_LNP*SDL(1,1)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(1,1) + Cqd1_dy_LNP*SQDYdcL(1,1)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(1,1)*YdL(1,2) + Cqd1_y_LNP*YdcL(1,1)*YdL(1,2) + Cqd1_yu_LNP*YdcL(1,1)*YdSQUL(1,2)).imag();
1652 Cqd1_2323r_LNP = (Cqd1_dd_LNP*SDL(1,2)*SQDL(1,2) + Cqd1_ud_LNP*SDL(1,2)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(1,2) + Cqd1_dy_LNP*SQDYdcL(1,2)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(1,2)*YdL(1,2) + Cqd1_y_LNP*YdcL(1,2)*YdL(1,2) + Cqd1_yu_LNP*YdcL(1,2)*YdSQUL(1,2)).real();
1653 Cqd1_2323i_LNP = (Cqd1_dd_LNP*SDL(1,2)*SQDL(1,2) + Cqd1_ud_LNP*SDL(1,2)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(1,2) + Cqd1_dy_LNP*SQDYdcL(1,2)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(1,2)*YdL(1,2) + Cqd1_y_LNP*YdcL(1,2)*YdL(1,2) + Cqd1_yu_LNP*YdcL(1,2)*YdSQUL(1,2)).imag();
1654 Cqd1_2331r_LNP = (Cqd1_dd_LNP*SDL(2,0)*SQDL(1,2) + Cqd1_ud_LNP*SDL(2,0)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(1,0) + Cqd1_dy_LNP*SQDYdcL(1,0)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(1,0)*YdL(2,2) + Cqd1_y_LNP*YdcL(1,0)*YdL(2,2) + Cqd1_yu_LNP*YdcL(1,0)*YdSQUL(2,2)).real();
1655 Cqd1_2331i_LNP = (Cqd1_dd_LNP*SDL(2,0)*SQDL(1,2) + Cqd1_ud_LNP*SDL(2,0)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(1,0) + Cqd1_dy_LNP*SQDYdcL(1,0)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(1,0)*YdL(2,2) + Cqd1_y_LNP*YdcL(1,0)*YdL(2,2) + Cqd1_yu_LNP*YdcL(1,0)*YdSQUL(2,2)).imag();
1656 Cqd1_2332r_LNP = (Cqd1_dd_LNP*SDL(2,1)*SQDL(1,2) + Cqd1_ud_LNP*SDL(2,1)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(1,1) + Cqd1_dy_LNP*SQDYdcL(1,1)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(1,1)*YdL(2,2) + Cqd1_y_LNP*YdcL(1,1)*YdL(2,2) + Cqd1_yu_LNP*YdcL(1,1)*YdSQUL(2,2)).real();
1657 Cqd1_2332i_LNP = (Cqd1_dd_LNP*SDL(2,1)*SQDL(1,2) + Cqd1_ud_LNP*SDL(2,1)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(1,1) + Cqd1_dy_LNP*SQDYdcL(1,1)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(1,1)*YdL(2,2) + Cqd1_y_LNP*YdcL(1,1)*YdL(2,2) + Cqd1_yu_LNP*YdcL(1,1)*YdSQUL(2,2)).imag();
1658 Cqd1_2333r_LNP = (Cqd1_d0_LNP*SQDL(1,2) + Cqd1_dd_LNP*SDL(2,2)*SQDL(1,2) + Cqd1_u0_LNP*SQUL(1,2) + Cqd1_ud_LNP*SDL(2,2)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(1,2) + Cqd1_dy_LNP*SQDYdcL(1,2)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(1,2)*YdL(2,2) + Cqd1_y_LNP*YdcL(1,2)*YdL(2,2) + Cqd1_yu_LNP*YdcL(1,2)*YdSQUL(2,2)).real();
1659 Cqd1_2333i_LNP = (Cqd1_d0_LNP*SQDL(1,2) + Cqd1_dd_LNP*SDL(2,2)*SQDL(1,2) + Cqd1_u0_LNP*SQUL(1,2) + Cqd1_ud_LNP*SDL(2,2)*SQUL(1,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(1,2) + Cqd1_dy_LNP*SQDYdcL(1,2)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(1,2)*YdL(2,2) + Cqd1_y_LNP*YdcL(1,2)*YdL(2,2) + Cqd1_yu_LNP*YdcL(1,2)*YdSQUL(2,2)).imag();
1660 Cqd1_3311r_LNP = (Cqd1_00_LNP + Cqd1_0d_LNP*SDL(0,0) + Cqd1_d0_LNP*SQDL(2,2) + Cqd1_dd_LNP*SDL(0,0)*SQDL(2,2) + Cqd1_u0_LNP*SQUL(2,2) + Cqd1_ud_LNP*SDL(0,0)*SQUL(2,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(2,0) + Cqd1_dy_LNP*SQDYdcL(2,0)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(2,0)*YdL(0,2) + Cqd1_y_LNP*YdcL(2,0)*YdL(0,2) + Cqd1_yu_LNP*YdcL(2,0)*YdSQUL(0,2)).real();
1661 Cqd1_3312r_LNP = (Cqd1_0d_LNP*SDL(0,1) + Cqd1_dd_LNP*SDL(0,1)*SQDL(2,2) + Cqd1_ud_LNP*SDL(0,1)*SQUL(2,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(2,1) + Cqd1_dy_LNP*SQDYdcL(2,1)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(2,1)*YdL(0,2) + Cqd1_y_LNP*YdcL(2,1)*YdL(0,2) + Cqd1_yu_LNP*YdcL(2,1)*YdSQUL(0,2)).real();
1662 Cqd1_3312i_LNP = (Cqd1_0d_LNP*SDL(0,1) + Cqd1_dd_LNP*SDL(0,1)*SQDL(2,2) + Cqd1_ud_LNP*SDL(0,1)*SQUL(2,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(2,1) + Cqd1_dy_LNP*SQDYdcL(2,1)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(2,1)*YdL(0,2) + Cqd1_y_LNP*YdcL(2,1)*YdL(0,2) + Cqd1_yu_LNP*YdcL(2,1)*YdSQUL(0,2)).imag();
1663 Cqd1_3313r_LNP = (Cqd1_0d_LNP*SDL(0,2) + Cqd1_dd_LNP*SDL(0,2)*SQDL(2,2) + Cqd1_ud_LNP*SDL(0,2)*SQUL(2,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(2,2) + Cqd1_dy_LNP*SQDYdcL(2,2)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(2,2)*YdL(0,2) + Cqd1_y_LNP*YdcL(2,2)*YdL(0,2) + Cqd1_yu_LNP*YdcL(2,2)*YdSQUL(0,2)).real();
1664 Cqd1_3313i_LNP = (Cqd1_0d_LNP*SDL(0,2) + Cqd1_dd_LNP*SDL(0,2)*SQDL(2,2) + Cqd1_ud_LNP*SDL(0,2)*SQUL(2,2) + Cqd1_yd_LNP*SQDYdcL(0,2)*YdcL(2,2) + Cqd1_dy_LNP*SQDYdcL(2,2)*YdL(0,2) + Cqd1_uy_LNP*SQUYdcL(2,2)*YdL(0,2) + Cqd1_y_LNP*YdcL(2,2)*YdL(0,2) + Cqd1_yu_LNP*YdcL(2,2)*YdSQUL(0,2)).imag();
1665 Cqd1_3322r_LNP = (Cqd1_00_LNP + Cqd1_0d_LNP*SDL(1,1) + Cqd1_d0_LNP*SQDL(2,2) + Cqd1_dd_LNP*SDL(1,1)*SQDL(2,2) + Cqd1_u0_LNP*SQUL(2,2) + Cqd1_ud_LNP*SDL(1,1)*SQUL(2,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(2,1) + Cqd1_dy_LNP*SQDYdcL(2,1)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(2,1)*YdL(1,2) + Cqd1_y_LNP*YdcL(2,1)*YdL(1,2) + Cqd1_yu_LNP*YdcL(2,1)*YdSQUL(1,2)).real();
1666 Cqd1_3323r_LNP = (Cqd1_0d_LNP*SDL(1,2) + Cqd1_dd_LNP*SDL(1,2)*SQDL(2,2) + Cqd1_ud_LNP*SDL(1,2)*SQUL(2,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(2,2) + Cqd1_dy_LNP*SQDYdcL(2,2)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(2,2)*YdL(1,2) + Cqd1_y_LNP*YdcL(2,2)*YdL(1,2) + Cqd1_yu_LNP*YdcL(2,2)*YdSQUL(1,2)).real();
1667 Cqd1_3323i_LNP = (Cqd1_0d_LNP*SDL(1,2) + Cqd1_dd_LNP*SDL(1,2)*SQDL(2,2) + Cqd1_ud_LNP*SDL(1,2)*SQUL(2,2) + Cqd1_yd_LNP*SQDYdcL(1,2)*YdcL(2,2) + Cqd1_dy_LNP*SQDYdcL(2,2)*YdL(1,2) + Cqd1_uy_LNP*SQUYdcL(2,2)*YdL(1,2) + Cqd1_y_LNP*YdcL(2,2)*YdL(1,2) + Cqd1_yu_LNP*YdcL(2,2)*YdSQUL(1,2)).imag();
1668 Cqd1_3333r_LNP = (Cqd1_00_LNP + Cqd1_0d_LNP*SDL(2,2) + Cqd1_d0_LNP*SQDL(2,2) + Cqd1_dd_LNP*SDL(2,2)*SQDL(2,2) + Cqd1_u0_LNP*SQUL(2,2) + Cqd1_ud_LNP*SDL(2,2)*SQUL(2,2) + Cqd1_yd_LNP*SQDYdcL(2,2)*YdcL(2,2) + Cqd1_dy_LNP*SQDYdcL(2,2)*YdL(2,2) + Cqd1_uy_LNP*SQUYdcL(2,2)*YdL(2,2) + Cqd1_y_LNP*YdcL(2,2)*YdL(2,2) + Cqd1_yu_LNP*YdcL(2,2)*YdSQUL(2,2)).real();
1669
1670 Cqd8_1111r_LNP = (Cqd8_00_LNP + Cqd8_0d_LNP*SDL(0,0) + Cqd8_d0_LNP*SQDL(0,0) + Cqd8_dd_LNP*SDL(0,0)*SQDL(0,0) + Cqd8_u0_LNP*SQUL(0,0) + Cqd8_ud_LNP*SDL(0,0)*SQUL(0,0) + Cqd8_yd_LNP*SQDYdcL(0,0)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(0,0) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(0,0) + Cqd8_y_LNP*YdcL(0,0)*YdL(0,0) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(0,0)).real();
1671 Cqd8_1112r_LNP = (Cqd8_0d_LNP*SDL(0,1) + Cqd8_dd_LNP*SDL(0,1)*SQDL(0,0) + Cqd8_ud_LNP*SDL(0,1)*SQUL(0,0) + Cqd8_yd_LNP*SQDYdcL(0,0)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(0,0) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(0,0) + Cqd8_y_LNP*YdcL(0,1)*YdL(0,0) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(0,0)).real();
1672 Cqd8_1112i_LNP = (Cqd8_0d_LNP*SDL(0,1) + Cqd8_dd_LNP*SDL(0,1)*SQDL(0,0) + Cqd8_ud_LNP*SDL(0,1)*SQUL(0,0) + Cqd8_yd_LNP*SQDYdcL(0,0)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(0,0) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(0,0) + Cqd8_y_LNP*YdcL(0,1)*YdL(0,0) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(0,0)).imag();
1673 Cqd8_1113r_LNP = (Cqd8_0d_LNP*SDL(0,2) + Cqd8_dd_LNP*SDL(0,2)*SQDL(0,0) + Cqd8_ud_LNP*SDL(0,2)*SQUL(0,0) + Cqd8_yd_LNP*SQDYdcL(0,0)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(0,0) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(0,0) + Cqd8_y_LNP*YdcL(0,2)*YdL(0,0) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(0,0)).real();
1674 Cqd8_1113i_LNP = (Cqd8_0d_LNP*SDL(0,2) + Cqd8_dd_LNP*SDL(0,2)*SQDL(0,0) + Cqd8_ud_LNP*SDL(0,2)*SQUL(0,0) + Cqd8_yd_LNP*SQDYdcL(0,0)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(0,0) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(0,0) + Cqd8_y_LNP*YdcL(0,2)*YdL(0,0) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(0,0)).imag();
1675 Cqd8_1122r_LNP = (Cqd8_00_LNP + Cqd8_0d_LNP*SDL(1,1) + Cqd8_d0_LNP*SQDL(0,0) + Cqd8_dd_LNP*SDL(1,1)*SQDL(0,0) + Cqd8_u0_LNP*SQUL(0,0) + Cqd8_ud_LNP*SDL(1,1)*SQUL(0,0) + Cqd8_yd_LNP*SQDYdcL(1,0)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(1,0) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(1,0) + Cqd8_y_LNP*YdcL(0,1)*YdL(1,0) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(1,0)).real();
1676 Cqd8_1123r_LNP = (Cqd8_0d_LNP*SDL(1,2) + Cqd8_dd_LNP*SDL(1,2)*SQDL(0,0) + Cqd8_ud_LNP*SDL(1,2)*SQUL(0,0) + Cqd8_yd_LNP*SQDYdcL(1,0)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(1,0) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(1,0) + Cqd8_y_LNP*YdcL(0,2)*YdL(1,0) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(1,0)).real();
1677 Cqd8_1123i_LNP = (Cqd8_0d_LNP*SDL(1,2) + Cqd8_dd_LNP*SDL(1,2)*SQDL(0,0) + Cqd8_ud_LNP*SDL(1,2)*SQUL(0,0) + Cqd8_yd_LNP*SQDYdcL(1,0)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(1,0) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(1,0) + Cqd8_y_LNP*YdcL(0,2)*YdL(1,0) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(1,0)).imag();
1678 Cqd8_1133r_LNP = (Cqd8_00_LNP + Cqd8_0d_LNP*SDL(2,2) + Cqd8_d0_LNP*SQDL(0,0) + Cqd8_dd_LNP*SDL(2,2)*SQDL(0,0) + Cqd8_u0_LNP*SQUL(0,0) + Cqd8_ud_LNP*SDL(2,2)*SQUL(0,0) + Cqd8_yd_LNP*SQDYdcL(2,0)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(2,0) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(2,0) + Cqd8_y_LNP*YdcL(0,2)*YdL(2,0) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(2,0)).real();
1679 Cqd8_1211r_LNP = (Cqd8_d0_LNP*SQDL(0,1) + Cqd8_dd_LNP*SDL(0,0)*SQDL(0,1) + Cqd8_u0_LNP*SQUL(0,1) + Cqd8_ud_LNP*SDL(0,0)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(0,1)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(0,1) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(0,1) + Cqd8_y_LNP*YdcL(0,0)*YdL(0,1) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(0,1)).real();
1680 Cqd8_1211i_LNP = (Cqd8_d0_LNP*SQDL(0,1) + Cqd8_dd_LNP*SDL(0,0)*SQDL(0,1) + Cqd8_u0_LNP*SQUL(0,1) + Cqd8_ud_LNP*SDL(0,0)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(0,1)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(0,1) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(0,1) + Cqd8_y_LNP*YdcL(0,0)*YdL(0,1) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(0,1)).imag();
1681 Cqd8_1212r_LNP = (Cqd8_dd_LNP*SDL(0,1)*SQDL(0,1) + Cqd8_ud_LNP*SDL(0,1)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(0,1)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(0,1) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(0,1) + Cqd8_y_LNP*YdcL(0,1)*YdL(0,1) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(0,1)).real();
1682 Cqd8_1212i_LNP = (Cqd8_dd_LNP*SDL(0,1)*SQDL(0,1) + Cqd8_ud_LNP*SDL(0,1)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(0,1)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(0,1) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(0,1) + Cqd8_y_LNP*YdcL(0,1)*YdL(0,1) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(0,1)).imag();
1683 Cqd8_1213r_LNP = (Cqd8_dd_LNP*SDL(0,2)*SQDL(0,1) + Cqd8_ud_LNP*SDL(0,2)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(0,1)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(0,1) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(0,1) + Cqd8_y_LNP*YdcL(0,2)*YdL(0,1) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(0,1)).real();
1684 Cqd8_1213i_LNP = (Cqd8_dd_LNP*SDL(0,2)*SQDL(0,1) + Cqd8_ud_LNP*SDL(0,2)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(0,1)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(0,1) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(0,1) + Cqd8_y_LNP*YdcL(0,2)*YdL(0,1) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(0,1)).imag();
1685 Cqd8_1221r_LNP = (Cqd8_dd_LNP*SDL(1,0)*SQDL(0,1) + Cqd8_ud_LNP*SDL(1,0)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(1,1)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(1,1) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(1,1) + Cqd8_y_LNP*YdcL(0,0)*YdL(1,1) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(1,1)).real();
1686 Cqd8_1221i_LNP = (Cqd8_dd_LNP*SDL(1,0)*SQDL(0,1) + Cqd8_ud_LNP*SDL(1,0)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(1,1)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(1,1) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(1,1) + Cqd8_y_LNP*YdcL(0,0)*YdL(1,1) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(1,1)).imag();
1687 Cqd8_1222r_LNP = (Cqd8_d0_LNP*SQDL(0,1) + Cqd8_dd_LNP*SDL(1,1)*SQDL(0,1) + Cqd8_u0_LNP*SQUL(0,1) + Cqd8_ud_LNP*SDL(1,1)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(1,1)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(1,1) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(1,1) + Cqd8_y_LNP*YdcL(0,1)*YdL(1,1) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(1,1)).real();
1688 Cqd8_1222i_LNP = (Cqd8_d0_LNP*SQDL(0,1) + Cqd8_dd_LNP*SDL(1,1)*SQDL(0,1) + Cqd8_u0_LNP*SQUL(0,1) + Cqd8_ud_LNP*SDL(1,1)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(1,1)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(1,1) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(1,1) + Cqd8_y_LNP*YdcL(0,1)*YdL(1,1) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(1,1)).imag();
1689 Cqd8_1223r_LNP = (Cqd8_dd_LNP*SDL(1,2)*SQDL(0,1) + Cqd8_ud_LNP*SDL(1,2)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(1,1)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(1,1) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(1,1) + Cqd8_y_LNP*YdcL(0,2)*YdL(1,1) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(1,1)).real();
1690 Cqd8_1223i_LNP = (Cqd8_dd_LNP*SDL(1,2)*SQDL(0,1) + Cqd8_ud_LNP*SDL(1,2)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(1,1)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(1,1) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(1,1) + Cqd8_y_LNP*YdcL(0,2)*YdL(1,1) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(1,1)).imag();
1691 Cqd8_1231r_LNP = (Cqd8_dd_LNP*SDL(2,0)*SQDL(0,1) + Cqd8_ud_LNP*SDL(2,0)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(2,1)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(2,1) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(2,1) + Cqd8_y_LNP*YdcL(0,0)*YdL(2,1) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(2,1)).real();
1692 Cqd8_1231i_LNP = (Cqd8_dd_LNP*SDL(2,0)*SQDL(0,1) + Cqd8_ud_LNP*SDL(2,0)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(2,1)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(2,1) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(2,1) + Cqd8_y_LNP*YdcL(0,0)*YdL(2,1) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(2,1)).imag();
1693 Cqd8_1232r_LNP = (Cqd8_dd_LNP*SDL(2,1)*SQDL(0,1) + Cqd8_ud_LNP*SDL(2,1)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(2,1)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(2,1) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(2,1) + Cqd8_y_LNP*YdcL(0,1)*YdL(2,1) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(2,1)).real();
1694 Cqd8_1232i_LNP = (Cqd8_dd_LNP*SDL(2,1)*SQDL(0,1) + Cqd8_ud_LNP*SDL(2,1)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(2,1)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(2,1) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(2,1) + Cqd8_y_LNP*YdcL(0,1)*YdL(2,1) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(2,1)).imag();
1695 Cqd8_1233r_LNP = (Cqd8_d0_LNP*SQDL(0,1) + Cqd8_dd_LNP*SDL(2,2)*SQDL(0,1) + Cqd8_u0_LNP*SQUL(0,1) + Cqd8_ud_LNP*SDL(2,2)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(2,1)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(2,1) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(2,1) + Cqd8_y_LNP*YdcL(0,2)*YdL(2,1) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(2,1)).real();
1696 Cqd8_1233i_LNP = (Cqd8_d0_LNP*SQDL(0,1) + Cqd8_dd_LNP*SDL(2,2)*SQDL(0,1) + Cqd8_u0_LNP*SQUL(0,1) + Cqd8_ud_LNP*SDL(2,2)*SQUL(0,1) + Cqd8_yd_LNP*SQDYdcL(2,1)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(2,1) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(2,1) + Cqd8_y_LNP*YdcL(0,2)*YdL(2,1) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(2,1)).imag();
1697 Cqd8_1311r_LNP = (Cqd8_d0_LNP*SQDL(0,2) + Cqd8_dd_LNP*SDL(0,0)*SQDL(0,2) + Cqd8_u0_LNP*SQUL(0,2) + Cqd8_ud_LNP*SDL(0,0)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(0,2) + Cqd8_y_LNP*YdcL(0,0)*YdL(0,2) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(0,2)).real();
1698 Cqd8_1311i_LNP = (Cqd8_d0_LNP*SQDL(0,2) + Cqd8_dd_LNP*SDL(0,0)*SQDL(0,2) + Cqd8_u0_LNP*SQUL(0,2) + Cqd8_ud_LNP*SDL(0,0)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(0,2) + Cqd8_y_LNP*YdcL(0,0)*YdL(0,2) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(0,2)).imag();
1699 Cqd8_1312r_LNP = (Cqd8_dd_LNP*SDL(0,1)*SQDL(0,2) + Cqd8_ud_LNP*SDL(0,1)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(0,2) + Cqd8_y_LNP*YdcL(0,1)*YdL(0,2) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(0,2)).real();
1700 Cqd8_1312i_LNP = (Cqd8_dd_LNP*SDL(0,1)*SQDL(0,2) + Cqd8_ud_LNP*SDL(0,1)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(0,2) + Cqd8_y_LNP*YdcL(0,1)*YdL(0,2) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(0,2)).imag();
1701 Cqd8_1313r_LNP = (Cqd8_dd_LNP*SDL(0,2)*SQDL(0,2) + Cqd8_ud_LNP*SDL(0,2)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(0,2) + Cqd8_y_LNP*YdcL(0,2)*YdL(0,2) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(0,2)).real();
1702 Cqd8_1313i_LNP = (Cqd8_dd_LNP*SDL(0,2)*SQDL(0,2) + Cqd8_ud_LNP*SDL(0,2)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(0,2) + Cqd8_y_LNP*YdcL(0,2)*YdL(0,2) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(0,2)).imag();
1703 Cqd8_1321r_LNP = (Cqd8_dd_LNP*SDL(1,0)*SQDL(0,2) + Cqd8_ud_LNP*SDL(1,0)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(1,2) + Cqd8_y_LNP*YdcL(0,0)*YdL(1,2) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(1,2)).real();
1704 Cqd8_1321i_LNP = (Cqd8_dd_LNP*SDL(1,0)*SQDL(0,2) + Cqd8_ud_LNP*SDL(1,0)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(1,2) + Cqd8_y_LNP*YdcL(0,0)*YdL(1,2) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(1,2)).imag();
1705 Cqd8_1322r_LNP = (Cqd8_d0_LNP*SQDL(0,2) + Cqd8_dd_LNP*SDL(1,1)*SQDL(0,2) + Cqd8_u0_LNP*SQUL(0,2) + Cqd8_ud_LNP*SDL(1,1)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(1,2) + Cqd8_y_LNP*YdcL(0,1)*YdL(1,2) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(1,2)).real();
1706 Cqd8_1322i_LNP = (Cqd8_d0_LNP*SQDL(0,2) + Cqd8_dd_LNP*SDL(1,1)*SQDL(0,2) + Cqd8_u0_LNP*SQUL(0,2) + Cqd8_ud_LNP*SDL(1,1)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(1,2) + Cqd8_y_LNP*YdcL(0,1)*YdL(1,2) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(1,2)).imag();
1707 Cqd8_1323r_LNP = (Cqd8_dd_LNP*SDL(1,2)*SQDL(0,2) + Cqd8_ud_LNP*SDL(1,2)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(1,2) + Cqd8_y_LNP*YdcL(0,2)*YdL(1,2) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(1,2)).real();
1708 Cqd8_1323i_LNP = (Cqd8_dd_LNP*SDL(1,2)*SQDL(0,2) + Cqd8_ud_LNP*SDL(1,2)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(1,2) + Cqd8_y_LNP*YdcL(0,2)*YdL(1,2) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(1,2)).imag();
1709 Cqd8_1331r_LNP = (Cqd8_dd_LNP*SDL(2,0)*SQDL(0,2) + Cqd8_ud_LNP*SDL(2,0)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(2,2) + Cqd8_y_LNP*YdcL(0,0)*YdL(2,2) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(2,2)).real();
1710 Cqd8_1331i_LNP = (Cqd8_dd_LNP*SDL(2,0)*SQDL(0,2) + Cqd8_ud_LNP*SDL(2,0)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(0,0) + Cqd8_dy_LNP*SQDYdcL(0,0)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(0,0)*YdL(2,2) + Cqd8_y_LNP*YdcL(0,0)*YdL(2,2) + Cqd8_yu_LNP*YdcL(0,0)*YdSQUL(2,2)).imag();
1711 Cqd8_1332r_LNP = (Cqd8_dd_LNP*SDL(2,1)*SQDL(0,2) + Cqd8_ud_LNP*SDL(2,1)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(2,2) + Cqd8_y_LNP*YdcL(0,1)*YdL(2,2) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(2,2)).real();
1712 Cqd8_1332i_LNP = (Cqd8_dd_LNP*SDL(2,1)*SQDL(0,2) + Cqd8_ud_LNP*SDL(2,1)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(0,1) + Cqd8_dy_LNP*SQDYdcL(0,1)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(0,1)*YdL(2,2) + Cqd8_y_LNP*YdcL(0,1)*YdL(2,2) + Cqd8_yu_LNP*YdcL(0,1)*YdSQUL(2,2)).imag();
1713 Cqd8_1333r_LNP = (Cqd8_d0_LNP*SQDL(0,2) + Cqd8_dd_LNP*SDL(2,2)*SQDL(0,2) + Cqd8_u0_LNP*SQUL(0,2) + Cqd8_ud_LNP*SDL(2,2)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(2,2) + Cqd8_y_LNP*YdcL(0,2)*YdL(2,2) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(2,2)).real();
1714 Cqd8_1333i_LNP = (Cqd8_d0_LNP*SQDL(0,2) + Cqd8_dd_LNP*SDL(2,2)*SQDL(0,2) + Cqd8_u0_LNP*SQUL(0,2) + Cqd8_ud_LNP*SDL(2,2)*SQUL(0,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(0,2) + Cqd8_dy_LNP*SQDYdcL(0,2)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(0,2)*YdL(2,2) + Cqd8_y_LNP*YdcL(0,2)*YdL(2,2) + Cqd8_yu_LNP*YdcL(0,2)*YdSQUL(2,2)).imag();
1715 Cqd8_2211r_LNP = (Cqd8_00_LNP + Cqd8_0d_LNP*SDL(0,0) + Cqd8_d0_LNP*SQDL(1,1) + Cqd8_dd_LNP*SDL(0,0)*SQDL(1,1) + Cqd8_u0_LNP*SQUL(1,1) + Cqd8_ud_LNP*SDL(0,0)*SQUL(1,1) + Cqd8_yd_LNP*SQDYdcL(0,1)*YdcL(1,0) + Cqd8_dy_LNP*SQDYdcL(1,0)*YdL(0,1) + Cqd8_uy_LNP*SQUYdcL(1,0)*YdL(0,1) + Cqd8_y_LNP*YdcL(1,0)*YdL(0,1) + Cqd8_yu_LNP*YdcL(1,0)*YdSQUL(0,1)).real();
1716 Cqd8_2212r_LNP = (Cqd8_0d_LNP*SDL(0,1) + Cqd8_dd_LNP*SDL(0,1)*SQDL(1,1) + Cqd8_ud_LNP*SDL(0,1)*SQUL(1,1) + Cqd8_yd_LNP*SQDYdcL(0,1)*YdcL(1,1) + Cqd8_dy_LNP*SQDYdcL(1,1)*YdL(0,1) + Cqd8_uy_LNP*SQUYdcL(1,1)*YdL(0,1) + Cqd8_y_LNP*YdcL(1,1)*YdL(0,1) + Cqd8_yu_LNP*YdcL(1,1)*YdSQUL(0,1)).real();
1717 Cqd8_2212i_LNP = (Cqd8_0d_LNP*SDL(0,1) + Cqd8_dd_LNP*SDL(0,1)*SQDL(1,1) + Cqd8_ud_LNP*SDL(0,1)*SQUL(1,1) + Cqd8_yd_LNP*SQDYdcL(0,1)*YdcL(1,1) + Cqd8_dy_LNP*SQDYdcL(1,1)*YdL(0,1) + Cqd8_uy_LNP*SQUYdcL(1,1)*YdL(0,1) + Cqd8_y_LNP*YdcL(1,1)*YdL(0,1) + Cqd8_yu_LNP*YdcL(1,1)*YdSQUL(0,1)).imag();
1718 Cqd8_2213r_LNP = (Cqd8_0d_LNP*SDL(0,2) + Cqd8_dd_LNP*SDL(0,2)*SQDL(1,1) + Cqd8_ud_LNP*SDL(0,2)*SQUL(1,1) + Cqd8_yd_LNP*SQDYdcL(0,1)*YdcL(1,2) + Cqd8_dy_LNP*SQDYdcL(1,2)*YdL(0,1) + Cqd8_uy_LNP*SQUYdcL(1,2)*YdL(0,1) + Cqd8_y_LNP*YdcL(1,2)*YdL(0,1) + Cqd8_yu_LNP*YdcL(1,2)*YdSQUL(0,1)).real();
1719 Cqd8_2213i_LNP = (Cqd8_0d_LNP*SDL(0,2) + Cqd8_dd_LNP*SDL(0,2)*SQDL(1,1) + Cqd8_ud_LNP*SDL(0,2)*SQUL(1,1) + Cqd8_yd_LNP*SQDYdcL(0,1)*YdcL(1,2) + Cqd8_dy_LNP*SQDYdcL(1,2)*YdL(0,1) + Cqd8_uy_LNP*SQUYdcL(1,2)*YdL(0,1) + Cqd8_y_LNP*YdcL(1,2)*YdL(0,1) + Cqd8_yu_LNP*YdcL(1,2)*YdSQUL(0,1)).imag();
1720 Cqd8_2222r_LNP = (Cqd8_00_LNP + Cqd8_0d_LNP*SDL(1,1) + Cqd8_d0_LNP*SQDL(1,1) + Cqd8_dd_LNP*SDL(1,1)*SQDL(1,1) + Cqd8_u0_LNP*SQUL(1,1) + Cqd8_ud_LNP*SDL(1,1)*SQUL(1,1) + Cqd8_yd_LNP*SQDYdcL(1,1)*YdcL(1,1) + Cqd8_dy_LNP*SQDYdcL(1,1)*YdL(1,1) + Cqd8_uy_LNP*SQUYdcL(1,1)*YdL(1,1) + Cqd8_y_LNP*YdcL(1,1)*YdL(1,1) + Cqd8_yu_LNP*YdcL(1,1)*YdSQUL(1,1)).real();
1721 Cqd8_2223r_LNP = (Cqd8_0d_LNP*SDL(1,2) + Cqd8_dd_LNP*SDL(1,2)*SQDL(1,1) + Cqd8_ud_LNP*SDL(1,2)*SQUL(1,1) + Cqd8_yd_LNP*SQDYdcL(1,1)*YdcL(1,2) + Cqd8_dy_LNP*SQDYdcL(1,2)*YdL(1,1) + Cqd8_uy_LNP*SQUYdcL(1,2)*YdL(1,1) + Cqd8_y_LNP*YdcL(1,2)*YdL(1,1) + Cqd8_yu_LNP*YdcL(1,2)*YdSQUL(1,1)).real();
1722 Cqd8_2223i_LNP = (Cqd8_0d_LNP*SDL(1,2) + Cqd8_dd_LNP*SDL(1,2)*SQDL(1,1) + Cqd8_ud_LNP*SDL(1,2)*SQUL(1,1) + Cqd8_yd_LNP*SQDYdcL(1,1)*YdcL(1,2) + Cqd8_dy_LNP*SQDYdcL(1,2)*YdL(1,1) + Cqd8_uy_LNP*SQUYdcL(1,2)*YdL(1,1) + Cqd8_y_LNP*YdcL(1,2)*YdL(1,1) + Cqd8_yu_LNP*YdcL(1,2)*YdSQUL(1,1)).imag();
1723 Cqd8_2233r_LNP = (Cqd8_00_LNP + Cqd8_0d_LNP*SDL(2,2) + Cqd8_d0_LNP*SQDL(1,1) + Cqd8_dd_LNP*SDL(2,2)*SQDL(1,1) + Cqd8_u0_LNP*SQUL(1,1) + Cqd8_ud_LNP*SDL(2,2)*SQUL(1,1) + Cqd8_yd_LNP*SQDYdcL(2,1)*YdcL(1,2) + Cqd8_dy_LNP*SQDYdcL(1,2)*YdL(2,1) + Cqd8_uy_LNP*SQUYdcL(1,2)*YdL(2,1) + Cqd8_y_LNP*YdcL(1,2)*YdL(2,1) + Cqd8_yu_LNP*YdcL(1,2)*YdSQUL(2,1)).real();
1724 Cqd8_2311r_LNP = (Cqd8_d0_LNP*SQDL(1,2) + Cqd8_dd_LNP*SDL(0,0)*SQDL(1,2) + Cqd8_u0_LNP*SQUL(1,2) + Cqd8_ud_LNP*SDL(0,0)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(1,0) + Cqd8_dy_LNP*SQDYdcL(1,0)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(1,0)*YdL(0,2) + Cqd8_y_LNP*YdcL(1,0)*YdL(0,2) + Cqd8_yu_LNP*YdcL(1,0)*YdSQUL(0,2)).real();
1725 Cqd8_2311i_LNP = (Cqd8_d0_LNP*SQDL(1,2) + Cqd8_dd_LNP*SDL(0,0)*SQDL(1,2) + Cqd8_u0_LNP*SQUL(1,2) + Cqd8_ud_LNP*SDL(0,0)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(1,0) + Cqd8_dy_LNP*SQDYdcL(1,0)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(1,0)*YdL(0,2) + Cqd8_y_LNP*YdcL(1,0)*YdL(0,2) + Cqd8_yu_LNP*YdcL(1,0)*YdSQUL(0,2)).imag();
1726 Cqd8_2312r_LNP = (Cqd8_dd_LNP*SDL(0,1)*SQDL(1,2) + Cqd8_ud_LNP*SDL(0,1)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(1,1) + Cqd8_dy_LNP*SQDYdcL(1,1)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(1,1)*YdL(0,2) + Cqd8_y_LNP*YdcL(1,1)*YdL(0,2) + Cqd8_yu_LNP*YdcL(1,1)*YdSQUL(0,2)).real();
1727 Cqd8_2312i_LNP = (Cqd8_dd_LNP*SDL(0,1)*SQDL(1,2) + Cqd8_ud_LNP*SDL(0,1)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(1,1) + Cqd8_dy_LNP*SQDYdcL(1,1)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(1,1)*YdL(0,2) + Cqd8_y_LNP*YdcL(1,1)*YdL(0,2) + Cqd8_yu_LNP*YdcL(1,1)*YdSQUL(0,2)).imag();
1728 Cqd8_2313r_LNP = (Cqd8_dd_LNP*SDL(0,2)*SQDL(1,2) + Cqd8_ud_LNP*SDL(0,2)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(1,2) + Cqd8_dy_LNP*SQDYdcL(1,2)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(1,2)*YdL(0,2) + Cqd8_y_LNP*YdcL(1,2)*YdL(0,2) + Cqd8_yu_LNP*YdcL(1,2)*YdSQUL(0,2)).real();
1729 Cqd8_2313i_LNP = (Cqd8_dd_LNP*SDL(0,2)*SQDL(1,2) + Cqd8_ud_LNP*SDL(0,2)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(1,2) + Cqd8_dy_LNP*SQDYdcL(1,2)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(1,2)*YdL(0,2) + Cqd8_y_LNP*YdcL(1,2)*YdL(0,2) + Cqd8_yu_LNP*YdcL(1,2)*YdSQUL(0,2)).imag();
1730 Cqd8_2321r_LNP = (Cqd8_dd_LNP*SDL(1,0)*SQDL(1,2) + Cqd8_ud_LNP*SDL(1,0)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(1,0) + Cqd8_dy_LNP*SQDYdcL(1,0)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(1,0)*YdL(1,2) + Cqd8_y_LNP*YdcL(1,0)*YdL(1,2) + Cqd8_yu_LNP*YdcL(1,0)*YdSQUL(1,2)).real();
1731 Cqd8_2321i_LNP = (Cqd8_dd_LNP*SDL(1,0)*SQDL(1,2) + Cqd8_ud_LNP*SDL(1,0)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(1,0) + Cqd8_dy_LNP*SQDYdcL(1,0)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(1,0)*YdL(1,2) + Cqd8_y_LNP*YdcL(1,0)*YdL(1,2) + Cqd8_yu_LNP*YdcL(1,0)*YdSQUL(1,2)).imag();
1732 Cqd8_2322r_LNP = (Cqd8_d0_LNP*SQDL(1,2) + Cqd8_dd_LNP*SDL(1,1)*SQDL(1,2) + Cqd8_u0_LNP*SQUL(1,2) + Cqd8_ud_LNP*SDL(1,1)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(1,1) + Cqd8_dy_LNP*SQDYdcL(1,1)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(1,1)*YdL(1,2) + Cqd8_y_LNP*YdcL(1,1)*YdL(1,2) + Cqd8_yu_LNP*YdcL(1,1)*YdSQUL(1,2)).real();
1733 Cqd8_2322i_LNP = (Cqd8_d0_LNP*SQDL(1,2) + Cqd8_dd_LNP*SDL(1,1)*SQDL(1,2) + Cqd8_u0_LNP*SQUL(1,2) + Cqd8_ud_LNP*SDL(1,1)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(1,1) + Cqd8_dy_LNP*SQDYdcL(1,1)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(1,1)*YdL(1,2) + Cqd8_y_LNP*YdcL(1,1)*YdL(1,2) + Cqd8_yu_LNP*YdcL(1,1)*YdSQUL(1,2)).imag();
1734 Cqd8_2323r_LNP = (Cqd8_dd_LNP*SDL(1,2)*SQDL(1,2) + Cqd8_ud_LNP*SDL(1,2)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(1,2) + Cqd8_dy_LNP*SQDYdcL(1,2)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(1,2)*YdL(1,2) + Cqd8_y_LNP*YdcL(1,2)*YdL(1,2) + Cqd8_yu_LNP*YdcL(1,2)*YdSQUL(1,2)).real();
1735 Cqd8_2323i_LNP = (Cqd8_dd_LNP*SDL(1,2)*SQDL(1,2) + Cqd8_ud_LNP*SDL(1,2)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(1,2) + Cqd8_dy_LNP*SQDYdcL(1,2)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(1,2)*YdL(1,2) + Cqd8_y_LNP*YdcL(1,2)*YdL(1,2) + Cqd8_yu_LNP*YdcL(1,2)*YdSQUL(1,2)).imag();
1736 Cqd8_2331r_LNP = (Cqd8_dd_LNP*SDL(2,0)*SQDL(1,2) + Cqd8_ud_LNP*SDL(2,0)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(1,0) + Cqd8_dy_LNP*SQDYdcL(1,0)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(1,0)*YdL(2,2) + Cqd8_y_LNP*YdcL(1,0)*YdL(2,2) + Cqd8_yu_LNP*YdcL(1,0)*YdSQUL(2,2)).real();
1737 Cqd8_2331i_LNP = (Cqd8_dd_LNP*SDL(2,0)*SQDL(1,2) + Cqd8_ud_LNP*SDL(2,0)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(1,0) + Cqd8_dy_LNP*SQDYdcL(1,0)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(1,0)*YdL(2,2) + Cqd8_y_LNP*YdcL(1,0)*YdL(2,2) + Cqd8_yu_LNP*YdcL(1,0)*YdSQUL(2,2)).imag();
1738 Cqd8_2332r_LNP = (Cqd8_dd_LNP*SDL(2,1)*SQDL(1,2) + Cqd8_ud_LNP*SDL(2,1)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(1,1) + Cqd8_dy_LNP*SQDYdcL(1,1)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(1,1)*YdL(2,2) + Cqd8_y_LNP*YdcL(1,1)*YdL(2,2) + Cqd8_yu_LNP*YdcL(1,1)*YdSQUL(2,2)).real();
1739 Cqd8_2332i_LNP = (Cqd8_dd_LNP*SDL(2,1)*SQDL(1,2) + Cqd8_ud_LNP*SDL(2,1)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(1,1) + Cqd8_dy_LNP*SQDYdcL(1,1)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(1,1)*YdL(2,2) + Cqd8_y_LNP*YdcL(1,1)*YdL(2,2) + Cqd8_yu_LNP*YdcL(1,1)*YdSQUL(2,2)).imag();
1740 Cqd8_2333r_LNP = (Cqd8_d0_LNP*SQDL(1,2) + Cqd8_dd_LNP*SDL(2,2)*SQDL(1,2) + Cqd8_u0_LNP*SQUL(1,2) + Cqd8_ud_LNP*SDL(2,2)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(1,2) + Cqd8_dy_LNP*SQDYdcL(1,2)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(1,2)*YdL(2,2) + Cqd8_y_LNP*YdcL(1,2)*YdL(2,2) + Cqd8_yu_LNP*YdcL(1,2)*YdSQUL(2,2)).real();
1741 Cqd8_2333i_LNP = (Cqd8_d0_LNP*SQDL(1,2) + Cqd8_dd_LNP*SDL(2,2)*SQDL(1,2) + Cqd8_u0_LNP*SQUL(1,2) + Cqd8_ud_LNP*SDL(2,2)*SQUL(1,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(1,2) + Cqd8_dy_LNP*SQDYdcL(1,2)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(1,2)*YdL(2,2) + Cqd8_y_LNP*YdcL(1,2)*YdL(2,2) + Cqd8_yu_LNP*YdcL(1,2)*YdSQUL(2,2)).imag();
1742 Cqd8_3311r_LNP = (Cqd8_00_LNP + Cqd8_0d_LNP*SDL(0,0) + Cqd8_d0_LNP*SQDL(2,2) + Cqd8_dd_LNP*SDL(0,0)*SQDL(2,2) + Cqd8_u0_LNP*SQUL(2,2) + Cqd8_ud_LNP*SDL(0,0)*SQUL(2,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(2,0) + Cqd8_dy_LNP*SQDYdcL(2,0)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(2,0)*YdL(0,2) + Cqd8_y_LNP*YdcL(2,0)*YdL(0,2) + Cqd8_yu_LNP*YdcL(2,0)*YdSQUL(0,2)).real();
1743 Cqd8_3312r_LNP = (Cqd8_0d_LNP*SDL(0,1) + Cqd8_dd_LNP*SDL(0,1)*SQDL(2,2) + Cqd8_ud_LNP*SDL(0,1)*SQUL(2,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(2,1) + Cqd8_dy_LNP*SQDYdcL(2,1)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(2,1)*YdL(0,2) + Cqd8_y_LNP*YdcL(2,1)*YdL(0,2) + Cqd8_yu_LNP*YdcL(2,1)*YdSQUL(0,2)).real();
1744 Cqd8_3312i_LNP = (Cqd8_0d_LNP*SDL(0,1) + Cqd8_dd_LNP*SDL(0,1)*SQDL(2,2) + Cqd8_ud_LNP*SDL(0,1)*SQUL(2,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(2,1) + Cqd8_dy_LNP*SQDYdcL(2,1)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(2,1)*YdL(0,2) + Cqd8_y_LNP*YdcL(2,1)*YdL(0,2) + Cqd8_yu_LNP*YdcL(2,1)*YdSQUL(0,2)).imag();
1745 Cqd8_3313r_LNP = (Cqd8_0d_LNP*SDL(0,2) + Cqd8_dd_LNP*SDL(0,2)*SQDL(2,2) + Cqd8_ud_LNP*SDL(0,2)*SQUL(2,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(2,2) + Cqd8_dy_LNP*SQDYdcL(2,2)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(2,2)*YdL(0,2) + Cqd8_y_LNP*YdcL(2,2)*YdL(0,2) + Cqd8_yu_LNP*YdcL(2,2)*YdSQUL(0,2)).real();
1746 Cqd8_3313i_LNP = (Cqd8_0d_LNP*SDL(0,2) + Cqd8_dd_LNP*SDL(0,2)*SQDL(2,2) + Cqd8_ud_LNP*SDL(0,2)*SQUL(2,2) + Cqd8_yd_LNP*SQDYdcL(0,2)*YdcL(2,2) + Cqd8_dy_LNP*SQDYdcL(2,2)*YdL(0,2) + Cqd8_uy_LNP*SQUYdcL(2,2)*YdL(0,2) + Cqd8_y_LNP*YdcL(2,2)*YdL(0,2) + Cqd8_yu_LNP*YdcL(2,2)*YdSQUL(0,2)).imag();
1747 Cqd8_3322r_LNP = (Cqd8_00_LNP + Cqd8_0d_LNP*SDL(1,1) + Cqd8_d0_LNP*SQDL(2,2) + Cqd8_dd_LNP*SDL(1,1)*SQDL(2,2) + Cqd8_u0_LNP*SQUL(2,2) + Cqd8_ud_LNP*SDL(1,1)*SQUL(2,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(2,1) + Cqd8_dy_LNP*SQDYdcL(2,1)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(2,1)*YdL(1,2) + Cqd8_y_LNP*YdcL(2,1)*YdL(1,2) + Cqd8_yu_LNP*YdcL(2,1)*YdSQUL(1,2)).real();
1748 Cqd8_3323r_LNP = (Cqd8_0d_LNP*SDL(1,2) + Cqd8_dd_LNP*SDL(1,2)*SQDL(2,2) + Cqd8_ud_LNP*SDL(1,2)*SQUL(2,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(2,2) + Cqd8_dy_LNP*SQDYdcL(2,2)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(2,2)*YdL(1,2) + Cqd8_y_LNP*YdcL(2,2)*YdL(1,2) + Cqd8_yu_LNP*YdcL(2,2)*YdSQUL(1,2)).real();
1749 Cqd8_3323i_LNP = (Cqd8_0d_LNP*SDL(1,2) + Cqd8_dd_LNP*SDL(1,2)*SQDL(2,2) + Cqd8_ud_LNP*SDL(1,2)*SQUL(2,2) + Cqd8_yd_LNP*SQDYdcL(1,2)*YdcL(2,2) + Cqd8_dy_LNP*SQDYdcL(2,2)*YdL(1,2) + Cqd8_uy_LNP*SQUYdcL(2,2)*YdL(1,2) + Cqd8_y_LNP*YdcL(2,2)*YdL(1,2) + Cqd8_yu_LNP*YdcL(2,2)*YdSQUL(1,2)).imag();
1750 Cqd8_3333r_LNP = (Cqd8_00_LNP + Cqd8_0d_LNP*SDL(2,2) + Cqd8_d0_LNP*SQDL(2,2) + Cqd8_dd_LNP*SDL(2,2)*SQDL(2,2) + Cqd8_u0_LNP*SQUL(2,2) + Cqd8_ud_LNP*SDL(2,2)*SQUL(2,2) + Cqd8_yd_LNP*SQDYdcL(2,2)*YdcL(2,2) + Cqd8_dy_LNP*SQDYdcL(2,2)*YdL(2,2) + Cqd8_uy_LNP*SQUYdcL(2,2)*YdL(2,2) + Cqd8_y_LNP*YdcL(2,2)*YdL(2,2) + Cqd8_yu_LNP*YdcL(2,2)*YdSQUL(2,2)).real();
1751
1752 Cquqd1_1111r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(0,0) + Cquqd1_00_LNP*YdcL(0,0)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(0,0)).real();
1753 Cquqd1_1111i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(0,0) + Cquqd1_00_LNP*YdcL(0,0)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(0,0)).imag();
1754 Cquqd1_1112r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(0,0) + Cquqd1_00_LNP*YdcL(0,1)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(0,1)).real();
1755 Cquqd1_1112i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(0,0) + Cquqd1_00_LNP*YdcL(0,1)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(0,1)).imag();
1756 Cquqd1_1113r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(0,0) + Cquqd1_00_LNP*YdcL(0,2)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(0,2)).real();
1757 Cquqd1_1113i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(0,0) + Cquqd1_00_LNP*YdcL(0,2)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(0,2)).imag();
1758 Cquqd1_1121r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(0,0) + Cquqd1_00_LNP*YdcL(1,0)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(0,0)).real();
1759 Cquqd1_1121i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(0,0) + Cquqd1_00_LNP*YdcL(1,0)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(0,0)).imag();
1760 Cquqd1_1122r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(0,0) + Cquqd1_00_LNP*YdcL(1,1)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(0,1)).real();
1761 Cquqd1_1122i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(0,0) + Cquqd1_00_LNP*YdcL(1,1)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(0,1)).imag();
1762 Cquqd1_1123r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(0,0) + Cquqd1_00_LNP*YdcL(1,2)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(0,2)).real();
1763 Cquqd1_1123i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(0,0) + Cquqd1_00_LNP*YdcL(1,2)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(0,2)).imag();
1764 Cquqd1_1131r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(0,0) + Cquqd1_00_LNP*YdcL(2,0)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(0,0)).real();
1765 Cquqd1_1131i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(0,0) + Cquqd1_00_LNP*YdcL(2,0)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(0,0)).imag();
1766 Cquqd1_1132r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(0,0) + Cquqd1_00_LNP*YdcL(2,1)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(0,1)).real();
1767 Cquqd1_1132i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(0,0) + Cquqd1_00_LNP*YdcL(2,1)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(0,1)).imag();
1768 Cquqd1_1133r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(0,0) + Cquqd1_00_LNP*YdcL(2,2)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(0,2)).real();
1769 Cquqd1_1133i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,0)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(0,0)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(0,0) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(0,0) + Cquqd1_00_LNP*YdcL(2,2)*YucL(0,0) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(0,2)).imag();
1770 Cquqd1_1211r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(0,1) + Cquqd1_00_LNP*YdcL(0,0)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(0,0)).real();
1771 Cquqd1_1211i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(0,1) + Cquqd1_00_LNP*YdcL(0,0)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(0,0)).imag();
1772 Cquqd1_1212r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(0,1) + Cquqd1_00_LNP*YdcL(0,1)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(0,1)).real();
1773 Cquqd1_1212i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(0,1) + Cquqd1_00_LNP*YdcL(0,1)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(0,1)).imag();
1774 Cquqd1_1213r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(0,1) + Cquqd1_00_LNP*YdcL(0,2)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(0,2)).real();
1775 Cquqd1_1213i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(0,1) + Cquqd1_00_LNP*YdcL(0,2)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(0,2)).imag();
1776 Cquqd1_1221r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(0,1) + Cquqd1_00_LNP*YdcL(1,0)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(0,0)).real();
1777 Cquqd1_1221i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(0,1) + Cquqd1_00_LNP*YdcL(1,0)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(0,0)).imag();
1778 Cquqd1_1222r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(0,1) + Cquqd1_00_LNP*YdcL(1,1)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(0,1)).real();
1779 Cquqd1_1222i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(0,1) + Cquqd1_00_LNP*YdcL(1,1)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(0,1)).imag();
1780 Cquqd1_1223r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(0,1) + Cquqd1_00_LNP*YdcL(1,2)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(0,2)).real();
1781 Cquqd1_1223i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(0,1) + Cquqd1_00_LNP*YdcL(1,2)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(0,2)).imag();
1782 Cquqd1_1231r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(0,1) + Cquqd1_00_LNP*YdcL(2,0)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(0,0)).real();
1783 Cquqd1_1231i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(0,1) + Cquqd1_00_LNP*YdcL(2,0)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(0,0)).imag();
1784 Cquqd1_1232r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(0,1) + Cquqd1_00_LNP*YdcL(2,1)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(0,1)).real();
1785 Cquqd1_1232i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(0,1) + Cquqd1_00_LNP*YdcL(2,1)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(0,1)).imag();
1786 Cquqd1_1233r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(0,1) + Cquqd1_00_LNP*YdcL(2,2)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(0,2)).real();
1787 Cquqd1_1233i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,1)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(0,1)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(0,1) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(0,1) + Cquqd1_00_LNP*YdcL(2,2)*YucL(0,1) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(0,2)).imag();
1788 Cquqd1_1311r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(0,2) + Cquqd1_00_LNP*YdcL(0,0)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(0,0)).real();
1789 Cquqd1_1311i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(0,2) + Cquqd1_00_LNP*YdcL(0,0)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(0,0)).imag();
1790 Cquqd1_1312r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(0,2) + Cquqd1_00_LNP*YdcL(0,1)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(0,1)).real();
1791 Cquqd1_1312i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(0,2) + Cquqd1_00_LNP*YdcL(0,1)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(0,1)).imag();
1792 Cquqd1_1313r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(0,2) + Cquqd1_00_LNP*YdcL(0,2)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(0,2)).real();
1793 Cquqd1_1313i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(0,2) + Cquqd1_00_LNP*YdcL(0,2)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(0,2)).imag();
1794 Cquqd1_1321r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(0,2) + Cquqd1_00_LNP*YdcL(1,0)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(0,0)).real();
1795 Cquqd1_1321i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(0,2) + Cquqd1_00_LNP*YdcL(1,0)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(0,0)).imag();
1796 Cquqd1_1322r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(0,2) + Cquqd1_00_LNP*YdcL(1,1)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(0,1)).real();
1797 Cquqd1_1322i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(0,2) + Cquqd1_00_LNP*YdcL(1,1)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(0,1)).imag();
1798 Cquqd1_1323r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(0,2) + Cquqd1_00_LNP*YdcL(1,2)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(0,2)).real();
1799 Cquqd1_1323i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(0,2) + Cquqd1_00_LNP*YdcL(1,2)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(0,2)).imag();
1800 Cquqd1_1331r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(0,2) + Cquqd1_00_LNP*YdcL(2,0)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(0,0)).real();
1801 Cquqd1_1331i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(0,2) + Cquqd1_00_LNP*YdcL(2,0)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,0)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(0,0)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(0,0) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(0,0) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(0,0)).imag();
1802 Cquqd1_1332r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(0,2) + Cquqd1_00_LNP*YdcL(2,1)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(0,1)).real();
1803 Cquqd1_1332i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(0,2) + Cquqd1_00_LNP*YdcL(2,1)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,1)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(0,1)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(0,1) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(0,1) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(0,1)).imag();
1804 Cquqd1_1333r_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(0,2) + Cquqd1_00_LNP*YdcL(2,2)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(0,2)).real();
1805 Cquqd1_1333i_LNP = (Cquqd1_d0_LNP*SQDYucL(0,2)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(0,2)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(0,2) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(0,2) + Cquqd1_00_LNP*YdcL(2,2)*YucL(0,2) + Cquqd1p_d0_LNP*SQDYucL(0,2)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(0,2)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(0,2) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(0,2) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(0,2)).imag();
1806 Cquqd1_2111r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(1,0) + Cquqd1_00_LNP*YdcL(0,0)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(1,0)).real();
1807 Cquqd1_2111i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(1,0) + Cquqd1_00_LNP*YdcL(0,0)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(1,0)).imag();
1808 Cquqd1_2112r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(1,0) + Cquqd1_00_LNP*YdcL(0,1)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(1,1)).real();
1809 Cquqd1_2112i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(1,0) + Cquqd1_00_LNP*YdcL(0,1)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(1,1)).imag();
1810 Cquqd1_2113r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(1,0) + Cquqd1_00_LNP*YdcL(0,2)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(1,2)).real();
1811 Cquqd1_2113i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(1,0) + Cquqd1_00_LNP*YdcL(0,2)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(1,2)).imag();
1812 Cquqd1_2121r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(1,0) + Cquqd1_00_LNP*YdcL(1,0)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(1,0)).real();
1813 Cquqd1_2121i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(1,0) + Cquqd1_00_LNP*YdcL(1,0)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(1,0)).imag();
1814 Cquqd1_2122r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(1,0) + Cquqd1_00_LNP*YdcL(1,1)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(1,1)).real();
1815 Cquqd1_2122i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(1,0) + Cquqd1_00_LNP*YdcL(1,1)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(1,1)).imag();
1816 Cquqd1_2123r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(1,0) + Cquqd1_00_LNP*YdcL(1,2)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(1,2)).real();
1817 Cquqd1_2123i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(1,0) + Cquqd1_00_LNP*YdcL(1,2)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(1,2)).imag();
1818 Cquqd1_2131r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(1,0) + Cquqd1_00_LNP*YdcL(2,0)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(1,0)).real();
1819 Cquqd1_2131i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(1,0) + Cquqd1_00_LNP*YdcL(2,0)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(1,0)).imag();
1820 Cquqd1_2132r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(1,0) + Cquqd1_00_LNP*YdcL(2,1)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(1,1)).real();
1821 Cquqd1_2132i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(1,0) + Cquqd1_00_LNP*YdcL(2,1)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(1,1)).imag();
1822 Cquqd1_2133r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(1,0) + Cquqd1_00_LNP*YdcL(2,2)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(1,2)).real();
1823 Cquqd1_2133i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,0)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(1,0)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(1,0) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(1,0) + Cquqd1_00_LNP*YdcL(2,2)*YucL(1,0) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(1,2)).imag();
1824 Cquqd1_2211r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(1,1) + Cquqd1_00_LNP*YdcL(0,0)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(1,0)).real();
1825 Cquqd1_2211i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(1,1) + Cquqd1_00_LNP*YdcL(0,0)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(1,0)).imag();
1826 Cquqd1_2212r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(1,1) + Cquqd1_00_LNP*YdcL(0,1)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(1,1)).real();
1827 Cquqd1_2212i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(1,1) + Cquqd1_00_LNP*YdcL(0,1)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(1,1)).imag();
1828 Cquqd1_2213r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(1,1) + Cquqd1_00_LNP*YdcL(0,2)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(1,2)).real();
1829 Cquqd1_2213i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(1,1) + Cquqd1_00_LNP*YdcL(0,2)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(1,2)).imag();
1830 Cquqd1_2221r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(1,1) + Cquqd1_00_LNP*YdcL(1,0)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(1,0)).real();
1831 Cquqd1_2221i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(1,1) + Cquqd1_00_LNP*YdcL(1,0)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(1,0)).imag();
1832 Cquqd1_2222r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(1,1) + Cquqd1_00_LNP*YdcL(1,1)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(1,1)).real();
1833 Cquqd1_2222i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(1,1) + Cquqd1_00_LNP*YdcL(1,1)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(1,1)).imag();
1834 Cquqd1_2223r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(1,1) + Cquqd1_00_LNP*YdcL(1,2)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(1,2)).real();
1835 Cquqd1_2223i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(1,1) + Cquqd1_00_LNP*YdcL(1,2)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(1,2)).imag();
1836 Cquqd1_2231r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(1,1) + Cquqd1_00_LNP*YdcL(2,0)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(1,0)).real();
1837 Cquqd1_2231i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(1,1) + Cquqd1_00_LNP*YdcL(2,0)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(1,0)).imag();
1838 Cquqd1_2232r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(1,1) + Cquqd1_00_LNP*YdcL(2,1)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(1,1)).real();
1839 Cquqd1_2232i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(1,1) + Cquqd1_00_LNP*YdcL(2,1)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(1,1)).imag();
1840 Cquqd1_2233r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(1,1) + Cquqd1_00_LNP*YdcL(2,2)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(1,2)).real();
1841 Cquqd1_2233i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,1)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(1,1)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(1,1) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(1,1) + Cquqd1_00_LNP*YdcL(2,2)*YucL(1,1) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(1,2)).imag();
1842 Cquqd1_2311r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(1,2) + Cquqd1_00_LNP*YdcL(0,0)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(1,0)).real();
1843 Cquqd1_2311i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(1,2) + Cquqd1_00_LNP*YdcL(0,0)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(1,0)).imag();
1844 Cquqd1_2312r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(1,2) + Cquqd1_00_LNP*YdcL(0,1)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(1,1)).real();
1845 Cquqd1_2312i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(1,2) + Cquqd1_00_LNP*YdcL(0,1)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(1,1)).imag();
1846 Cquqd1_2313r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(1,2) + Cquqd1_00_LNP*YdcL(0,2)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(1,2)).real();
1847 Cquqd1_2313i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(1,2) + Cquqd1_00_LNP*YdcL(0,2)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(1,2)).imag();
1848 Cquqd1_2321r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(1,2) + Cquqd1_00_LNP*YdcL(1,0)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(1,0)).real();
1849 Cquqd1_2321i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(1,2) + Cquqd1_00_LNP*YdcL(1,0)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(1,0)).imag();
1850 Cquqd1_2322r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(1,2) + Cquqd1_00_LNP*YdcL(1,1)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(1,1)).real();
1851 Cquqd1_2322i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(1,2) + Cquqd1_00_LNP*YdcL(1,1)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(1,1)).imag();
1852 Cquqd1_2323r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(1,2) + Cquqd1_00_LNP*YdcL(1,2)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(1,2)).real();
1853 Cquqd1_2323i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(1,2) + Cquqd1_00_LNP*YdcL(1,2)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(1,2)).imag();
1854 Cquqd1_2331r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(1,2) + Cquqd1_00_LNP*YdcL(2,0)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(1,0)).real();
1855 Cquqd1_2331i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(1,2) + Cquqd1_00_LNP*YdcL(2,0)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,0)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(1,0)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(1,0) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(1,0) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(1,0)).imag();
1856 Cquqd1_2332r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(1,2) + Cquqd1_00_LNP*YdcL(2,1)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(1,1)).real();
1857 Cquqd1_2332i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(1,2) + Cquqd1_00_LNP*YdcL(2,1)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,1)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(1,1)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(1,1) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(1,1) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(1,1)).imag();
1858 Cquqd1_2333r_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(1,2) + Cquqd1_00_LNP*YdcL(2,2)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(1,2)).real();
1859 Cquqd1_2333i_LNP = (Cquqd1_d0_LNP*SQDYucL(1,2)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(1,2)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(1,2) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(1,2) + Cquqd1_00_LNP*YdcL(2,2)*YucL(1,2) + Cquqd1p_d0_LNP*SQDYucL(1,2)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(1,2)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(1,2) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(1,2) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(1,2)).imag();
1860 Cquqd1_3111r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(2,0) + Cquqd1_00_LNP*YdcL(0,0)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(2,0)).real();
1861 Cquqd1_3111i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(2,0) + Cquqd1_00_LNP*YdcL(0,0)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(2,0)).imag();
1862 Cquqd1_3112r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(2,0) + Cquqd1_00_LNP*YdcL(0,1)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(2,1)).real();
1863 Cquqd1_3112i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(2,0) + Cquqd1_00_LNP*YdcL(0,1)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(2,1)).imag();
1864 Cquqd1_3113r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(2,0) + Cquqd1_00_LNP*YdcL(0,2)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(2,2)).real();
1865 Cquqd1_3113i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(2,0) + Cquqd1_00_LNP*YdcL(0,2)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(0,0) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(0,0) + Cquqd1p_0d_LNP*SQDYdcL(0,0)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(0,0)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(0,0)*YucL(2,2)).imag();
1866 Cquqd1_3121r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(2,0) + Cquqd1_00_LNP*YdcL(1,0)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(2,0)).real();
1867 Cquqd1_3121i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(2,0) + Cquqd1_00_LNP*YdcL(1,0)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(2,0)).imag();
1868 Cquqd1_3122r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(2,0) + Cquqd1_00_LNP*YdcL(1,1)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(2,1)).real();
1869 Cquqd1_3122i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(2,0) + Cquqd1_00_LNP*YdcL(1,1)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(2,1)).imag();
1870 Cquqd1_3123r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(2,0) + Cquqd1_00_LNP*YdcL(1,2)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(2,2)).real();
1871 Cquqd1_3123i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(2,0) + Cquqd1_00_LNP*YdcL(1,2)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(1,0) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(1,0) + Cquqd1p_0d_LNP*SQDYdcL(1,0)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(1,0)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(1,0)*YucL(2,2)).imag();
1872 Cquqd1_3131r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(2,0) + Cquqd1_00_LNP*YdcL(2,0)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(2,0)).real();
1873 Cquqd1_3131i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(2,0) + Cquqd1_00_LNP*YdcL(2,0)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(2,0)).imag();
1874 Cquqd1_3132r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(2,0) + Cquqd1_00_LNP*YdcL(2,1)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(2,1)).real();
1875 Cquqd1_3132i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(2,0) + Cquqd1_00_LNP*YdcL(2,1)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(2,1)).imag();
1876 Cquqd1_3133r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(2,0) + Cquqd1_00_LNP*YdcL(2,2)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(2,2)).real();
1877 Cquqd1_3133i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,0)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(2,0)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(2,0) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(2,0) + Cquqd1_00_LNP*YdcL(2,2)*YucL(2,0) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(2,0) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(2,0) + Cquqd1p_0d_LNP*SQDYdcL(2,0)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(2,0)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(2,0)*YucL(2,2)).imag();
1878 Cquqd1_3211r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(2,1) + Cquqd1_00_LNP*YdcL(0,0)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(2,0)).real();
1879 Cquqd1_3211i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(2,1) + Cquqd1_00_LNP*YdcL(0,0)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(2,0)).imag();
1880 Cquqd1_3212r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(2,1) + Cquqd1_00_LNP*YdcL(0,1)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(2,1)).real();
1881 Cquqd1_3212i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(2,1) + Cquqd1_00_LNP*YdcL(0,1)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(2,1)).imag();
1882 Cquqd1_3213r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(2,1) + Cquqd1_00_LNP*YdcL(0,2)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(2,2)).real();
1883 Cquqd1_3213i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(2,1) + Cquqd1_00_LNP*YdcL(0,2)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(0,1) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(0,1) + Cquqd1p_0d_LNP*SQDYdcL(0,1)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(0,1)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(0,1)*YucL(2,2)).imag();
1884 Cquqd1_3221r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(2,1) + Cquqd1_00_LNP*YdcL(1,0)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(2,0)).real();
1885 Cquqd1_3221i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(2,1) + Cquqd1_00_LNP*YdcL(1,0)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(2,0)).imag();
1886 Cquqd1_3222r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(2,1) + Cquqd1_00_LNP*YdcL(1,1)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(2,1)).real();
1887 Cquqd1_3222i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(2,1) + Cquqd1_00_LNP*YdcL(1,1)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(2,1)).imag();
1888 Cquqd1_3223r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(2,1) + Cquqd1_00_LNP*YdcL(1,2)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(2,2)).real();
1889 Cquqd1_3223i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(2,1) + Cquqd1_00_LNP*YdcL(1,2)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(1,1) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(1,1) + Cquqd1p_0d_LNP*SQDYdcL(1,1)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(1,1)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(1,1)*YucL(2,2)).imag();
1890 Cquqd1_3231r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(2,1) + Cquqd1_00_LNP*YdcL(2,0)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(2,0)).real();
1891 Cquqd1_3231i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(2,1) + Cquqd1_00_LNP*YdcL(2,0)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(2,0)).imag();
1892 Cquqd1_3232r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(2,1) + Cquqd1_00_LNP*YdcL(2,1)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(2,1)).real();
1893 Cquqd1_3232i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(2,1) + Cquqd1_00_LNP*YdcL(2,1)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(2,1)).imag();
1894 Cquqd1_3233r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(2,1) + Cquqd1_00_LNP*YdcL(2,2)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(2,2)).real();
1895 Cquqd1_3233i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,1)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(2,1)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(2,1) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(2,1) + Cquqd1_00_LNP*YdcL(2,2)*YucL(2,1) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(2,1) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(2,1) + Cquqd1p_0d_LNP*SQDYdcL(2,1)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(2,1)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(2,1)*YucL(2,2)).imag();
1896 Cquqd1_3311r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(2,2) + Cquqd1_00_LNP*YdcL(0,0)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(2,0)).real();
1897 Cquqd1_3311i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(0,0) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(0,0) + Cquqd1_0d_LNP*SQDYdcL(0,0)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(0,0)*YucL(2,2) + Cquqd1_00_LNP*YdcL(0,0)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(2,0)).imag();
1898 Cquqd1_3312r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(2,2) + Cquqd1_00_LNP*YdcL(0,1)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(2,1)).real();
1899 Cquqd1_3312i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(0,1) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(0,1) + Cquqd1_0d_LNP*SQDYdcL(0,1)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(0,1)*YucL(2,2) + Cquqd1_00_LNP*YdcL(0,1)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(2,1)).imag();
1900 Cquqd1_3313r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(2,2) + Cquqd1_00_LNP*YdcL(0,2)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(2,2)).real();
1901 Cquqd1_3313i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(0,2) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(0,2) + Cquqd1_0d_LNP*SQDYdcL(0,2)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(0,2)*YucL(2,2) + Cquqd1_00_LNP*YdcL(0,2)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(0,2) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(0,2) + Cquqd1p_0d_LNP*SQDYdcL(0,2)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(0,2)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(0,2)*YucL(2,2)).imag();
1902 Cquqd1_3321r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(2,2) + Cquqd1_00_LNP*YdcL(1,0)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(2,0)).real();
1903 Cquqd1_3321i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(1,0) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(1,0) + Cquqd1_0d_LNP*SQDYdcL(1,0)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(1,0)*YucL(2,2) + Cquqd1_00_LNP*YdcL(1,0)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(2,0)).imag();
1904 Cquqd1_3322r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(2,2) + Cquqd1_00_LNP*YdcL(1,1)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(2,1)).real();
1905 Cquqd1_3322i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(1,1) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(1,1) + Cquqd1_0d_LNP*SQDYdcL(1,1)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(1,1)*YucL(2,2) + Cquqd1_00_LNP*YdcL(1,1)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(2,1)).imag();
1906 Cquqd1_3323r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(2,2) + Cquqd1_00_LNP*YdcL(1,2)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(2,2)).real();
1907 Cquqd1_3323i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(1,2) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(1,2) + Cquqd1_0d_LNP*SQDYdcL(1,2)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(1,2)*YucL(2,2) + Cquqd1_00_LNP*YdcL(1,2)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(1,2) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(1,2) + Cquqd1p_0d_LNP*SQDYdcL(1,2)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(1,2)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(1,2)*YucL(2,2)).imag();
1908 Cquqd1_3331r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(2,2) + Cquqd1_00_LNP*YdcL(2,0)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(2,0)).real();
1909 Cquqd1_3331i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(2,0) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(2,0) + Cquqd1_0d_LNP*SQDYdcL(2,0)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(2,0)*YucL(2,2) + Cquqd1_00_LNP*YdcL(2,0)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,0)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(2,0)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(2,0) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(2,0) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(2,0)).imag();
1910 Cquqd1_3332r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(2,2) + Cquqd1_00_LNP*YdcL(2,1)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(2,1)).real();
1911 Cquqd1_3332i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(2,1) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(2,1) + Cquqd1_0d_LNP*SQDYdcL(2,1)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(2,1)*YucL(2,2) + Cquqd1_00_LNP*YdcL(2,1)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,1)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(2,1)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(2,1) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(2,1) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(2,1)).imag();
1912 Cquqd1_3333r_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(2,2) + Cquqd1_00_LNP*YdcL(2,2)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(2,2)).real();
1913 Cquqd1_3333i_LNP = (Cquqd1_d0_LNP*SQDYucL(2,2)*YdcL(2,2) + Cquqd1_u0_LNP*SQUYucL(2,2)*YdcL(2,2) + Cquqd1_0d_LNP*SQDYdcL(2,2)*YucL(2,2) + Cquqd1_0u_LNP*SQUYdcL(2,2)*YucL(2,2) + Cquqd1_00_LNP*YdcL(2,2)*YucL(2,2) + Cquqd1p_d0_LNP*SQDYucL(2,2)*YdcL(2,2) + Cquqd1p_u0_LNP*SQUYucL(2,2)*YdcL(2,2) + Cquqd1p_0d_LNP*SQDYdcL(2,2)*YucL(2,2) + Cquqd1p_0u_LNP*SQUYdcL(2,2)*YucL(2,2) + Cquqd1p_00_LNP*YdcL(2,2)*YucL(2,2)).imag();
1914
1915 Cquqd8_1111r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(0,0) + Cquqd8_00_LNP*YdcL(0,0)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(0,0)).real();
1916 Cquqd8_1111i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(0,0) + Cquqd8_00_LNP*YdcL(0,0)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(0,0)).imag();
1917 Cquqd8_1112r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(0,0) + Cquqd8_00_LNP*YdcL(0,1)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(0,1)).real();
1918 Cquqd8_1112i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(0,0) + Cquqd8_00_LNP*YdcL(0,1)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(0,1)).imag();
1919 Cquqd8_1113r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(0,0) + Cquqd8_00_LNP*YdcL(0,2)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(0,2)).real();
1920 Cquqd8_1113i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(0,0) + Cquqd8_00_LNP*YdcL(0,2)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(0,2)).imag();
1921 Cquqd8_1121r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(0,0) + Cquqd8_00_LNP*YdcL(1,0)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(0,0)).real();
1922 Cquqd8_1121i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(0,0) + Cquqd8_00_LNP*YdcL(1,0)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(0,0)).imag();
1923 Cquqd8_1122r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(0,0) + Cquqd8_00_LNP*YdcL(1,1)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(0,1)).real();
1924 Cquqd8_1122i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(0,0) + Cquqd8_00_LNP*YdcL(1,1)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(0,1)).imag();
1925 Cquqd8_1123r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(0,0) + Cquqd8_00_LNP*YdcL(1,2)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(0,2)).real();
1926 Cquqd8_1123i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(0,0) + Cquqd8_00_LNP*YdcL(1,2)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(0,2)).imag();
1927 Cquqd8_1131r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(0,0) + Cquqd8_00_LNP*YdcL(2,0)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(0,0)).real();
1928 Cquqd8_1131i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(0,0) + Cquqd8_00_LNP*YdcL(2,0)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(0,0)).imag();
1929 Cquqd8_1132r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(0,0) + Cquqd8_00_LNP*YdcL(2,1)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(0,1)).real();
1930 Cquqd8_1132i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(0,0) + Cquqd8_00_LNP*YdcL(2,1)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(0,1)).imag();
1931 Cquqd8_1133r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(0,0) + Cquqd8_00_LNP*YdcL(2,2)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(0,2)).real();
1932 Cquqd8_1133i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,0)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(0,0)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(0,0) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(0,0) + Cquqd8_00_LNP*YdcL(2,2)*YucL(0,0) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(0,2)).imag();
1933 Cquqd8_1211r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(0,1) + Cquqd8_00_LNP*YdcL(0,0)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(0,0)).real();
1934 Cquqd8_1211i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(0,1) + Cquqd8_00_LNP*YdcL(0,0)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(0,0)).imag();
1935 Cquqd8_1212r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(0,1) + Cquqd8_00_LNP*YdcL(0,1)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(0,1)).real();
1936 Cquqd8_1212i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(0,1) + Cquqd8_00_LNP*YdcL(0,1)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(0,1)).imag();
1937 Cquqd8_1213r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(0,1) + Cquqd8_00_LNP*YdcL(0,2)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(0,2)).real();
1938 Cquqd8_1213i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(0,1) + Cquqd8_00_LNP*YdcL(0,2)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(0,2)).imag();
1939 Cquqd8_1221r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(0,1) + Cquqd8_00_LNP*YdcL(1,0)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(0,0)).real();
1940 Cquqd8_1221i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(0,1) + Cquqd8_00_LNP*YdcL(1,0)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(0,0)).imag();
1941 Cquqd8_1222r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(0,1) + Cquqd8_00_LNP*YdcL(1,1)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(0,1)).real();
1942 Cquqd8_1222i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(0,1) + Cquqd8_00_LNP*YdcL(1,1)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(0,1)).imag();
1943 Cquqd8_1223r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(0,1) + Cquqd8_00_LNP*YdcL(1,2)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(0,2)).real();
1944 Cquqd8_1223i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(0,1) + Cquqd8_00_LNP*YdcL(1,2)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(0,2)).imag();
1945 Cquqd8_1231r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(0,1) + Cquqd8_00_LNP*YdcL(2,0)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(0,0)).real();
1946 Cquqd8_1231i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(0,1) + Cquqd8_00_LNP*YdcL(2,0)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(0,0)).imag();
1947 Cquqd8_1232r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(0,1) + Cquqd8_00_LNP*YdcL(2,1)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(0,1)).real();
1948 Cquqd8_1232i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(0,1) + Cquqd8_00_LNP*YdcL(2,1)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(0,1)).imag();
1949 Cquqd8_1233r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(0,1) + Cquqd8_00_LNP*YdcL(2,2)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(0,2)).real();
1950 Cquqd8_1233i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,1)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(0,1)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(0,1) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(0,1) + Cquqd8_00_LNP*YdcL(2,2)*YucL(0,1) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(0,2)).imag();
1951 Cquqd8_1311r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(0,2) + Cquqd8_00_LNP*YdcL(0,0)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(0,0)).real();
1952 Cquqd8_1311i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(0,2) + Cquqd8_00_LNP*YdcL(0,0)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(0,0)).imag();
1953 Cquqd8_1312r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(0,2) + Cquqd8_00_LNP*YdcL(0,1)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(0,1)).real();
1954 Cquqd8_1312i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(0,2) + Cquqd8_00_LNP*YdcL(0,1)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(0,1)).imag();
1955 Cquqd8_1313r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(0,2) + Cquqd8_00_LNP*YdcL(0,2)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(0,2)).real();
1956 Cquqd8_1313i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(0,2) + Cquqd8_00_LNP*YdcL(0,2)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(0,2)).imag();
1957 Cquqd8_1321r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(0,2) + Cquqd8_00_LNP*YdcL(1,0)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(0,0)).real();
1958 Cquqd8_1321i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(0,2) + Cquqd8_00_LNP*YdcL(1,0)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(0,0)).imag();
1959 Cquqd8_1322r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(0,2) + Cquqd8_00_LNP*YdcL(1,1)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(0,1)).real();
1960 Cquqd8_1322i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(0,2) + Cquqd8_00_LNP*YdcL(1,1)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(0,1)).imag();
1961 Cquqd8_1323r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(0,2) + Cquqd8_00_LNP*YdcL(1,2)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(0,2)).real();
1962 Cquqd8_1323i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(0,2) + Cquqd8_00_LNP*YdcL(1,2)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(0,2)).imag();
1963 Cquqd8_1331r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(0,2) + Cquqd8_00_LNP*YdcL(2,0)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(0,0)).real();
1964 Cquqd8_1331i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(0,2) + Cquqd8_00_LNP*YdcL(2,0)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,0)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(0,0)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(0,0) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(0,0) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(0,0)).imag();
1965 Cquqd8_1332r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(0,2) + Cquqd8_00_LNP*YdcL(2,1)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(0,1)).real();
1966 Cquqd8_1332i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(0,2) + Cquqd8_00_LNP*YdcL(2,1)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,1)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(0,1)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(0,1) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(0,1) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(0,1)).imag();
1967 Cquqd8_1333r_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(0,2) + Cquqd8_00_LNP*YdcL(2,2)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(0,2)).real();
1968 Cquqd8_1333i_LNP = (Cquqd8_d0_LNP*SQDYucL(0,2)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(0,2)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(0,2) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(0,2) + Cquqd8_00_LNP*YdcL(2,2)*YucL(0,2) + Cquqd8p_d0_LNP*SQDYucL(0,2)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(0,2)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(0,2) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(0,2) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(0,2)).imag();
1969 Cquqd8_2111r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(1,0) + Cquqd8_00_LNP*YdcL(0,0)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(1,0)).real();
1970 Cquqd8_2111i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(1,0) + Cquqd8_00_LNP*YdcL(0,0)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(1,0)).imag();
1971 Cquqd8_2112r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(1,0) + Cquqd8_00_LNP*YdcL(0,1)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(1,1)).real();
1972 Cquqd8_2112i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(1,0) + Cquqd8_00_LNP*YdcL(0,1)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(1,1)).imag();
1973 Cquqd8_2113r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(1,0) + Cquqd8_00_LNP*YdcL(0,2)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(1,2)).real();
1974 Cquqd8_2113i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(1,0) + Cquqd8_00_LNP*YdcL(0,2)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(1,2)).imag();
1975 Cquqd8_2121r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(1,0) + Cquqd8_00_LNP*YdcL(1,0)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(1,0)).real();
1976 Cquqd8_2121i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(1,0) + Cquqd8_00_LNP*YdcL(1,0)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(1,0)).imag();
1977 Cquqd8_2122r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(1,0) + Cquqd8_00_LNP*YdcL(1,1)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(1,1)).real();
1978 Cquqd8_2122i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(1,0) + Cquqd8_00_LNP*YdcL(1,1)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(1,1)).imag();
1979 Cquqd8_2123r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(1,0) + Cquqd8_00_LNP*YdcL(1,2)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(1,2)).real();
1980 Cquqd8_2123i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(1,0) + Cquqd8_00_LNP*YdcL(1,2)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(1,2)).imag();
1981 Cquqd8_2131r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(1,0) + Cquqd8_00_LNP*YdcL(2,0)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(1,0)).real();
1982 Cquqd8_2131i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(1,0) + Cquqd8_00_LNP*YdcL(2,0)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(1,0)).imag();
1983 Cquqd8_2132r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(1,0) + Cquqd8_00_LNP*YdcL(2,1)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(1,1)).real();
1984 Cquqd8_2132i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(1,0) + Cquqd8_00_LNP*YdcL(2,1)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(1,1)).imag();
1985 Cquqd8_2133r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(1,0) + Cquqd8_00_LNP*YdcL(2,2)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(1,2)).real();
1986 Cquqd8_2133i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,0)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(1,0)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(1,0) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(1,0) + Cquqd8_00_LNP*YdcL(2,2)*YucL(1,0) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(1,2)).imag();
1987 Cquqd8_2211r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(1,1) + Cquqd8_00_LNP*YdcL(0,0)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(1,0)).real();
1988 Cquqd8_2211i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(1,1) + Cquqd8_00_LNP*YdcL(0,0)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(1,0)).imag();
1989 Cquqd8_2212r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(1,1) + Cquqd8_00_LNP*YdcL(0,1)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(1,1)).real();
1990 Cquqd8_2212i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(1,1) + Cquqd8_00_LNP*YdcL(0,1)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(1,1)).imag();
1991 Cquqd8_2213r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(1,1) + Cquqd8_00_LNP*YdcL(0,2)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(1,2)).real();
1992 Cquqd8_2213i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(1,1) + Cquqd8_00_LNP*YdcL(0,2)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(1,2)).imag();
1993 Cquqd8_2221r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(1,1) + Cquqd8_00_LNP*YdcL(1,0)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(1,0)).real();
1994 Cquqd8_2221i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(1,1) + Cquqd8_00_LNP*YdcL(1,0)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(1,0)).imag();
1995 Cquqd8_2222r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(1,1) + Cquqd8_00_LNP*YdcL(1,1)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(1,1)).real();
1996 Cquqd8_2222i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(1,1) + Cquqd8_00_LNP*YdcL(1,1)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(1,1)).imag();
1997 Cquqd8_2223r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(1,1) + Cquqd8_00_LNP*YdcL(1,2)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(1,2)).real();
1998 Cquqd8_2223i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(1,1) + Cquqd8_00_LNP*YdcL(1,2)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(1,2)).imag();
1999 Cquqd8_2231r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(1,1) + Cquqd8_00_LNP*YdcL(2,0)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(1,0)).real();
2000 Cquqd8_2231i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(1,1) + Cquqd8_00_LNP*YdcL(2,0)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(1,0)).imag();
2001 Cquqd8_2232r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(1,1) + Cquqd8_00_LNP*YdcL(2,1)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(1,1)).real();
2002 Cquqd8_2232i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(1,1) + Cquqd8_00_LNP*YdcL(2,1)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(1,1)).imag();
2003 Cquqd8_2233r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(1,1) + Cquqd8_00_LNP*YdcL(2,2)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(1,2)).real();
2004 Cquqd8_2233i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,1)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(1,1)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(1,1) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(1,1) + Cquqd8_00_LNP*YdcL(2,2)*YucL(1,1) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(1,2)).imag();
2005 Cquqd8_2311r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(1,2) + Cquqd8_00_LNP*YdcL(0,0)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(1,0)).real();
2006 Cquqd8_2311i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(1,2) + Cquqd8_00_LNP*YdcL(0,0)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(1,0)).imag();
2007 Cquqd8_2312r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(1,2) + Cquqd8_00_LNP*YdcL(0,1)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(1,1)).real();
2008 Cquqd8_2312i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(1,2) + Cquqd8_00_LNP*YdcL(0,1)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(1,1)).imag();
2009 Cquqd8_2313r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(1,2) + Cquqd8_00_LNP*YdcL(0,2)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(1,2)).real();
2010 Cquqd8_2313i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(1,2) + Cquqd8_00_LNP*YdcL(0,2)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(1,2)).imag();
2011 Cquqd8_2321r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(1,2) + Cquqd8_00_LNP*YdcL(1,0)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(1,0)).real();
2012 Cquqd8_2321i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(1,2) + Cquqd8_00_LNP*YdcL(1,0)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(1,0)).imag();
2013 Cquqd8_2322r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(1,2) + Cquqd8_00_LNP*YdcL(1,1)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(1,1)).real();
2014 Cquqd8_2322i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(1,2) + Cquqd8_00_LNP*YdcL(1,1)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(1,1)).imag();
2015 Cquqd8_2323r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(1,2) + Cquqd8_00_LNP*YdcL(1,2)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(1,2)).real();
2016 Cquqd8_2323i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(1,2) + Cquqd8_00_LNP*YdcL(1,2)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(1,2)).imag();
2017 Cquqd8_2331r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(1,2) + Cquqd8_00_LNP*YdcL(2,0)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(1,0)).real();
2018 Cquqd8_2331i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(1,2) + Cquqd8_00_LNP*YdcL(2,0)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,0)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(1,0)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(1,0) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(1,0) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(1,0)).imag();
2019 Cquqd8_2332r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(1,2) + Cquqd8_00_LNP*YdcL(2,1)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(1,1)).real();
2020 Cquqd8_2332i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(1,2) + Cquqd8_00_LNP*YdcL(2,1)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,1)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(1,1)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(1,1) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(1,1) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(1,1)).imag();
2021 Cquqd8_2333r_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(1,2) + Cquqd8_00_LNP*YdcL(2,2)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(1,2)).real();
2022 Cquqd8_2333i_LNP = (Cquqd8_d0_LNP*SQDYucL(1,2)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(1,2)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(1,2) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(1,2) + Cquqd8_00_LNP*YdcL(2,2)*YucL(1,2) + Cquqd8p_d0_LNP*SQDYucL(1,2)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(1,2)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(1,2) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(1,2) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(1,2)).imag();
2023 Cquqd8_3111r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(2,0) + Cquqd8_00_LNP*YdcL(0,0)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(2,0)).real();
2024 Cquqd8_3111i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(2,0) + Cquqd8_00_LNP*YdcL(0,0)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(2,0)).imag();
2025 Cquqd8_3112r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(2,0) + Cquqd8_00_LNP*YdcL(0,1)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(2,1)).real();
2026 Cquqd8_3112i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(2,0) + Cquqd8_00_LNP*YdcL(0,1)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(2,1)).imag();
2027 Cquqd8_3113r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(2,0) + Cquqd8_00_LNP*YdcL(0,2)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(2,2)).real();
2028 Cquqd8_3113i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(2,0) + Cquqd8_00_LNP*YdcL(0,2)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(0,0) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(0,0) + Cquqd8p_0d_LNP*SQDYdcL(0,0)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(0,0)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(0,0)*YucL(2,2)).imag();
2029 Cquqd8_3121r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(2,0) + Cquqd8_00_LNP*YdcL(1,0)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(2,0)).real();
2030 Cquqd8_3121i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(2,0) + Cquqd8_00_LNP*YdcL(1,0)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(2,0)).imag();
2031 Cquqd8_3122r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(2,0) + Cquqd8_00_LNP*YdcL(1,1)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(2,1)).real();
2032 Cquqd8_3122i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(2,0) + Cquqd8_00_LNP*YdcL(1,1)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(2,1)).imag();
2033 Cquqd8_3123r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(2,0) + Cquqd8_00_LNP*YdcL(1,2)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(2,2)).real();
2034 Cquqd8_3123i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(2,0) + Cquqd8_00_LNP*YdcL(1,2)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(1,0) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(1,0) + Cquqd8p_0d_LNP*SQDYdcL(1,0)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(1,0)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(1,0)*YucL(2,2)).imag();
2035 Cquqd8_3131r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(2,0) + Cquqd8_00_LNP*YdcL(2,0)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(2,0)).real();
2036 Cquqd8_3131i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(2,0) + Cquqd8_00_LNP*YdcL(2,0)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(2,0)).imag();
2037 Cquqd8_3132r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(2,0) + Cquqd8_00_LNP*YdcL(2,1)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(2,1)).real();
2038 Cquqd8_3132i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(2,0) + Cquqd8_00_LNP*YdcL(2,1)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(2,1)).imag();
2039 Cquqd8_3133r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(2,0) + Cquqd8_00_LNP*YdcL(2,2)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(2,2)).real();
2040 Cquqd8_3133i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,0)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(2,0)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(2,0) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(2,0) + Cquqd8_00_LNP*YdcL(2,2)*YucL(2,0) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(2,0) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(2,0) + Cquqd8p_0d_LNP*SQDYdcL(2,0)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(2,0)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(2,0)*YucL(2,2)).imag();
2041 Cquqd8_3211r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(2,1) + Cquqd8_00_LNP*YdcL(0,0)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(2,0)).real();
2042 Cquqd8_3211i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(2,1) + Cquqd8_00_LNP*YdcL(0,0)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(2,0)).imag();
2043 Cquqd8_3212r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(2,1) + Cquqd8_00_LNP*YdcL(0,1)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(2,1)).real();
2044 Cquqd8_3212i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(2,1) + Cquqd8_00_LNP*YdcL(0,1)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(2,1)).imag();
2045 Cquqd8_3213r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(2,1) + Cquqd8_00_LNP*YdcL(0,2)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(2,2)).real();
2046 Cquqd8_3213i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(2,1) + Cquqd8_00_LNP*YdcL(0,2)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(0,1) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(0,1) + Cquqd8p_0d_LNP*SQDYdcL(0,1)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(0,1)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(0,1)*YucL(2,2)).imag();
2047 Cquqd8_3221r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(2,1) + Cquqd8_00_LNP*YdcL(1,0)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(2,0)).real();
2048 Cquqd8_3221i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(2,1) + Cquqd8_00_LNP*YdcL(1,0)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(2,0)).imag();
2049 Cquqd8_3222r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(2,1) + Cquqd8_00_LNP*YdcL(1,1)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(2,1)).real();
2050 Cquqd8_3222i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(2,1) + Cquqd8_00_LNP*YdcL(1,1)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(2,1)).imag();
2051 Cquqd8_3223r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(2,1) + Cquqd8_00_LNP*YdcL(1,2)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(2,2)).real();
2052 Cquqd8_3223i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(2,1) + Cquqd8_00_LNP*YdcL(1,2)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(1,1) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(1,1) + Cquqd8p_0d_LNP*SQDYdcL(1,1)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(1,1)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(1,1)*YucL(2,2)).imag();
2053 Cquqd8_3231r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(2,1) + Cquqd8_00_LNP*YdcL(2,0)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(2,0)).real();
2054 Cquqd8_3231i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(2,1) + Cquqd8_00_LNP*YdcL(2,0)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(2,0)).imag();
2055 Cquqd8_3232r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(2,1) + Cquqd8_00_LNP*YdcL(2,1)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(2,1)).real();
2056 Cquqd8_3232i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(2,1) + Cquqd8_00_LNP*YdcL(2,1)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(2,1)).imag();
2057 Cquqd8_3233r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(2,1) + Cquqd8_00_LNP*YdcL(2,2)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(2,2)).real();
2058 Cquqd8_3233i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,1)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(2,1)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(2,1) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(2,1) + Cquqd8_00_LNP*YdcL(2,2)*YucL(2,1) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(2,1) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(2,1) + Cquqd8p_0d_LNP*SQDYdcL(2,1)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(2,1)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(2,1)*YucL(2,2)).imag();
2059 Cquqd8_3311r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(2,2) + Cquqd8_00_LNP*YdcL(0,0)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(2,0)).real();
2060 Cquqd8_3311i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(0,0) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(0,0) + Cquqd8_0d_LNP*SQDYdcL(0,0)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(0,0)*YucL(2,2) + Cquqd8_00_LNP*YdcL(0,0)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(2,0)).imag();
2061 Cquqd8_3312r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(2,2) + Cquqd8_00_LNP*YdcL(0,1)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(2,1)).real();
2062 Cquqd8_3312i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(0,1) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(0,1) + Cquqd8_0d_LNP*SQDYdcL(0,1)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(0,1)*YucL(2,2) + Cquqd8_00_LNP*YdcL(0,1)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(2,1)).imag();
2063 Cquqd8_3313r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(2,2) + Cquqd8_00_LNP*YdcL(0,2)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(2,2)).real();
2064 Cquqd8_3313i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(0,2) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(0,2) + Cquqd8_0d_LNP*SQDYdcL(0,2)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(0,2)*YucL(2,2) + Cquqd8_00_LNP*YdcL(0,2)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(0,2) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(0,2) + Cquqd8p_0d_LNP*SQDYdcL(0,2)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(0,2)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(0,2)*YucL(2,2)).imag();
2065 Cquqd8_3321r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(2,2) + Cquqd8_00_LNP*YdcL(1,0)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(2,0)).real();
2066 Cquqd8_3321i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(1,0) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(1,0) + Cquqd8_0d_LNP*SQDYdcL(1,0)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(1,0)*YucL(2,2) + Cquqd8_00_LNP*YdcL(1,0)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(2,0)).imag();
2067 Cquqd8_3322r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(2,2) + Cquqd8_00_LNP*YdcL(1,1)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(2,1)).real();
2068 Cquqd8_3322i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(1,1) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(1,1) + Cquqd8_0d_LNP*SQDYdcL(1,1)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(1,1)*YucL(2,2) + Cquqd8_00_LNP*YdcL(1,1)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(2,1)).imag();
2069 Cquqd8_3323r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(2,2) + Cquqd8_00_LNP*YdcL(1,2)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(2,2)).real();
2070 Cquqd8_3323i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(1,2) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(1,2) + Cquqd8_0d_LNP*SQDYdcL(1,2)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(1,2)*YucL(2,2) + Cquqd8_00_LNP*YdcL(1,2)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(1,2) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(1,2) + Cquqd8p_0d_LNP*SQDYdcL(1,2)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(1,2)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(1,2)*YucL(2,2)).imag();
2071 Cquqd8_3331r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(2,2) + Cquqd8_00_LNP*YdcL(2,0)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(2,0)).real();
2072 Cquqd8_3331i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(2,0) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(2,0) + Cquqd8_0d_LNP*SQDYdcL(2,0)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(2,0)*YucL(2,2) + Cquqd8_00_LNP*YdcL(2,0)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,0)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(2,0)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(2,0) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(2,0) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(2,0)).imag();
2073 Cquqd8_3332r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(2,2) + Cquqd8_00_LNP*YdcL(2,1)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(2,1)).real();
2074 Cquqd8_3332i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(2,1) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(2,1) + Cquqd8_0d_LNP*SQDYdcL(2,1)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(2,1)*YucL(2,2) + Cquqd8_00_LNP*YdcL(2,1)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,1)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(2,1)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(2,1) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(2,1) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(2,1)).imag();
2075 Cquqd8_3333r_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(2,2) + Cquqd8_00_LNP*YdcL(2,2)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(2,2)).real();
2076 Cquqd8_3333i_LNP = (Cquqd8_d0_LNP*SQDYucL(2,2)*YdcL(2,2) + Cquqd8_u0_LNP*SQUYucL(2,2)*YdcL(2,2) + Cquqd8_0d_LNP*SQDYdcL(2,2)*YucL(2,2) + Cquqd8_0u_LNP*SQUYdcL(2,2)*YucL(2,2) + Cquqd8_00_LNP*YdcL(2,2)*YucL(2,2) + Cquqd8p_d0_LNP*SQDYucL(2,2)*YdcL(2,2) + Cquqd8p_u0_LNP*SQUYucL(2,2)*YdcL(2,2) + Cquqd8p_0d_LNP*SQDYdcL(2,2)*YucL(2,2) + Cquqd8p_0u_LNP*SQUYdcL(2,2)*YucL(2,2) + Cquqd8p_00_LNP*YdcL(2,2)*YucL(2,2)).imag();
2077
2078}

◆ setParameter()

void NPSMEFTd6MFV::setParameter ( const std::string  name,
const double &  value 
)
protectedvirtual

Reimplemented from StandardModel.

Definition at line 223 of file NPSMEFTd6MFV.cpp.

223 {
224 if (name.compare("CG_LNP") == 0) {
225 CG_LNP = value;
226 } else if (name.compare("CW_LNP") == 0) {
227 CW_LNP = value;
228 } else if (name.compare("CHG_LNP") == 0) {
229 CHG_LNP = value;
230 } else if (name.compare("CHW_LNP") == 0) {
231 CHW_LNP = value;
232 } else if (name.compare("CHB_LNP") == 0) {
233 CHB_LNP = value;
234 } else if (name.compare("CHWB_LNP") == 0) {
235 CHWB_LNP = value;
236 } else if (name.compare("CHD_LNP") == 0) {
237 CHD_LNP = value;
238 } else if (name.compare("CHbox_LNP") == 0) {
239 CHbox_LNP = value;
240 } else if (name.compare("CH_LNP") == 0) {
241 CH_LNP = value;
242 } else if (name.compare("CHl1_LNP") == 0) {
243 CHl1_LNP = value;
244 } else if (name.compare("CHl3_LNP") == 0) {
245 CHl3_LNP = value;
246 } else if (name.compare("CHe_LNP") == 0) {
247 CHe_LNP = value;
248 } else if (name.compare("Cll_aabb_LNP") == 0) {
249 Cll_aabb_LNP = value;
250 } else if (name.compare("Cll_abba_LNP") == 0) {
251 Cll_abba_LNP = value;
252 } else if (name.compare("Cee_LNP") == 0) {
253 Cee_LNP = value;
254 } else if (name.compare("Cle_LNP") == 0) {
255 Cle_LNP = value;
256 } else if (name.compare("CuH_0_LNP") == 0) {
257 CuH_0_LNP = value;
258 } else if (name.compare("CuH_u_LNP") == 0) {
259 CuH_u_LNP = value;
260 } else if (name.compare("CuH_d_LNP") == 0) {
261 CuH_d_LNP = value;
262 } else if (name.compare("CuG_0_LNP") == 0) {
263 CuG_0_LNP = value;
264 } else if (name.compare("CuG_u_LNP") == 0) {
265 CuG_u_LNP = value;
266 } else if (name.compare("CuG_d_LNP") == 0) {
267 CuG_d_LNP = value;
268 } else if (name.compare("CuW_0_LNP") == 0) {
269 CuW_0_LNP = value;
270 } else if (name.compare("CuW_u_LNP") == 0) {
271 CuW_u_LNP = value;
272 } else if (name.compare("CuW_d_LNP") == 0) {
273 CuW_d_LNP = value;
274 } else if (name.compare("CuB_0_LNP") == 0) {
275 CuB_0_LNP = value;
276 } else if (name.compare("CuB_u_LNP") == 0) {
277 CuB_u_LNP = value;
278 } else if (name.compare("CuB_d_LNP") == 0) {
279 CuB_d_LNP = value;
280 } else if (name.compare("CdH_0_LNP") == 0) {
281 CdH_0_LNP = value;
282 } else if (name.compare("CdH_u_LNP") == 0) {
283 CdH_u_LNP = value;
284 } else if (name.compare("CdH_d_LNP") == 0) {
285 CdH_d_LNP = value;
286 } else if (name.compare("CdG_0_LNP") == 0) {
287 CdG_0_LNP = value;
288 } else if (name.compare("CdG_u_LNP") == 0) {
289 CdG_u_LNP = value;
290 } else if (name.compare("CdG_d_LNP") == 0) {
291 CdG_d_LNP = value;
292 } else if (name.compare("CdW_0_LNP") == 0) {
293 CdW_0_LNP = value;
294 } else if (name.compare("CdW_u_LNP") == 0) {
295 CdW_u_LNP = value;
296 } else if (name.compare("CdW_d_LNP") == 0) {
297 CdW_d_LNP = value;
298 } else if (name.compare("CdB_0_LNP") == 0) {
299 CdB_0_LNP = value;
300 } else if (name.compare("CdB_u_LNP") == 0) {
301 CdB_u_LNP = value;
302 } else if (name.compare("CdB_d_LNP") == 0) {
303 CdB_d_LNP = value;
304 } else if (name.compare("CHq1_0_LNP") == 0) {
305 CHq1_0_LNP = value;
306 } else if (name.compare("CHq1_u_LNP") == 0) {
307 CHq1_u_LNP = value;
308 } else if (name.compare("CHq1_d_LNP") == 0) {
309 CHq1_d_LNP = value;
310 } else if (name.compare("CHq3_0_LNP") == 0) {
311 CHq3_0_LNP = value;
312 } else if (name.compare("CHq3_u_LNP") == 0) {
313 CHq3_u_LNP = value;
314 } else if (name.compare("CHq3_d_LNP") == 0) {
315 CHq3_d_LNP = value;
316 } else if (name.compare("CHu_0_LNP") == 0) {
317 CHu_0_LNP = value;
318 } else if (name.compare("CHu_u_LNP") == 0) {
319 CHu_u_LNP = value;
320 } else if (name.compare("CHd_0_LNP") == 0) {
321 CHd_0_LNP = value;
322 } else if (name.compare("CHd_d_LNP") == 0) {
323 CHd_d_LNP = value;
324 } else if (name.compare("CHud_ud_LNP") == 0) {
325 CHud_ud_LNP = value;
326 } else if (name.compare("Clq1_0_LNP") == 0) {
327 Clq1_0_LNP = value;
328 } else if (name.compare("Clq1_u_LNP") == 0) {
329 Clq1_u_LNP = value;
330 } else if (name.compare("Clq1_d_LNP") == 0) {
331 Clq1_d_LNP = value;
332 } else if (name.compare("Clq3_0_LNP") == 0) {
333 Clq3_0_LNP = value;
334 } else if (name.compare("Clq3_u_LNP") == 0) {
335 Clq3_u_LNP = value;
336 } else if (name.compare("Clq3_d_LNP") == 0) {
337 Clq3_d_LNP = value;
338 } else if (name.compare("Cqe_0_LNP") == 0) {
339 Cqe_0_LNP = value;
340 } else if (name.compare("Cqe_u_LNP") == 0) {
341 Cqe_u_LNP = value;
342 } else if (name.compare("Cqe_d_LNP") == 0) {
343 Cqe_d_LNP = value;
344 } else if (name.compare("Clu_0_LNP") == 0) {
345 Clu_0_LNP = value;
346 } else if (name.compare("Clu_u_LNP") == 0) {
347 Clu_u_LNP = value;
348 } else if (name.compare("Ceu_0_LNP") == 0) {
349 Ceu_0_LNP = value;
350 } else if (name.compare("Ceu_u_LNP") == 0) {
351 Ceu_u_LNP = value;
352 } else if (name.compare("Cld_0_LNP") == 0) {
353 Cld_0_LNP = value;
354 } else if (name.compare("Cld_d_LNP") == 0) {
355 Cld_d_LNP = value;
356 } else if (name.compare("Ced_0_LNP") == 0) {
357 Ced_0_LNP = value;
358 } else if (name.compare("Ced_d_LNP") == 0) {
359 Ced_d_LNP = value;
360 } else if (name.compare("Cqq1_00_LNP") == 0) {
361 Cqq1_00_LNP = value;
362 } else if (name.compare("Cqq1_u0_LNP") == 0) {
363 Cqq1_u0_LNP = value;
364 } else if (name.compare("Cqq1_d0_LNP") == 0) {
365 Cqq1_d0_LNP = value;
366 } else if (name.compare("Cqq1_uu_LNP") == 0) {
367 Cqq1_uu_LNP = value;
368 } else if (name.compare("Cqq1_dd_LNP") == 0) {
369 Cqq1_dd_LNP = value;
370 } else if (name.compare("Cqq1_ud_LNP") == 0) {
371 Cqq1_ud_LNP = value;
372 } else if (name.compare("Cqq1p_00_LNP") == 0) {
373 Cqq1p_00_LNP = value;
374 } else if (name.compare("Cqq1p_u0_LNP") == 0) {
375 Cqq1p_u0_LNP = value;
376 } else if (name.compare("Cqq1p_d0_LNP") == 0) {
377 Cqq1p_d0_LNP = value;
378 } else if (name.compare("Cqq1p_uu_LNP") == 0) {
379 Cqq1p_uu_LNP = value;
380 } else if (name.compare("Cqq1p_dd_LNP") == 0) {
381 Cqq1p_dd_LNP = value;
382 } else if (name.compare("Cqq1p_ud_LNP") == 0) {
383 Cqq1p_ud_LNP = value;
384 } else if (name.compare("Cqq3_00_LNP") == 0) {
385 Cqq3_00_LNP = value;
386 } else if (name.compare("Cqq3_u0_LNP") == 0) {
387 Cqq3_u0_LNP = value;
388 } else if (name.compare("Cqq3_d0_LNP") == 0) {
389 Cqq3_d0_LNP = value;
390 } else if (name.compare("Cqq3_uu_LNP") == 0) {
391 Cqq3_uu_LNP = value;
392 } else if (name.compare("Cqq3_dd_LNP") == 0) {
393 Cqq3_dd_LNP = value;
394 } else if (name.compare("Cqq3_ud_LNP") == 0) {
395 Cqq3_ud_LNP = value;
396 } else if (name.compare("Cqq3p_00_LNP") == 0) {
397 Cqq3p_00_LNP = value;
398 } else if (name.compare("Cqq3p_u0_LNP") == 0) {
399 Cqq3p_u0_LNP = value;
400 } else if (name.compare("Cqq3p_d0_LNP") == 0) {
401 Cqq3p_d0_LNP = value;
402 } else if (name.compare("Cqq3p_uu_LNP") == 0) {
403 Cqq3p_uu_LNP = value;
404 } else if (name.compare("Cqq3p_dd_LNP") == 0) {
405 Cqq3p_dd_LNP = value;
406 } else if (name.compare("Cqq3p_ud_LNP") == 0) {
407 Cqq3p_ud_LNP = value;
408 } else if (name.compare("Cuu_00_LNP") == 0) {
409 Cuu_00_LNP = value;
410 } else if (name.compare("Cuu_u0_LNP") == 0) {
411 Cuu_u0_LNP = value;
412 } else if (name.compare("Cuu_uu_LNP") == 0) {
413 Cuu_uu_LNP = value;
414 } else if (name.compare("Cuup_00_LNP") == 0) {
415 Cuup_00_LNP = value;
416 } else if (name.compare("Cuup_u0_LNP") == 0) {
417 Cuup_u0_LNP = value;
418 } else if (name.compare("Cuup_uu_LNP") == 0) {
419 Cuup_uu_LNP = value;
420 } else if (name.compare("Cdd_00_LNP") == 0) {
421 Cdd_00_LNP = value;
422 } else if (name.compare("Cdd_d0_LNP") == 0) {
423 Cdd_d0_LNP = value;
424 } else if (name.compare("Cdd_dd_LNP") == 0) {
425 Cdd_dd_LNP = value;
426 } else if (name.compare("Cddp_00_LNP") == 0) {
427 Cddp_00_LNP = value;
428 } else if (name.compare("Cddp_d0_LNP") == 0) {
429 Cddp_d0_LNP = value;
430 } else if (name.compare("Cddp_dd_LNP") == 0) {
431 Cddp_dd_LNP = value;
432 } else if (name.compare("Cud1_00_LNP") == 0) {
433 Cud1_00_LNP = value;
434 } else if (name.compare("Cud1_u0_LNP") == 0) {
435 Cud1_u0_LNP = value;
436 } else if (name.compare("Cud1_0d_LNP") == 0) {
437 Cud1_0d_LNP = value;
438 } else if (name.compare("Cud1_ud_LNP") == 0) {
439 Cud1_ud_LNP = value;
440 } else if (name.compare("Cud1p_ud_LNP") == 0) {
441 Cud1p_ud_LNP = value;
442 } else if (name.compare("Cud8_00_LNP") == 0) {
443 Cud8_00_LNP = value;
444 } else if (name.compare("Cud8_u0_LNP") == 0) {
445 Cud8_u0_LNP = value;
446 } else if (name.compare("Cud8_0d_LNP") == 0) {
447 Cud8_0d_LNP = value;
448 } else if (name.compare("Cud8_ud_LNP") == 0) {
449 Cud8_ud_LNP = value;
450 } else if (name.compare("Cud8p_ud_LNP") == 0) {
451 Cud8p_ud_LNP = value;
452 } else if (name.compare("Cqu1_00_LNP") == 0) {
453 Cqu1_00_LNP = value;
454 } else if (name.compare("Cqu1_u0_LNP") == 0) {
455 Cqu1_u0_LNP = value;
456 } else if (name.compare("Cqu1_d0_LNP") == 0) {
457 Cqu1_d0_LNP = value;
458 } else if (name.compare("Cqu1_0u_LNP") == 0) {
459 Cqu1_0u_LNP = value;
460 } else if (name.compare("Cqu1_uu_LNP") == 0) {
461 Cqu1_uu_LNP = value;
462 } else if (name.compare("Cqu1_du_LNP") == 0) {
463 Cqu1_du_LNP = value;
464 } else if (name.compare("Cqu1_y_LNP") == 0) {
465 Cqu1_y_LNP = value;
466 } else if (name.compare("Cqu1_uy_LNP") == 0) {
467 Cqu1_uy_LNP = value;
468 } else if (name.compare("Cqu1_dy_LNP") == 0) {
469 Cqu1_dy_LNP = value;
470 } else if (name.compare("Cqu1_yu_LNP") == 0) {
471 Cqu1_yu_LNP = value;
472 } else if (name.compare("Cqu1_yd_LNP") == 0) {
473 Cqu1_yd_LNP = value;
474 } else if (name.compare("Cqu8_00_LNP") == 0) {
475 Cqu8_00_LNP = value;
476 } else if (name.compare("Cqu8_u0_LNP") == 0) {
477 Cqu8_u0_LNP = value;
478 } else if (name.compare("Cqu8_d0_LNP") == 0) {
479 Cqu8_d0_LNP = value;
480 } else if (name.compare("Cqu8_0u_LNP") == 0) {
481 Cqu8_0u_LNP = value;
482 } else if (name.compare("Cqu8_uu_LNP") == 0) {
483 Cqu8_uu_LNP = value;
484 } else if (name.compare("Cqu8_du_LNP") == 0) {
485 Cqu8_du_LNP = value;
486 } else if (name.compare("Cqu8_y_LNP") == 0) {
487 Cqu8_y_LNP = value;
488 } else if (name.compare("Cqu8_uy_LNP") == 0) {
489 Cqu8_uy_LNP = value;
490 } else if (name.compare("Cqu8_dy_LNP") == 0) {
491 Cqu8_dy_LNP = value;
492 } else if (name.compare("Cqu8_yu_LNP") == 0) {
493 Cqu8_yu_LNP = value;
494 } else if (name.compare("Cqu8_yd_LNP") == 0) {
495 Cqu8_yd_LNP = value;
496 } else if (name.compare("Cqd1_00_LNP") == 0) {
497 Cqd1_00_LNP = value;
498 } else if (name.compare("Cqd1_u0_LNP") == 0) {
499 Cqd1_u0_LNP = value;
500 } else if (name.compare("Cqd1_d0_LNP") == 0) {
501 Cqd1_d0_LNP = value;
502 } else if (name.compare("Cqd1_0d_LNP") == 0) {
503 Cqd1_0d_LNP = value;
504 } else if (name.compare("Cqd1_ud_LNP") == 0) {
505 Cqd1_ud_LNP = value;
506 } else if (name.compare("Cqd1_dd_LNP") == 0) {
507 Cqd1_dd_LNP = value;
508 } else if (name.compare("Cqd1_y_LNP") == 0) {
509 Cqd1_y_LNP = value;
510 } else if (name.compare("Cqd1_uy_LNP") == 0) {
511 Cqd1_uy_LNP = value;
512 } else if (name.compare("Cqd1_dy_LNP") == 0) {
513 Cqd1_dy_LNP = value;
514 } else if (name.compare("Cqd1_yu_LNP") == 0) {
515 Cqd1_yu_LNP = value;
516 } else if (name.compare("Cqd1_yd_LNP") == 0) {
517 Cqd1_yd_LNP = value;
518 } else if (name.compare("Cqd8_00_LNP") == 0) {
519 Cqd8_00_LNP = value;
520 } else if (name.compare("Cqd8_u0_LNP") == 0) {
521 Cqd8_u0_LNP = value;
522 } else if (name.compare("Cqd8_d0_LNP") == 0) {
523 Cqd8_d0_LNP = value;
524 } else if (name.compare("Cqd8_0d_LNP") == 0) {
525 Cqd8_0d_LNP = value;
526 } else if (name.compare("Cqd8_ud_LNP") == 0) {
527 Cqd8_ud_LNP = value;
528 } else if (name.compare("Cqd8_dd_LNP") == 0) {
529 Cqd8_dd_LNP = value;
530 } else if (name.compare("Cqd8_y_LNP") == 0) {
531 Cqd8_y_LNP = value;
532 } else if (name.compare("Cqd8_uy_LNP") == 0) {
533 Cqd8_uy_LNP = value;
534 } else if (name.compare("Cqd8_dy_LNP") == 0) {
535 Cqd8_dy_LNP = value;
536 } else if (name.compare("Cqd8_yu_LNP") == 0) {
537 Cqd8_yu_LNP = value;
538 } else if (name.compare("Cqd8_yd_LNP") == 0) {
539 Cqd8_yd_LNP = value;
540 } else if (name.compare("Cquqd1_00_LNP") == 0) {
541 Cquqd1_00_LNP = value;
542 } else if (name.compare("Cquqd1_u0_LNP") == 0) {
543 Cquqd1_u0_LNP = value;
544 } else if (name.compare("Cquqd1_d0_LNP") == 0) {
545 Cquqd1_d0_LNP = value;
546 } else if (name.compare("Cquqd1_0u_LNP") == 0) {
547 Cquqd1_0u_LNP = value;
548 } else if (name.compare("Cquqd1_0d_LNP") == 0) {
549 Cquqd1_0d_LNP = value;
550 } else if (name.compare("Cquqd1p_00_LNP") == 0) {
551 Cquqd1p_00_LNP = value;
552 } else if (name.compare("Cquqd1p_u0_LNP") == 0) {
553 Cquqd1p_u0_LNP = value;
554 } else if (name.compare("Cquqd1p_d0_LNP") == 0) {
555 Cquqd1p_d0_LNP = value;
556 } else if (name.compare("Cquqd1p_0u_LNP") == 0) {
557 Cquqd1p_0u_LNP = value;
558 } else if (name.compare("Cquqd1p_0d_LNP") == 0) {
559 Cquqd1p_0d_LNP = value;
560 } else if (name.compare("Cquqd8_00_LNP") == 0) {
561 Cquqd8_00_LNP = value;
562 } else if (name.compare("Cquqd8_u0_LNP") == 0) {
563 Cquqd8_u0_LNP = value;
564 } else if (name.compare("Cquqd8_d0_LNP") == 0) {
565 Cquqd8_d0_LNP = value;
566 } else if (name.compare("Cquqd8_0u_LNP") == 0) {
567 Cquqd8_0u_LNP = value;
568 } else if (name.compare("Cquqd8_0d_LNP") == 0) {
569 Cquqd8_0d_LNP = value;
570 } else if (name.compare("Cquqd8p_00_LNP") == 0) {
571 Cquqd8p_00_LNP = value;
572 } else if (name.compare("Cquqd8p_u0_LNP") == 0) {
573 Cquqd8p_u0_LNP = value;
574 } else if (name.compare("Cquqd8p_d0_LNP") == 0) {
575 Cquqd8p_d0_LNP = value;
576 } else if (name.compare("Cquqd8p_0u_LNP") == 0) {
577 Cquqd8p_0u_LNP = value;
578 } else if (name.compare("Cquqd8p_0d_LNP") == 0) {
579 Cquqd8p_0d_LNP = value;
580 } else if (name.compare("Lambda_NP") == 0) {
581 Lambda_NP = value;
582 } else {
584 }
585}
std::string name
The name of the model.
Definition: Model.h:285
virtual void setParameter(const std::string name, const double &value)
A method to set the value of a parameter of StandardModel.

Member Data Documentation

◆ CdB_0_LNP

double NPSMEFTd6MFV::CdB_0_LNP = 0.
protected

Definition at line 77 of file NPSMEFTd6MFV.h.

◆ CdB_d_LNP

double NPSMEFTd6MFV::CdB_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hq}^{(1)})_{ij}\).

Definition at line 77 of file NPSMEFTd6MFV.h.

◆ CdB_u_LNP

double NPSMEFTd6MFV::CdB_u_LNP = 0.
protected

Definition at line 77 of file NPSMEFTd6MFV.h.

◆ Cdd_00_LNP

double NPSMEFTd6MFV::Cdd_00_LNP = 0.
protected

Definition at line 125 of file NPSMEFTd6MFV.h.

◆ Cdd_d0_LNP

double NPSMEFTd6MFV::Cdd_d0_LNP = 0.
protected

Definition at line 125 of file NPSMEFTd6MFV.h.

◆ Cdd_dd_LNP

double NPSMEFTd6MFV::Cdd_dd_LNP = 0.
protected

Definition at line 125 of file NPSMEFTd6MFV.h.

◆ Cddp_00_LNP

double NPSMEFTd6MFV::Cddp_00_LNP = 0.
protected

Definition at line 125 of file NPSMEFTd6MFV.h.

◆ Cddp_d0_LNP

double NPSMEFTd6MFV::Cddp_d0_LNP = 0.
protected

Definition at line 125 of file NPSMEFTd6MFV.h.

◆ Cddp_dd_LNP

double NPSMEFTd6MFV::Cddp_dd_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ud}^{(1)})_{ijkm}\).

Definition at line 125 of file NPSMEFTd6MFV.h.

◆ CdG_0_LNP

double NPSMEFTd6MFV::CdG_0_LNP = 0.
protected

Definition at line 71 of file NPSMEFTd6MFV.h.

◆ CdG_d_LNP

double NPSMEFTd6MFV::CdG_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{dW})_{ij}\).

Definition at line 71 of file NPSMEFTd6MFV.h.

◆ CdG_u_LNP

double NPSMEFTd6MFV::CdG_u_LNP = 0.
protected

Definition at line 71 of file NPSMEFTd6MFV.h.

◆ CdH_0_LNP

double NPSMEFTd6MFV::CdH_0_LNP = 0.
protected

Definition at line 68 of file NPSMEFTd6MFV.h.

◆ CdH_d_LNP

double NPSMEFTd6MFV::CdH_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{dG})_{ij}\).

Definition at line 68 of file NPSMEFTd6MFV.h.

◆ CdH_u_LNP

double NPSMEFTd6MFV::CdH_u_LNP = 0.
protected

Definition at line 68 of file NPSMEFTd6MFV.h.

◆ CdW_0_LNP

double NPSMEFTd6MFV::CdW_0_LNP = 0.
protected

Definition at line 74 of file NPSMEFTd6MFV.h.

◆ CdW_d_LNP

double NPSMEFTd6MFV::CdW_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{dB})_{ij}\).

Definition at line 74 of file NPSMEFTd6MFV.h.

◆ CdW_u_LNP

double NPSMEFTd6MFV::CdW_u_LNP = 0.
protected

Definition at line 74 of file NPSMEFTd6MFV.h.

◆ Ced_0_LNP

double NPSMEFTd6MFV::Ced_0_LNP = 0.
protected

Definition at line 113 of file NPSMEFTd6MFV.h.

◆ Ced_d_LNP

double NPSMEFTd6MFV::Ced_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qq}^{(1)})_{ijkm}\).

Definition at line 113 of file NPSMEFTd6MFV.h.

◆ Cee_LNP

double NPSMEFTd6MFV::Cee_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{le})_{ijkm}\).

Definition at line 50 of file NPSMEFTd6MFV.h.

◆ Ceu_0_LNP

double NPSMEFTd6MFV::Ceu_0_LNP = 0.
protected

Definition at line 107 of file NPSMEFTd6MFV.h.

◆ Ceu_u_LNP

double NPSMEFTd6MFV::Ceu_u_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ld})_{ijkm}\).

Definition at line 107 of file NPSMEFTd6MFV.h.

◆ CHd_0_LNP

double NPSMEFTd6MFV::CHd_0_LNP = 0.
protected

Definition at line 89 of file NPSMEFTd6MFV.h.

◆ CHd_d_LNP

double NPSMEFTd6MFV::CHd_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hud})_{ij}\).

Definition at line 89 of file NPSMEFTd6MFV.h.

◆ CHe_LNP

double NPSMEFTd6MFV::CHe_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ll})_{ijkm}\).

Definition at line 41 of file NPSMEFTd6MFV.h.

◆ CHl1_LNP

double NPSMEFTd6MFV::CHl1_LNP = 0.
protected

< Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hl}^{(1)})_{ij}\).

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hl}^{(3)})_{ij}\).

Definition at line 35 of file NPSMEFTd6MFV.h.

◆ CHl3_LNP

double NPSMEFTd6MFV::CHl3_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{He})_{ij}\).

Definition at line 38 of file NPSMEFTd6MFV.h.

◆ CHq1_0_LNP

double NPSMEFTd6MFV::CHq1_0_LNP = 0.
protected

Definition at line 80 of file NPSMEFTd6MFV.h.

◆ CHq1_d_LNP

double NPSMEFTd6MFV::CHq1_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hq}^{(3)})_{ij}\).

Definition at line 80 of file NPSMEFTd6MFV.h.

◆ CHq1_u_LNP

double NPSMEFTd6MFV::CHq1_u_LNP = 0.
protected

Definition at line 80 of file NPSMEFTd6MFV.h.

◆ CHq3_0_LNP

double NPSMEFTd6MFV::CHq3_0_LNP = 0.
protected

Definition at line 83 of file NPSMEFTd6MFV.h.

◆ CHq3_d_LNP

double NPSMEFTd6MFV::CHq3_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hu})_{ij}\).

Definition at line 83 of file NPSMEFTd6MFV.h.

◆ CHq3_u_LNP

double NPSMEFTd6MFV::CHq3_u_LNP = 0.
protected

Definition at line 83 of file NPSMEFTd6MFV.h.

◆ CHu_0_LNP

double NPSMEFTd6MFV::CHu_0_LNP = 0.
protected

Definition at line 86 of file NPSMEFTd6MFV.h.

◆ CHu_u_LNP

double NPSMEFTd6MFV::CHu_u_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{Hd})_{ij}\).

Definition at line 86 of file NPSMEFTd6MFV.h.

◆ CHud_ud_LNP

double NPSMEFTd6MFV::CHud_ud_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{lq}^{(1)})_{ijkm}\).

Definition at line 92 of file NPSMEFTd6MFV.h.

◆ Cld_0_LNP

double NPSMEFTd6MFV::Cld_0_LNP = 0.
protected

Definition at line 110 of file NPSMEFTd6MFV.h.

◆ Cld_d_LNP

double NPSMEFTd6MFV::Cld_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ed})_{ijkm}\).

Definition at line 110 of file NPSMEFTd6MFV.h.

◆ Cle_LNP

double NPSMEFTd6MFV::Cle_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{uH})_{ij}\).

Definition at line 53 of file NPSMEFTd6MFV.h.

◆ Cll_aabb_LNP

double NPSMEFTd6MFV::Cll_aabb_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ll})_{ijkm}\).

Definition at line 44 of file NPSMEFTd6MFV.h.

◆ Cll_abba_LNP

double NPSMEFTd6MFV::Cll_abba_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ee})_{ijkm}\).

Definition at line 47 of file NPSMEFTd6MFV.h.

◆ Clq1_0_LNP

double NPSMEFTd6MFV::Clq1_0_LNP = 0.
protected

Definition at line 95 of file NPSMEFTd6MFV.h.

◆ Clq1_d_LNP

double NPSMEFTd6MFV::Clq1_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{lq}^{(3)})_{ijkm}\).

Definition at line 95 of file NPSMEFTd6MFV.h.

◆ Clq1_u_LNP

double NPSMEFTd6MFV::Clq1_u_LNP = 0.
protected

Definition at line 95 of file NPSMEFTd6MFV.h.

◆ Clq3_0_LNP

double NPSMEFTd6MFV::Clq3_0_LNP = 0.
protected

Definition at line 98 of file NPSMEFTd6MFV.h.

◆ Clq3_d_LNP

double NPSMEFTd6MFV::Clq3_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qe})_{ijkm}\).

Definition at line 98 of file NPSMEFTd6MFV.h.

◆ Clq3_u_LNP

double NPSMEFTd6MFV::Clq3_u_LNP = 0.
protected

Definition at line 98 of file NPSMEFTd6MFV.h.

◆ Clu_0_LNP

double NPSMEFTd6MFV::Clu_0_LNP = 0.
protected

Definition at line 104 of file NPSMEFTd6MFV.h.

◆ Clu_u_LNP

double NPSMEFTd6MFV::Clu_u_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{eu})_{ijkm}\).

Definition at line 104 of file NPSMEFTd6MFV.h.

◆ Cqd1_00_LNP

double NPSMEFTd6MFV::Cqd1_00_LNP = 0.
protected

Definition at line 140 of file NPSMEFTd6MFV.h.

◆ Cqd1_0d_LNP

double NPSMEFTd6MFV::Cqd1_0d_LNP = 0.
protected

Definition at line 140 of file NPSMEFTd6MFV.h.

◆ Cqd1_d0_LNP

double NPSMEFTd6MFV::Cqd1_d0_LNP = 0.
protected

Definition at line 140 of file NPSMEFTd6MFV.h.

◆ Cqd1_dd_LNP

double NPSMEFTd6MFV::Cqd1_dd_LNP = 0.
protected

Definition at line 140 of file NPSMEFTd6MFV.h.

◆ Cqd1_dy_LNP

double NPSMEFTd6MFV::Cqd1_dy_LNP = 0.
protected

Definition at line 140 of file NPSMEFTd6MFV.h.

◆ Cqd1_u0_LNP

double NPSMEFTd6MFV::Cqd1_u0_LNP = 0.
protected

Definition at line 140 of file NPSMEFTd6MFV.h.

◆ Cqd1_ud_LNP

double NPSMEFTd6MFV::Cqd1_ud_LNP = 0.
protected

Definition at line 140 of file NPSMEFTd6MFV.h.

◆ Cqd1_uy_LNP

double NPSMEFTd6MFV::Cqd1_uy_LNP = 0.
protected

Definition at line 140 of file NPSMEFTd6MFV.h.

◆ Cqd1_y_LNP

double NPSMEFTd6MFV::Cqd1_y_LNP = 0.
protected

Definition at line 140 of file NPSMEFTd6MFV.h.

◆ Cqd1_yd_LNP

double NPSMEFTd6MFV::Cqd1_yd_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qd}^{(8)})_{ijkm}\).

Definition at line 140 of file NPSMEFTd6MFV.h.

◆ Cqd1_yu_LNP

double NPSMEFTd6MFV::Cqd1_yu_LNP = 0.
protected

Definition at line 140 of file NPSMEFTd6MFV.h.

◆ Cqd8_00_LNP

double NPSMEFTd6MFV::Cqd8_00_LNP = 0.
protected

Definition at line 143 of file NPSMEFTd6MFV.h.

◆ Cqd8_0d_LNP

double NPSMEFTd6MFV::Cqd8_0d_LNP = 0.
protected

Definition at line 143 of file NPSMEFTd6MFV.h.

◆ Cqd8_d0_LNP

double NPSMEFTd6MFV::Cqd8_d0_LNP = 0.
protected

Definition at line 143 of file NPSMEFTd6MFV.h.

◆ Cqd8_dd_LNP

double NPSMEFTd6MFV::Cqd8_dd_LNP = 0.
protected

Definition at line 143 of file NPSMEFTd6MFV.h.

◆ Cqd8_dy_LNP

double NPSMEFTd6MFV::Cqd8_dy_LNP = 0.
protected

Definition at line 143 of file NPSMEFTd6MFV.h.

◆ Cqd8_u0_LNP

double NPSMEFTd6MFV::Cqd8_u0_LNP = 0.
protected

Definition at line 143 of file NPSMEFTd6MFV.h.

◆ Cqd8_ud_LNP

double NPSMEFTd6MFV::Cqd8_ud_LNP = 0.
protected

Definition at line 143 of file NPSMEFTd6MFV.h.

◆ Cqd8_uy_LNP

double NPSMEFTd6MFV::Cqd8_uy_LNP = 0.
protected

Definition at line 143 of file NPSMEFTd6MFV.h.

◆ Cqd8_y_LNP

double NPSMEFTd6MFV::Cqd8_y_LNP = 0.
protected

Definition at line 143 of file NPSMEFTd6MFV.h.

◆ Cqd8_yd_LNP

double NPSMEFTd6MFV::Cqd8_yd_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{quqd}^{(1)})_{ijkm}\).

Definition at line 143 of file NPSMEFTd6MFV.h.

◆ Cqd8_yu_LNP

double NPSMEFTd6MFV::Cqd8_yu_LNP = 0.
protected

Definition at line 143 of file NPSMEFTd6MFV.h.

◆ Cqe_0_LNP

double NPSMEFTd6MFV::Cqe_0_LNP = 0.
protected

Definition at line 101 of file NPSMEFTd6MFV.h.

◆ Cqe_d_LNP

double NPSMEFTd6MFV::Cqe_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{lu})_{ijkm}\).

Definition at line 101 of file NPSMEFTd6MFV.h.

◆ Cqe_u_LNP

double NPSMEFTd6MFV::Cqe_u_LNP = 0.
protected

Definition at line 101 of file NPSMEFTd6MFV.h.

◆ Cqq1_00_LNP

double NPSMEFTd6MFV::Cqq1_00_LNP = 0.
protected

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq1_d0_LNP

double NPSMEFTd6MFV::Cqq1_d0_LNP = 0.
protected

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq1_dd_LNP

double NPSMEFTd6MFV::Cqq1_dd_LNP = 0.
protected

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq1_u0_LNP

double NPSMEFTd6MFV::Cqq1_u0_LNP = 0.
protected

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq1_ud_LNP

double NPSMEFTd6MFV::Cqq1_ud_LNP = 0.
protected

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq1_uu_LNP

double NPSMEFTd6MFV::Cqq1_uu_LNP = 0.
protected

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq1p_00_LNP

double NPSMEFTd6MFV::Cqq1p_00_LNP = 0.
protected

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq1p_d0_LNP

double NPSMEFTd6MFV::Cqq1p_d0_LNP = 0.
protected

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq1p_dd_LNP

double NPSMEFTd6MFV::Cqq1p_dd_LNP = 0.
protected

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq1p_u0_LNP

double NPSMEFTd6MFV::Cqq1p_u0_LNP = 0.
protected

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq1p_ud_LNP

double NPSMEFTd6MFV::Cqq1p_ud_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qq}^{(3)})_{ijkm}\).

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq1p_uu_LNP

double NPSMEFTd6MFV::Cqq1p_uu_LNP = 0.
protected

Definition at line 116 of file NPSMEFTd6MFV.h.

◆ Cqq3_00_LNP

double NPSMEFTd6MFV::Cqq3_00_LNP = 0.
protected

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqq3_d0_LNP

double NPSMEFTd6MFV::Cqq3_d0_LNP = 0.
protected

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqq3_dd_LNP

double NPSMEFTd6MFV::Cqq3_dd_LNP = 0.
protected

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqq3_u0_LNP

double NPSMEFTd6MFV::Cqq3_u0_LNP = 0.
protected

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqq3_ud_LNP

double NPSMEFTd6MFV::Cqq3_ud_LNP = 0.
protected

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqq3_uu_LNP

double NPSMEFTd6MFV::Cqq3_uu_LNP = 0.
protected

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqq3p_00_LNP

double NPSMEFTd6MFV::Cqq3p_00_LNP = 0.
protected

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqq3p_d0_LNP

double NPSMEFTd6MFV::Cqq3p_d0_LNP = 0.
protected

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqq3p_dd_LNP

double NPSMEFTd6MFV::Cqq3p_dd_LNP = 0.
protected

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqq3p_u0_LNP

double NPSMEFTd6MFV::Cqq3p_u0_LNP = 0.
protected

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqq3p_ud_LNP

double NPSMEFTd6MFV::Cqq3p_ud_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{uu})_{ijkm}\).

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqq3p_uu_LNP

double NPSMEFTd6MFV::Cqq3p_uu_LNP = 0.
protected

Definition at line 119 of file NPSMEFTd6MFV.h.

◆ Cqu1_00_LNP

double NPSMEFTd6MFV::Cqu1_00_LNP = 0.
protected

Definition at line 134 of file NPSMEFTd6MFV.h.

◆ Cqu1_0u_LNP

double NPSMEFTd6MFV::Cqu1_0u_LNP = 0.
protected

Definition at line 134 of file NPSMEFTd6MFV.h.

◆ Cqu1_d0_LNP

double NPSMEFTd6MFV::Cqu1_d0_LNP = 0.
protected

Definition at line 134 of file NPSMEFTd6MFV.h.

◆ Cqu1_du_LNP

double NPSMEFTd6MFV::Cqu1_du_LNP = 0.
protected

Definition at line 134 of file NPSMEFTd6MFV.h.

◆ Cqu1_dy_LNP

double NPSMEFTd6MFV::Cqu1_dy_LNP = 0.
protected

Definition at line 134 of file NPSMEFTd6MFV.h.

◆ Cqu1_u0_LNP

double NPSMEFTd6MFV::Cqu1_u0_LNP = 0.
protected

Definition at line 134 of file NPSMEFTd6MFV.h.

◆ Cqu1_uu_LNP

double NPSMEFTd6MFV::Cqu1_uu_LNP = 0.
protected

Definition at line 134 of file NPSMEFTd6MFV.h.

◆ Cqu1_uy_LNP

double NPSMEFTd6MFV::Cqu1_uy_LNP = 0.
protected

Definition at line 134 of file NPSMEFTd6MFV.h.

◆ Cqu1_y_LNP

double NPSMEFTd6MFV::Cqu1_y_LNP = 0.
protected

Definition at line 134 of file NPSMEFTd6MFV.h.

◆ Cqu1_yd_LNP

double NPSMEFTd6MFV::Cqu1_yd_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qu}^{(8)})_{ijkm}\).

Definition at line 134 of file NPSMEFTd6MFV.h.

◆ Cqu1_yu_LNP

double NPSMEFTd6MFV::Cqu1_yu_LNP = 0.
protected

Definition at line 134 of file NPSMEFTd6MFV.h.

◆ Cqu8_00_LNP

double NPSMEFTd6MFV::Cqu8_00_LNP = 0.
protected

Definition at line 137 of file NPSMEFTd6MFV.h.

◆ Cqu8_0u_LNP

double NPSMEFTd6MFV::Cqu8_0u_LNP = 0.
protected

Definition at line 137 of file NPSMEFTd6MFV.h.

◆ Cqu8_d0_LNP

double NPSMEFTd6MFV::Cqu8_d0_LNP = 0.
protected

Definition at line 137 of file NPSMEFTd6MFV.h.

◆ Cqu8_du_LNP

double NPSMEFTd6MFV::Cqu8_du_LNP = 0.
protected

Definition at line 137 of file NPSMEFTd6MFV.h.

◆ Cqu8_dy_LNP

double NPSMEFTd6MFV::Cqu8_dy_LNP = 0.
protected

Definition at line 137 of file NPSMEFTd6MFV.h.

◆ Cqu8_u0_LNP

double NPSMEFTd6MFV::Cqu8_u0_LNP = 0.
protected

Definition at line 137 of file NPSMEFTd6MFV.h.

◆ Cqu8_uu_LNP

double NPSMEFTd6MFV::Cqu8_uu_LNP = 0.
protected

Definition at line 137 of file NPSMEFTd6MFV.h.

◆ Cqu8_uy_LNP

double NPSMEFTd6MFV::Cqu8_uy_LNP = 0.
protected

Definition at line 137 of file NPSMEFTd6MFV.h.

◆ Cqu8_y_LNP

double NPSMEFTd6MFV::Cqu8_y_LNP = 0.
protected

Definition at line 137 of file NPSMEFTd6MFV.h.

◆ Cqu8_yd_LNP

double NPSMEFTd6MFV::Cqu8_yd_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qd}^{(1)})_{ijkm}\).

Definition at line 137 of file NPSMEFTd6MFV.h.

◆ Cqu8_yu_LNP

double NPSMEFTd6MFV::Cqu8_yu_LNP = 0.
protected

Definition at line 137 of file NPSMEFTd6MFV.h.

◆ Cquqd1_00_LNP

double NPSMEFTd6MFV::Cquqd1_00_LNP = 0.
protected

Definition at line 146 of file NPSMEFTd6MFV.h.

◆ Cquqd1_0d_LNP

double NPSMEFTd6MFV::Cquqd1_0d_LNP = 0.
protected

Definition at line 146 of file NPSMEFTd6MFV.h.

◆ Cquqd1_0u_LNP

double NPSMEFTd6MFV::Cquqd1_0u_LNP = 0.
protected

Definition at line 146 of file NPSMEFTd6MFV.h.

◆ Cquqd1_d0_LNP

double NPSMEFTd6MFV::Cquqd1_d0_LNP = 0.
protected

Definition at line 146 of file NPSMEFTd6MFV.h.

◆ Cquqd1_u0_LNP

double NPSMEFTd6MFV::Cquqd1_u0_LNP = 0.
protected

Definition at line 146 of file NPSMEFTd6MFV.h.

◆ Cquqd1p_00_LNP

double NPSMEFTd6MFV::Cquqd1p_00_LNP = 0.
protected

Definition at line 146 of file NPSMEFTd6MFV.h.

◆ Cquqd1p_0d_LNP

double NPSMEFTd6MFV::Cquqd1p_0d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{quqd}^{(8)})_{ijkm}\).

Definition at line 146 of file NPSMEFTd6MFV.h.

◆ Cquqd1p_0u_LNP

double NPSMEFTd6MFV::Cquqd1p_0u_LNP = 0.
protected

Definition at line 146 of file NPSMEFTd6MFV.h.

◆ Cquqd1p_d0_LNP

double NPSMEFTd6MFV::Cquqd1p_d0_LNP = 0.
protected

Definition at line 146 of file NPSMEFTd6MFV.h.

◆ Cquqd1p_u0_LNP

double NPSMEFTd6MFV::Cquqd1p_u0_LNP = 0.
protected

Definition at line 146 of file NPSMEFTd6MFV.h.

◆ Cquqd8_00_LNP

double NPSMEFTd6MFV::Cquqd8_00_LNP = 0.
protected

Definition at line 149 of file NPSMEFTd6MFV.h.

◆ Cquqd8_0d_LNP

double NPSMEFTd6MFV::Cquqd8_0d_LNP = 0.
protected

Definition at line 149 of file NPSMEFTd6MFV.h.

◆ Cquqd8_0u_LNP

double NPSMEFTd6MFV::Cquqd8_0u_LNP = 0.
protected

Definition at line 149 of file NPSMEFTd6MFV.h.

◆ Cquqd8_d0_LNP

double NPSMEFTd6MFV::Cquqd8_d0_LNP = 0.
protected

Definition at line 149 of file NPSMEFTd6MFV.h.

◆ Cquqd8_u0_LNP

double NPSMEFTd6MFV::Cquqd8_u0_LNP = 0.
protected

Definition at line 149 of file NPSMEFTd6MFV.h.

◆ Cquqd8p_00_LNP

double NPSMEFTd6MFV::Cquqd8p_00_LNP = 0.
protected

Definition at line 149 of file NPSMEFTd6MFV.h.

◆ Cquqd8p_0d_LNP

double NPSMEFTd6MFV::Cquqd8p_0d_LNP = 0.
protected

Definition at line 149 of file NPSMEFTd6MFV.h.

◆ Cquqd8p_0u_LNP

double NPSMEFTd6MFV::Cquqd8p_0u_LNP = 0.
protected

Definition at line 149 of file NPSMEFTd6MFV.h.

◆ Cquqd8p_d0_LNP

double NPSMEFTd6MFV::Cquqd8p_d0_LNP = 0.
protected

Definition at line 149 of file NPSMEFTd6MFV.h.

◆ Cquqd8p_u0_LNP

double NPSMEFTd6MFV::Cquqd8p_u0_LNP = 0.
protected

Definition at line 149 of file NPSMEFTd6MFV.h.

◆ CuB_0_LNP

double NPSMEFTd6MFV::CuB_0_LNP = 0.
protected

Definition at line 65 of file NPSMEFTd6MFV.h.

◆ CuB_d_LNP

double NPSMEFTd6MFV::CuB_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{dH})_{ij}\).

Definition at line 65 of file NPSMEFTd6MFV.h.

◆ CuB_u_LNP

double NPSMEFTd6MFV::CuB_u_LNP = 0.
protected

Definition at line 65 of file NPSMEFTd6MFV.h.

◆ Cud1_00_LNP

double NPSMEFTd6MFV::Cud1_00_LNP = 0.
protected

Definition at line 128 of file NPSMEFTd6MFV.h.

◆ Cud1_0d_LNP

double NPSMEFTd6MFV::Cud1_0d_LNP = 0.
protected

Definition at line 128 of file NPSMEFTd6MFV.h.

◆ Cud1_u0_LNP

double NPSMEFTd6MFV::Cud1_u0_LNP = 0.
protected

Definition at line 128 of file NPSMEFTd6MFV.h.

◆ Cud1_ud_LNP

double NPSMEFTd6MFV::Cud1_ud_LNP = 0.
protected

Definition at line 128 of file NPSMEFTd6MFV.h.

◆ Cud1p_ud_LNP

double NPSMEFTd6MFV::Cud1p_ud_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{ud}^{(8)})_{ijkm}\).

Definition at line 128 of file NPSMEFTd6MFV.h.

◆ Cud8_00_LNP

double NPSMEFTd6MFV::Cud8_00_LNP = 0.
protected

Definition at line 131 of file NPSMEFTd6MFV.h.

◆ Cud8_0d_LNP

double NPSMEFTd6MFV::Cud8_0d_LNP = 0.
protected

Definition at line 131 of file NPSMEFTd6MFV.h.

◆ Cud8_u0_LNP

double NPSMEFTd6MFV::Cud8_u0_LNP = 0.
protected

Definition at line 131 of file NPSMEFTd6MFV.h.

◆ Cud8_ud_LNP

double NPSMEFTd6MFV::Cud8_ud_LNP = 0.
protected

Definition at line 131 of file NPSMEFTd6MFV.h.

◆ Cud8p_ud_LNP

double NPSMEFTd6MFV::Cud8p_ud_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{qu}^{(1)})_{ijkm}\).

Definition at line 131 of file NPSMEFTd6MFV.h.

◆ CuG_0_LNP

double NPSMEFTd6MFV::CuG_0_LNP = 0.
protected

Definition at line 59 of file NPSMEFTd6MFV.h.

◆ CuG_d_LNP

double NPSMEFTd6MFV::CuG_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{uW})_{ij}\).

Definition at line 59 of file NPSMEFTd6MFV.h.

◆ CuG_u_LNP

double NPSMEFTd6MFV::CuG_u_LNP = 0.
protected

Definition at line 59 of file NPSMEFTd6MFV.h.

◆ CuH_0_LNP

double NPSMEFTd6MFV::CuH_0_LNP = 0.
protected

Definition at line 56 of file NPSMEFTd6MFV.h.

◆ CuH_d_LNP

double NPSMEFTd6MFV::CuH_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{uG})_{ij}\).

Definition at line 56 of file NPSMEFTd6MFV.h.

◆ CuH_u_LNP

double NPSMEFTd6MFV::CuH_u_LNP = 0.
protected

Definition at line 56 of file NPSMEFTd6MFV.h.

◆ Cuu_00_LNP

double NPSMEFTd6MFV::Cuu_00_LNP = 0.
protected

Definition at line 122 of file NPSMEFTd6MFV.h.

◆ Cuu_u0_LNP

double NPSMEFTd6MFV::Cuu_u0_LNP = 0.
protected

Definition at line 122 of file NPSMEFTd6MFV.h.

◆ Cuu_uu_LNP

double NPSMEFTd6MFV::Cuu_uu_LNP = 0.
protected

Definition at line 122 of file NPSMEFTd6MFV.h.

◆ Cuup_00_LNP

double NPSMEFTd6MFV::Cuup_00_LNP = 0.
protected

Definition at line 122 of file NPSMEFTd6MFV.h.

◆ Cuup_u0_LNP

double NPSMEFTd6MFV::Cuup_u0_LNP = 0.
protected

Definition at line 122 of file NPSMEFTd6MFV.h.

◆ Cuup_uu_LNP

double NPSMEFTd6MFV::Cuup_uu_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{dd})_{ijkm}\).

Definition at line 122 of file NPSMEFTd6MFV.h.

◆ CuW_0_LNP

double NPSMEFTd6MFV::CuW_0_LNP = 0.
protected

Definition at line 62 of file NPSMEFTd6MFV.h.

◆ CuW_d_LNP

double NPSMEFTd6MFV::CuW_d_LNP = 0.
protected

Coefficients of the MFV expansion of the dimension-6 operator coefficient \((C_{uB})_{ij}\).

Definition at line 62 of file NPSMEFTd6MFV.h.

◆ CuW_u_LNP

double NPSMEFTd6MFV::CuW_u_LNP = 0.
protected

Definition at line 62 of file NPSMEFTd6MFV.h.

◆ NNPSMEFTd6MFVVars

const int NPSMEFTd6MFV::NNPSMEFTd6MFVVars = 178+1
static

Definition at line 17 of file NPSMEFTd6MFV.h.

◆ NPSMEFTd6MFVVars

std::string NPSMEFTd6MFV::NPSMEFTd6MFVVars
static
Initial value:
= {
"CG_LNP","CW_LNP","CHG_LNP","CHW_LNP","CHB_LNP","CHWB_LNP","CHD_LNP","CHbox_LNP",
"CH_LNP","CHl1_LNP","CHl3_LNP","CHe_LNP","Cll_aabb_LNP","Cll_abba_LNP","Cee_LNP","Cle_LNP",
"CuH_0_LNP","CuH_u_LNP","CuH_d_LNP","CuG_0_LNP","CuG_u_LNP","CuG_d_LNP","CuW_0_LNP","CuW_u_LNP",
"CuW_d_LNP","CuB_0_LNP","CuB_u_LNP","CuB_d_LNP","CdH_0_LNP","CdH_u_LNP","CdH_d_LNP","CdG_0_LNP",
"CdG_u_LNP","CdG_d_LNP","CdW_0_LNP","CdW_u_LNP","CdW_d_LNP","CdB_0_LNP","CdB_u_LNP","CdB_d_LNP",
"CHq1_0_LNP","CHq1_u_LNP","CHq1_d_LNP","CHq3_0_LNP","CHq3_u_LNP","CHq3_d_LNP","CHu_0_LNP","CHu_u_LNP",
"CHd_0_LNP","CHd_d_LNP","CHud_ud_LNP","Clq1_0_LNP","Clq1_u_LNP","Clq1_d_LNP","Clq3_0_LNP","Clq3_u_LNP",
"Clq3_d_LNP","Cqe_0_LNP","Cqe_u_LNP","Cqe_d_LNP","Clu_0_LNP","Clu_u_LNP","Ceu_0_LNP","Ceu_u_LNP",
"Cld_0_LNP","Cld_d_LNP","Ced_0_LNP","Ced_d_LNP","Cqq1_00_LNP","Cqq1_u0_LNP","Cqq1_d0_LNP","Cqq1_uu_LNP",
"Cqq1_dd_LNP","Cqq1_ud_LNP","Cqq1p_00_LNP","Cqq1p_u0_LNP","Cqq1p_d0_LNP","Cqq1p_uu_LNP","Cqq1p_dd_LNP","Cqq1p_ud_LNP",
"Cqq3_00_LNP","Cqq3_u0_LNP","Cqq3_d0_LNP","Cqq3_uu_LNP","Cqq3_dd_LNP","Cqq3_ud_LNP","Cqq3p_00_LNP","Cqq3p_u0_LNP",
"Cqq3p_d0_LNP","Cqq3p_uu_LNP","Cqq3p_dd_LNP","Cqq3p_ud_LNP","Cuu_00_LNP","Cuu_u0_LNP","Cuu_uu_LNP","Cuup_00_LNP",
"Cuup_u0_LNP","Cuup_uu_LNP","Cdd_00_LNP","Cdd_d0_LNP","Cdd_dd_LNP","Cddp_00_LNP","Cddp_d0_LNP","Cddp_dd_LNP",
"Cud1_00_LNP","Cud1_u0_LNP","Cud1_0d_LNP","Cud1_ud_LNP","Cud1p_ud_LNP","Cud8_00_LNP","Cud8_u0_LNP","Cud8_0d_LNP",
"Cud8_ud_LNP","Cud8p_ud_LNP","Cqu1_00_LNP","Cqu1_u0_LNP","Cqu1_d0_LNP","Cqu1_0u_LNP","Cqu1_uu_LNP","Cqu1_du_LNP",
"Cqu1_y_LNP","Cqu1_uy_LNP","Cqu1_dy_LNP","Cqu1_yu_LNP","Cqu1_yd_LNP","Cqu8_00_LNP","Cqu8_u0_LNP","Cqu8_d0_LNP",
"Cqu8_0u_LNP","Cqu8_uu_LNP","Cqu8_du_LNP","Cqu8_y_LNP","Cqu8_uy_LNP","Cqu8_dy_LNP","Cqu8_yu_LNP","Cqu8_yd_LNP",
"Cqd1_00_LNP","Cqd1_u0_LNP","Cqd1_d0_LNP","Cqd1_0d_LNP","Cqd1_ud_LNP","Cqd1_dd_LNP","Cqd1_y_LNP","Cqd1_uy_LNP",
"Cqd1_dy_LNP","Cqd1_yu_LNP","Cqd1_yd_LNP","Cqd8_00_LNP","Cqd8_u0_LNP","Cqd8_d0_LNP","Cqd8_0d_LNP","Cqd8_ud_LNP",
"Cqd8_dd_LNP","Cqd8_y_LNP","Cqd8_uy_LNP","Cqd8_dy_LNP","Cqd8_yu_LNP","Cqd8_yd_LNP","Cquqd1_00_LNP","Cquqd1_u0_LNP",
"Cquqd1_d0_LNP","Cquqd1_0u_LNP","Cquqd1_0d_LNP","Cquqd1p_00_LNP","Cquqd1p_u0_LNP","Cquqd1p_d0_LNP","Cquqd1p_0u_LNP","Cquqd1p_0d_LNP",
"Cquqd8_00_LNP","Cquqd8_u0_LNP","Cquqd8_d0_LNP","Cquqd8_0u_LNP","Cquqd8_0d_LNP","Cquqd8p_00_LNP","Cquqd8p_u0_LNP","Cquqd8p_d0_LNP",
"Cquqd8p_0u_LNP","Cquqd8p_0d_LNP",
"Lambda_NP"
}

Definition at line 19 of file NPSMEFTd6MFV.h.


The documentation for this class was generated from the following files: