a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models Logo
NPSMEFTd6GeneralMatching Class Reference

A class for the matching in the NPSMEFTd6_General model at the scale \( \mu_W \). More...

#include <NPSMEFTd6GeneralMatching.h>

+ Inheritance diagram for NPSMEFTd6GeneralMatching:

Detailed Description

A class for the matching in the NPSMEFTd6_General model at the scale \( \mu_W \).

Author
HEPfit Collaboration

This class, after update, contains the SMEFT coefficients at the scale \( \mu_W \) defined in the SMEFT model

Definition at line 25 of file NPSMEFTd6GeneralMatching.h.

Public Member Functions

virtual std::vector< WilsonCoefficient > & CMbsg ()
 
virtual std::vector< WilsonCoefficient > & CMdbd2 ()
 \( \Delta S = 2 \) More...
 
virtual std::vector< WilsonCoefficient > & CMdbs2 ()
 \( \Delta S = 2 \) More...
 
virtual std::vector< WilsonCoefficient > & CMdd2 ()
 \( \Delta C = 2 \) More...
 
virtual std::vector< WilsonCoefficient > & CMdiujleptonknu (int i, int j, int k)
 
virtual std::vector< WilsonCoefficient > & CMdk2 ()
 \( \Delta S = 2 \) More...
 
virtual std::vector< WilsonCoefficient > & CMkpnn ()
 
virtual std::vector< WilsonCoefficient > & CMprimebsg ()
 
const gslpp::complex getCddS1RR (int i, int j, int k, int l) const
 Return CddS1RR. More...
 
const gslpp::complex getCddS8RR (int i, int j, int k, int l) const
 Return CddS8RR. More...
 
const gslpp::complex getCddV1LR (int i, int j, int k, int l) const
 Return CddV1LR. More...
 
const gslpp::complex getCddV8LR (int i, int j, int k, int l) const
 Return CddV8LR. More...
 
const gslpp::complex getCddVLL (int i, int j, int k, int l) const
 Return CddVLL. More...
 
const gslpp::complex getCddVRR (int i, int j, int k, int l) const
 Return CddVRR. More...
 
const gslpp::complex getCdeVLR (int i, int j, int k, int l) const
 Return CdeVLR. More...
 
const gslpp::complex getCdG (int i, int j) const
 Return CdGLR (chromomagnetic dipole operator) More...
 
const gslpp::complex getCdg (int i, int j) const
 Return CdgLR (electric dipole operator) More...
 
const gslpp::complex getCduV1LR (int i, int j, int k, int l) const
 Return CduV1LR. More...
 
const gslpp::complex getCduV8LR (int i, int j, int k, int l) const
 Return CduV8LR. More...
 
const gslpp::complex getCedSRL (int i, int j, int k, int l) const
 Return CedSRL. More...
 
const gslpp::complex getCedSRR (int i, int j, int k, int l) const
 Return CedSRR. More...
 
const gslpp::complex getCedTRR (int i, int j, int k, int l) const
 Return CedTRR. More...
 
const gslpp::complex getCedVLL (int i, int j, int k, int l) const
 Return CedVLL. More...
 
const gslpp::complex getCedVLR (int i, int j, int k, int l) const
 Return CedVLR. More...
 
const gslpp::complex getCedVRR (int i, int j, int k, int l) const
 Return CedVRR. More...
 
const gslpp::complex getCeeSRR (int i, int j, int k, int l) const
 Return CeeSRR. More...
 
const gslpp::complex getCeeVLL (int i, int j, int k, int l) const
 Return CeeVLL. More...
 
const gslpp::complex getCeeVLR (int i, int j, int k, int l) const
 Return CeeVLR. More...
 
const gslpp::complex getCeeVRR (int i, int j, int k, int l) const
 Return CeeVRR. More...
 
const gslpp::complex getCeuSRL (int i, int j, int k, int l) const
 Return CeuSRL. More...
 
const gslpp::complex getCeuSRR (int i, int j, int k, int l) const
 Return CeuSRR. More...
 
const gslpp::complex getCeuTRR (int i, int j, int k, int l) const
 Return CeuTRR. More...
 
const gslpp::complex getCeuVLL (int i, int j, int k, int l) const
 Return CeuVLL. More...
 
const gslpp::complex getCeuVLR (int i, int j, int k, int l) const
 Return CeuVLR. More...
 
const gslpp::complex getCeuVRR (int i, int j, int k, int l) const
 Return CeuVRR. More...
 
const gslpp::complex getCnudVLL (int i, int j, int k, int l) const
 Return CnudVLL. More...
 
const gslpp::complex getCnudVLR (int i, int j, int k, int l) const
 Return CnudVLR. More...
 
const gslpp::complex getCnueduSRL (int i, int j, int k, int l) const
 Return CnueduSRL. More...
 
const gslpp::complex getCnueduSRR (int i, int j, int k, int l) const
 Return CnueduSRR. More...
 
const gslpp::complex getCnueduTRR (int i, int j, int k, int l) const
 Return CnueduTRR. More...
 
const gslpp::complex getCnueduVLL (int i, int j, int k, int l) const
 Return CnueduVLL. More...
 
const gslpp::complex getCnueduVLR (int i, int j, int k, int l) const
 Return CnueduVLR. More...
 
const gslpp::complex getCnueVLL (int i, int j, int k, int l) const
 Return CnueVLL. More...
 
const gslpp::complex getCnueVLR (int i, int j, int k, int l) const
 Return CnueVLR. More...
 
const gslpp::complex getCnunuVLL (int i, int j, int k, int l) const
 Return CnunuVLL. More...
 
const gslpp::complex getCnuuVLL (int i, int j, int k, int l) const
 Return CnuuVLL. More...
 
const gslpp::complex getCnuuVLR (int i, int j, int k, int l) const
 Return CnuuVLR. More...
 
const gslpp::complex getCudduS1RR (int i, int j, int k, int l) const
 Return CudduS1RR. More...
 
const gslpp::complex getCudduS8RR (int i, int j, int k, int l) const
 Return CudduS8RR. More...
 
const gslpp::complex getCudduV1LR (int i, int j, int k, int l) const
 Return CudduV1LR. More...
 
const gslpp::complex getCudduV8LR (int i, int j, int k, int l) const
 Return CudduV8LR. More...
 
const gslpp::complex getCudS1RR (int i, int j, int k, int l) const
 Return CudS1RR. More...
 
const gslpp::complex getCudS8RR (int i, int j, int k, int l) const
 Return CudS8RR. More...
 
const gslpp::complex getCudV1LL (int i, int j, int k, int l) const
 Return CudV1LL. More...
 
const gslpp::complex getCudV1LR (int i, int j, int k, int l) const
 Return CudV1LR. More...
 
const gslpp::complex getCudV1RR (int i, int j, int k, int l) const
 Return CudV1RR. More...
 
const gslpp::complex getCudV8LL (int i, int j, int k, int l) const
 Return CudV8LL. More...
 
const gslpp::complex getCudV8LR (int i, int j, int k, int l) const
 Return CudV8LR. More...
 
const gslpp::complex getCudV8RR (int i, int j, int k, int l) const
 Return CudV8RR. More...
 
const gslpp::complex getCueVLR (int i, int j, int k, int l) const
 Return CueVLR. More...
 
const gslpp::complex getCuuS1RR (int i, int j, int k, int l) const
 Return CuuS1RR. More...
 
const gslpp::complex getCuuS8RR (int i, int j, int k, int l) const
 Return CuuS8RR. More...
 
const gslpp::complex getCuuV1LR (int i, int j, int k, int l) const
 Return CuuV1LR. More...
 
const gslpp::complex getCuuV8LR (int i, int j, int k, int l) const
 Return CuuV8LR. More...
 
const gslpp::complex getCuuVLL (int i, int j, int k, int l) const
 Return CuuVLL. More...
 
const gslpp::complex getCuuVRR (int i, int j, int k, int l) const
 Return CuuVRR. More...
 
const gslpp::matrix< gslpp::complex > getVdL () const
 Return VdL. More...
 
const gslpp::matrix< gslpp::complex > getVdR () const
 Return VdR. More...
 
const gslpp::matrix< gslpp::complex > getVeL () const
 Return VeL. More...
 
const gslpp::matrix< gslpp::complex > getVeR () const
 Return VeR. More...
 
const gslpp::matrix< gslpp::complex > getVuL () const
 Return VuL. More...
 
const gslpp::matrix< gslpp::complex > getVuR () const
 Return VuR. More...
 
 NPSMEFTd6GeneralMatching (const NPSMEFTd6General &NPSMEFTd6General_i)
 
void updateLEFTGeneralParameters ()
 Updates to new FlavourWilsonCoefficient parameter sets. More...
 
virtual ~NPSMEFTd6GeneralMatching ()
 
- Public Member Functions inherited from StandardModelMatching
 StandardModelMatching (const StandardModel &SM_i)
 
void updateSMParameters ()
 Updates to new Standard Model parameter sets. More...
 
virtual ~StandardModelMatching ()
 
- Public Member Functions inherited from ModelMatching
virtual std::vector< WilsonCoefficient > & CMBMll (QCD::lepton lepton)=0
 
virtual std::vector< WilsonCoefficient > & CMbnlep (int a)=0
 
virtual std::vector< WilsonCoefficient > & CMbnlepCC (const int a)=0
 
virtual std::vector< WilsonCoefficient > & CMBXsnn (QCD::lepton lepton)=0
 
virtual std::vector< WilsonCoefficient > & CMd1 ()=0
 
virtual std::vector< WilsonCoefficient > & CMd1Buras ()=0
 
virtual std::vector< WilsonCoefficientNew > & CMDF1 (std::string blocks, unsigned int nops)=0
 
virtual std::vector< WilsonCoefficient > & CMprimeBMll (QCD::lepton lepton)=0
 
virtual ~ModelMatching ()
 

Protected Attributes

std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddS1RR = {}
 The dimension-6 operator coefficient \((C_{dd}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddS8RR = {}
 The dimension-6 operator coefficient \((C_{dd}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddV1LR = {}
 The dimension-6 operator coefficient \((C_{dd}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddV8LR = {}
 The dimension-6 operator coefficient \((C_{dd}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddVLL = {}
 The dimension-6 operator coefficient \((C_{dd}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddVRR = {}
 The dimension-6 operator coefficient \((C_{dd}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CdeVLR = {}
 The dimension-6 operator coefficient \((C_{d e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< gslpp::complex, 3 >, 3 > Cdg = {}
 The real part of the dimension-5 operator coefficient \((C_{d\gamma})_{ij}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< gslpp::complex, 3 >, 3 > CdG = {}
 The real part of the dimension-5 operator coefficient \((C_{dG})_{ij}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CduV1LR = {}
 The dimension-6 operator coefficient \((C_{du}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CduV8LR = {}
 The dimension-6 operator coefficient \((C_{du}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedSRL = {}
 The dimension-6 operator coefficient \((C_{ed}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedSRR = {}
 The dimension-6 operator coefficient \((C_{ed}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedTRR = {}
 The dimension-6 operator coefficient \((C_{ed}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVLL = {}
 The dimension-6 operator coefficient \((C_{e d}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVLR = {}
 The dimension-6 operator coefficient \((C_{e d}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVRR = {}
 The dimension-6 operator coefficient \((C_{e d}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeSRR = {}
 The dimension-6 operator coefficient \((C_{ee}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVLL = {}
 The dimension-6 operator coefficient \((C_{ee}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVLR = {}
 The dimension-6 operator coefficient \((C_{ee}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVRR = {}
 The dimension-6 operator coefficient \((C_{ee}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< gslpp::complex, 3 >, 3 > Ceg = {}
 The real part of the dimension-5 operator coefficient \((C_{e\gamma})_{ij}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuSRL = {}
 The dimension-6 operator coefficient \((C_{eu}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuSRR = {}
 The dimension-6 operator coefficient \((C_{eu}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuTRR = {}
 The dimension-6 operator coefficient \((C_{eu}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVLL = {}
 The dimension-6 operator coefficient \((C_{e u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVLR = {}
 The dimension-6 operator coefficient \((C_{e u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVRR = {}
 The dimension-6 operator coefficient \((C_{e u}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
double CG = 0.
 The dimension-6 operator coefficient \(C_{G}(\Lambda_{\rm{EW}})\). More...
 
double CGtilde = 0.
 The dimension-6 operator coefficient \(C_{\tilde{G}}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnudVLL = {}
 The dimension-6 operator coefficient \((C_{\nu d}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnudVLR = {}
 The dimension-6 operator coefficient \((C_{\nu d}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduSRL = {}
 The dimension-6 operator coefficient \((C_{nedu}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduSRR = {}
 The dimension-6 operator coefficient \((C_{nedu}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduTRR = {}
 The dimension-6 operator coefficient \((C_{nedu}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduVLL = {}
 The dimension-6 operator coefficient \((C_{\nu e d u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduVLR = {}
 The dimension-6 operator coefficient \((C_{\nu e d u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnueVLL = {}
 The dimension-6 operator coefficient \((C_{\nu e}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnueVLR = {}
 The dimension-6 operator coefficient \((C_{\nu e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnunuVLL = {}
 The dimension-6 operator coefficient \((C_{\nu\nu}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CnuuVLL = {}
 The dimension-6 operator coefficient \((C_{\nu u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CnuuVLR = {}
 The dimension-6 operator coefficient \((C_{\nu u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduS1RR = {}
 The dimension-6 operator coefficient \((C_{uddu}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduS8RR = {}
 The dimension-6 operator coefficient \((C_{uddu}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduV1LR = {}
 The dimension-6 operator coefficient \((C_{uddu}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduV8LR = {}
 The dimension-6 operator coefficient \((C_{uddu}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudS1RR = {}
 The dimension-6 operator coefficient \((C_{ud}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudS8RR = {}
 The dimension-6 operator coefficient \((C_{ud}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1LL = {}
 The dimension-6 operator coefficient \((C_{ud}^{V1,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1LR = {}
 The dimension-6 operator coefficient \((C_{ud}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1RR = {}
 The dimension-6 operator coefficient \((C_{ud}^{V1,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8LL = {}
 The dimension-6 operator coefficient \((C_{ud}^{V8,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8LR = {}
 The dimension-6 operator coefficient \((C_{ud}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8RR = {}
 The dimension-6 operator coefficient \((C_{ud}^{V8,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CueVLR = {}
 The dimension-6 operator coefficient \((C_{u e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< gslpp::complex, 2 >, 2 > Cug = {}
 The real part of the dimension-5 operator coefficient \((C_{u\gamma})_{ij}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< gslpp::complex, 2 >, 2 > CuG = {}
 The real part of the dimension-5 operator coefficient \((C_{uG})_{ij}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuS1RR = {}
 The dimension-6 operator coefficient \((C_{uu}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuS8RR = {}
 The dimension-6 operator coefficient \((C_{uu}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuV1LR = {}
 The dimension-6 operator coefficient \((C_{uu}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuV8LR = {}
 The dimension-6 operator coefficient \((C_{dd}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuVLL = {}
 The dimension-6 operator coefficient \((C_{uu}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuVRR = {}
 The dimension-6 operator coefficient \((C_{uu}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
const std::array< std::array< gslpp::complex, 2 >, 2 > zero22 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > zero2222 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > zero2233 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > zero2332 {}
 
const std::array< std::array< gslpp::complex, 3 >, 3 > zero33 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > zero3322 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > zero3332 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > zero3333 {}
 

Private Attributes

double LambdaNP2
 
WilsonCoefficient mcbd
 
WilsonCoefficient mcbs
 
WilsonCoefficient mcbsg
 
WilsonCoefficient mcd1
 
WilsonCoefficient mcd2
 
WilsonCoefficient mck2
 
WilsonCoefficient mckpnn
 
WilsonCoefficient mcprimebsg
 
WilsonCoefficient mculeptonnu
 
gslpp::matrix< gslpp::complex > MD
 
gslpp::matrix< gslpp::complex > MU
 
const NPSMEFTd6GeneralmySMEFT
 
double v
 
double v2
 
gslpp::matrix< gslpp::complex > VdL
 
gslpp::matrix< gslpp::complex > VdLd
 
gslpp::matrix< gslpp::complex > VdR
 
gslpp::matrix< gslpp::complex > VdRd
 
gslpp::matrix< gslpp::complex > VeL
 
gslpp::matrix< gslpp::complex > VeLd
 
gslpp::matrix< gslpp::complex > VeR
 
gslpp::matrix< gslpp::complex > VeRd
 
gslpp::matrix< gslpp::complex > VuL
 
gslpp::matrix< gslpp::complex > VuLd
 
gslpp::matrix< gslpp::complex > VuR
 
gslpp::matrix< gslpp::complex > VuRd
 

Constructor & Destructor Documentation

◆ NPSMEFTd6GeneralMatching()

NPSMEFTd6GeneralMatching::NPSMEFTd6GeneralMatching ( const NPSMEFTd6General NPSMEFTd6General_i)

Definition at line 14 of file NPSMEFTd6GeneralMatching.cpp.

14 : StandardModelMatching(NPSMEFTd6General_i),
15 mySMEFT(NPSMEFTd6General_i),
16 VuL(gslpp::matrix<complex>::Id(3)),
17 VuLd(gslpp::matrix<complex>::Id(3)),
18 VuR(gslpp::matrix<complex>::Id(3)),
19 VuRd(gslpp::matrix<complex>::Id(3)),
20 VdL(gslpp::matrix<complex>::Id(3)),
21 VdLd(gslpp::matrix<complex>::Id(3)),
22 VdR(gslpp::matrix<complex>::Id(3)),
23 VdRd(gslpp::matrix<complex>::Id(3)),
24 VeL(gslpp::matrix<complex>::Id(3)),
25 VeLd(gslpp::matrix<complex>::Id(3)),
26 VeR(gslpp::matrix<complex>::Id(3)),
27 VeRd(gslpp::matrix<complex>::Id(3)),
28 MU(3, 0.),
29 MD(3, 0.),
30 mcd2(5, NDR, NLO),
31 mcd1(10, NDR, NLO),
32 mcbd(5, NDR, NLO),
33 mcbs(5, NDR, NLO),
34 mck2(5, NDR, NLO),
35 mculeptonnu(5, NDR, LO),
36 mckpnn(2, NDR, NLO, NLO_QED11),
37 mcbsg(8, NDR, NNLO),
39
40{
41}
@ NNLO
Definition: OrderScheme.h:36
@ LO
Definition: OrderScheme.h:34
@ NLO
Definition: OrderScheme.h:35
@ NDR
Definition: OrderScheme.h:21
@ NLO_QED11
Definition: OrderScheme.h:59
const NPSMEFTd6General & mySMEFT
gslpp::matrix< gslpp::complex > VuL
gslpp::matrix< gslpp::complex > VeR
gslpp::matrix< gslpp::complex > VdL
gslpp::matrix< gslpp::complex > VeL
gslpp::matrix< gslpp::complex > VeRd
gslpp::matrix< gslpp::complex > VuR
gslpp::matrix< gslpp::complex > VuRd
gslpp::matrix< gslpp::complex > VdRd
gslpp::matrix< gslpp::complex > VdR
gslpp::matrix< gslpp::complex > MD
gslpp::matrix< gslpp::complex > MU
gslpp::matrix< gslpp::complex > VeLd
gslpp::matrix< gslpp::complex > VdLd
gslpp::matrix< gslpp::complex > VuLd
StandardModelMatching(const StandardModel &SM_i)

◆ ~NPSMEFTd6GeneralMatching()

NPSMEFTd6GeneralMatching::~NPSMEFTd6GeneralMatching ( )
virtual

Definition at line 492 of file NPSMEFTd6GeneralMatching.cpp.

493{
494}

Member Function Documentation

◆ CMbsg()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMbsg ( )
virtual
Returns
Wilson coefficients for \( b_R \rightarrow s_L \gamma \)

Implements ModelMatching.

Definition at line 833 of file NPSMEFTd6GeneralMatching.cpp.

833 {
834
836
838
839 gslpp::complex LEFT_factor = sqrt(2.) / 4. / mySMEFT.getGF() / mySMEFT.getCKM().computelamt_s() ;
840 gslpp::complex LEFT_factor_radiative = 16. * M_PI * M_PI / mySMEFT.getQuarks(QCD::BOTTOM).getMass() * LEFT_factor / sqrt(4. * M_PI * mySMEFT.getAle());
841
842 switch (mcbsg.getOrder()) {
843 case NNLO:
844 case NLO:
845 case LO:
846 // {O1, O2} = {{-(1/N), (-1 + N^2)/(2 N^2)}, {2, 1/N}} {OV8LLud,OV1LLud}
847 mcbsg.setCoeff(0, (-1./mySMEFT.getNc() * getCudV8LL(1,1,1,2) + .5 * (1. - 1./mySMEFT.getNc()/mySMEFT.getNc()) * getCudV1LL(1,1,1,2)) * LEFT_factor, LO);
848 mcbsg.setCoeff(1, (2. * getCudV8LL(1,1,1,2) + 1./mySMEFT.getNc() * getCudV1LL(1,1,1,2)) * LEFT_factor, LO);
849 // Add penguin operators in the future
850 mcbsg.setCoeff(6, getCdg(1,2) * LEFT_factor_radiative, LO);
851 mcbsg.setCoeff(7, getCdG(1,2) * LEFT_factor_radiative * (mySMEFT.getAle()/mySMEFT.Als(mySMEFT.getQuarks(QCD::BOTTOM).getMass())), LO);
852 break;
853 default:
854 std::stringstream out;
855 out << mcbsg.getOrder();
856 throw std::runtime_error("StandardModelMatching::CMbsg(): order " + out.str() + "not implemented");
857 }
858
859 vmcbsg.push_back(mcbsg);
860 return (vmcbsg);
861}
const gslpp::complex computelamt_s() const
The product of the CKM elements .
Definition: CKM.cpp:174
virtual std::vector< WilsonCoefficient > & CMbsg()=0
const gslpp::complex getCudV1LL(int i, int j, int k, int l) const
Return CudV1LL.
const gslpp::complex getCdG(int i, int j) const
Return CdGLR (chromomagnetic dipole operator)
const gslpp::complex getCdg(int i, int j) const
Return CdgLR (electric dipole operator)
const gslpp::complex getCudV8LL(int i, int j, int k, int l) const
Return CudV8LL.
const double & getMass() const
A get method to access the particle mass.
Definition: Particle.h:61
@ BOTTOM
Definition: QCD.h:329
const Particle & getQuarks(const QCD::quark q) const
A get method to access a quark as an object of the type Particle.
Definition: QCD.h:536
const double getNc() const
A get method to access the number of colours .
Definition: QCD.h:507
const double getMuw() const
A get method to retrieve the matching scale around the weak scale.
const CKM & getCKM() const
A get method to retrieve the member object of type CKM.
const double getGF() const
A get method to retrieve the Fermi constant .
const double Als(const double mu, const orders order, const bool Nf_thr, const bool qed_flag) const
The running QCD coupling in the scheme including QED corrections.
const double getAle() const
A get method to retrieve the fine-structure constant .
void setCoeff(const gslpp::vector< gslpp::complex > &z, orders order_i)
virtual void setMu(double mu)
orders getOrder() const

◆ CMdbd2()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMdbd2 ( )
virtual

\( \Delta S = 2 \)

Returns
the vector of 8 wilson coefficients: SM + SMEFT

Reimplemented from StandardModelMatching.

Definition at line 629 of file NPSMEFTd6GeneralMatching.cpp.

630{
631
632 vmcdb.clear();
634
636
637 switch (mcbd.getOrder())
638 {
639 case NNLO:
640 case NLO:
641 for (int l = 0; l < 5; l++)
642 mcbd.setCoeff(l, 0., NLO);
643 case LO:
644 mcbd.setCoeff(0, -CddVLL.at(0).at(2).at(0).at(2), LO);
645 mcbd.setCoeff(1, -(CddS1RR.at(2).at(0).at(2).at(0).conjugate() - CddS8RR.at(2).at(0).at(2).at(0).conjugate() / 6.), LO);
646 mcbd.setCoeff(2, -CddS8RR.at(2).at(0).at(2).at(0).conjugate() / 2., LO);
647 mcbd.setCoeff(3, CddV8LR.at(0).at(2).at(0).at(2), LO);
648 mcbd.setCoeff(4, 2. * CddV1LR.at(0).at(2).at(0).at(2) - CddV8LR.at(0).at(2).at(0).at(2) / 3., LO);
649 break;
650 default:
651 std::stringstream out;
652 out << mcbd.getOrder();
653 throw std::runtime_error("StandardModelMatching::CMdbd2(): order " + out.str() + "not implemented");
654 }
655
656
657 // std::cout << "NPSMEFTd6GeneralMatching::CMdbd2(): Matching to the Delta B=2 Hamiltonian in the SUSY Basis, checked using 1512.02830" << std::endl;
658 // std::cout << "C1 = " << (*(mcbd.getCoeff(LO)))(0) << std::endl;
659 // std::cout << "C2 = " << (*(mcbd.getCoeff(LO)))(1) << std::endl;
660 // std::cout << "C3 = " << (*(mcbd.getCoeff(LO)))(2) << std::endl;
661 // std::cout << "C4 = " << (*(mcbd.getCoeff(LO)))(3) << std::endl;
662 // std::cout << "C5 = " << (*(mcbd.getCoeff(LO)))(4) << std::endl;
663 // //mcbd.setCoeff(0, 0., LO);
664
665 vmcdb.push_back(mcbd);
666
667 switch (mcbd.getOrder())
668 {
669 case NNLO:
670 case NLO:
671 for (int l = 0; l < 5; l++)
672 mcbd.setCoeff(l, 0., NLO);
673 case LO:
674 mcbd.setCoeff(0, -CddVRR.at(0).at(2).at(0).at(2), LO);
675 mcbd.setCoeff(1, -(CddS1RR.at(0).at(2).at(0).at(2) - CddS8RR.at(0).at(2).at(0).at(2) / 6.), LO);
676 mcbd.setCoeff(2, -CddS8RR.at(0).at(2).at(0).at(2) / 2., LO);
677 mcbd.setCoeff(3, 0., LO);
678 mcbd.setCoeff(4, 0., LO);
679 break;
680 default:
681 std::stringstream out;
682 out << mcbd.getOrder();
683 throw std::runtime_error("StandardModelMatching::CMdbd2(): order " + out.str() + "not implemented");
684 }
685
686 vmcdb.push_back(mcbd);
687
688 // std::cout << "C1t = " << (*(mcbd.getCoeff(LO)))(0) << std::endl;
689 // std::cout << "C2t = " << (*(mcbd.getCoeff(LO)))(1) << std::endl;
690 // std::cout << "C3t = " << (*(mcbd.getCoeff(LO)))(2) << std::endl;
691
692 return (vmcdb);
693}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddVRR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddV1LR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddV8LR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddS8RR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddVLL
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddS1RR
The dimension-6 operator coefficient .
virtual std::vector< WilsonCoefficient > & CMdbd2()
,

◆ CMdbs2()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMdbs2 ( )
virtual

\( \Delta S = 2 \)

Returns
the vector of 8 wilson coefficients: SM + SMEFT

Reimplemented from StandardModelMatching.

Definition at line 695 of file NPSMEFTd6GeneralMatching.cpp.

696{
697
698 vmcds.clear();
700
702
703 switch (mcbs.getOrder())
704 {
705 case NNLO:
706 case NLO:
707 for (int l = 0; l < 5; l++)
708 mcbs.setCoeff(l, 0., NLO);
709 case LO:
710 mcbs.setCoeff(0, -CddVLL.at(1).at(2).at(1).at(2), LO);
711 mcbs.setCoeff(1, -(CddS1RR.at(2).at(1).at(2).at(1).conjugate() - CddS8RR.at(2).at(1).at(2).at(1).conjugate() / 6.), LO);
712 mcbs.setCoeff(2, -CddS8RR.at(2).at(1).at(2).at(1).conjugate() / 2., LO);
713 mcbs.setCoeff(3, CddV8LR.at(1).at(2).at(1).at(2), LO);
714 mcbs.setCoeff(4, 2. * CddV1LR.at(1).at(2).at(1).at(2) - CddV8LR.at(1).at(2).at(1).at(2) / 3., LO);
715 break;
716 default:
717 std::stringstream out;
718 out << mcbs.getOrder();
719 throw std::runtime_error("StandardModelMatching::CMdbs2(): order " + out.str() + "not implemented");
720 }
721
722
723 // std::cout << "NPSMEFTd6GeneralMatching::CMdbs2(): Matching to the Delta BS=2 Hamiltonian in the SUSY Basis, checked using 1512.02830" << std::endl;
724 // std::cout << "C1 = " << (*(mcbs.getCoeff(LO)))(0) << std::endl;
725 // std::cout << "C2 = " << (*(mcbs.getCoeff(LO)))(1) << std::endl;
726 // std::cout << "C3 = " << (*(mcbs.getCoeff(LO)))(2) << std::endl;
727 // std::cout << "C4 = " << (*(mcbs.getCoeff(LO)))(3) << std::endl;
728 // std::cout << "C5 = " << (*(mcbs.getCoeff(LO)))(4) << std::endl;
729 // //mcbs.setCoeff(0, 0., LO);
730
731 vmcds.push_back(mcbs);
732
733 switch (mcbs.getOrder())
734 {
735 case NNLO:
736 case NLO:
737 for (int l = 0; l < 5; l++)
738 mcbs.setCoeff(l, 0., NLO);
739 case LO:
740 mcbs.setCoeff(0, -CddVRR.at(1).at(2).at(1).at(2), LO);
741 mcbs.setCoeff(1, -(CddS1RR.at(1).at(2).at(1).at(2) - CddS8RR.at(1).at(2).at(1).at(2) / 6.), LO);
742 mcbs.setCoeff(2, - CddS8RR.at(1).at(2).at(1).at(2) / 2., LO);
743 mcbs.setCoeff(3, 0., LO);
744 mcbs.setCoeff(4, 0., LO);
745 break;
746 default:
747 std::stringstream out;
748 out << mcbs.getOrder();
749 throw std::runtime_error("StandardModelMatching::CMdbs2(): order " + out.str() + "not implemented");
750 }
751
752 vmcds.push_back(mcbs);
753 // std::cout << "C1t = " << (*(mcbs.getCoeff(LO)))(0) << std::endl;
754 // std::cout << "C2t = " << (*(mcbs.getCoeff(LO)))(1) << std::endl;
755 // std::cout << "C3t = " << (*(mcbs.getCoeff(LO)))(2) << std::endl;
756
757 return (vmcds);
758}
virtual std::vector< WilsonCoefficient > & CMdbs2()
,

◆ CMdd2()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMdd2 ( )
virtual

\( \Delta C = 2 \)

Returns
the vector of 8 wilson coefficients: SM + SMEFT

Reimplemented from StandardModelMatching.

Definition at line 564 of file NPSMEFTd6GeneralMatching.cpp.

565{
566
567 vmcd2.clear();
569
571
572 switch (mcd2.getOrder())
573 {
574 case NNLO:
575 case NLO:
576 for (int l = 0; l < 5; l++)
577 mcd2.setCoeff(l, 0., NLO);
578 case LO:
579 mcd2.setCoeff(0, -CuuVLL.at(0).at(1).at(0).at(1), LO);
580 mcd2.setCoeff(1, -(CuuS1RR.at(1).at(0).at(1).at(0).conjugate() - CuuS8RR.at(1).at(0).at(1).at(0).conjugate() / 6.), LO);
581 mcd2.setCoeff(2, -CuuS8RR.at(1).at(0).at(1).at(0).conjugate() / 2., LO);
582 mcd2.setCoeff(3, CuuV8LR.at(0).at(1).at(0).at(1), LO);
583 mcd2.setCoeff(4, 2. * CuuV1LR.at(0).at(1).at(0).at(1) - CuuV8LR.at(0).at(1).at(0).at(1) / 3., LO);
584 break;
585 default:
586 std::stringstream out;
587 out << mcd2.getOrder();
588 throw std::runtime_error("StandardModelMatching::CMdd2(): order " + out.str() + "not implemented");
589 }
590
591 // std::cout << "NPSMEFTd6GeneralMatching::CMdd2(): Matching to the Delta B=2 Hamiltonian in the SUSY Basis, checked using 1512.02830" << std::endl;
592 // std::cout << "C1 = " << (*(mcd2.getCoeff(LO)))(0) << std::endl;
593 // std::cout << "C2 = " << (*(mcd2.getCoeff(LO)))(1) << std::endl;
594 // std::cout << "C3 = " << (*(mcd2.getCoeff(LO)))(2) << std::endl;
595 // std::cout << "C4 = " << (*(mcd2.getCoeff(LO)))(3) << std::endl;
596 // std::cout << "C5 = " << (*(mcd2.getCoeff(LO)))(4) << std::endl;
597 // //mcd2.setCoeff(0, 0., LO);
598
599 vmcd2.push_back(mcd2);
600
601 switch (mcd2.getOrder())
602 {
603 case NNLO:
604 case NLO:
605 for (int l = 0; l < 5; l++)
606 mcd2.setCoeff(l, 0., NLO);
607 case LO:
608 mcd2.setCoeff(0, -CuuVRR.at(0).at(1).at(0).at(1), LO);
609 mcd2.setCoeff(1, -(CuuS1RR.at(0).at(1).at(0).at(1) - CuuS8RR.at(0).at(1).at(0).at(1) / 6.), LO);
610 mcd2.setCoeff(2, -CuuS8RR.at(0).at(1).at(0).at(1) / 2., LO);
611 mcd2.setCoeff(3, 0., LO);
612 mcd2.setCoeff(4, 0., LO);
613 break;
614 default:
615 std::stringstream out;
616 out << mcd2.getOrder();
617 throw std::runtime_error("StandardModelMatching::CMdd2(): order " + out.str() + "not implemented");
618 }
619
620 vmcd2.push_back(mcd2);
621
622 // std::cout << "C1t = " << (*(mcd2.getCoeff(LO)))(0) << std::endl;
623 // std::cout << "C2t = " << (*(mcd2.getCoeff(LO)))(1) << std::endl;
624 // std::cout << "C3t = " << (*(mcd2.getCoeff(LO)))(2) << std::endl;
625
626 return (vmcd2);
627}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuV1LR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuS1RR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuV8LR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuS8RR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuVRR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuVLL
The dimension-6 operator coefficient .
virtual std::vector< WilsonCoefficient > & CMdd2()
,

◆ CMdiujleptonknu()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMdiujleptonknu ( int  i,
int  j,
int  k 
)
virtual
Returns
Wilson coefficients for \( \bar{d}_i u_j \bar{\nu} \ell_k \) operators in the JMS basis ordered as CnueduVLLkkij, CnueduVLRkkij, CnueduSRRkkij, CnueduSRLkkij, CnueduTRRkkij

Definition at line 763 of file NPSMEFTd6GeneralMatching.cpp.

764{
765
766 vmculeptonnu.clear();
767 vmculeptonnu = StandardModelMatching::CMdiujleptonknu(i, j, k);
768
770
771 switch (mculeptonnu.getOrder())
772 {
773 case NNLO:
774 case NLO:
775 case LO:
776 mculeptonnu.setCoeff(0, -(CnueduVLL.at(k).at(k).at(i).at(j)).conjugate(), LO);
777 mculeptonnu.setCoeff(1, -(CnueduVLR.at(k).at(k).at(i).at(j)).conjugate(), LO);
778 mculeptonnu.setCoeff(2, -(CnueduSRR.at(k).at(k).at(i).at(j)).conjugate(), LO);
779 mculeptonnu.setCoeff(3, -(CnueduSRL.at(k).at(k).at(i).at(j)).conjugate(), LO);
780 mculeptonnu.setCoeff(4, -(CnueduTRR.at(k).at(k).at(i).at(j)).conjugate(), LO);
781 break;
782 default:
783 std::stringstream out;
784 out << mculeptonnu.getOrder();
785 throw std::runtime_error("StandardModelMatching::CMuleptonnu(): order " + out.str() + "not implemented");
786 }
787
788 vmculeptonnu.push_back(mculeptonnu);
789 return (vmculeptonnu);
790}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduVLR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduTRR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduVLL
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduSRL
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduSRR
The dimension-6 operator coefficient .

◆ CMdk2()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMdk2 ( )
virtual

\( \Delta S = 2 \)

Returns
the vector of 8 wilson coefficients: SM + SMEFT

Definition at line 498 of file NPSMEFTd6GeneralMatching.cpp.

499{
500
501 vmck2.clear();
502 vmck2 = StandardModelMatching::CMdk2();
503
505
506 switch (mck2.getOrder())
507 {
508 case NNLO:
509 case NLO:
510 for (int l = 0; l < 5; l++)
511 mck2.setCoeff(l, 0., NLO);
512 case LO:
513 mck2.setCoeff(0, -CddVLL.at(0).at(1).at(0).at(1), LO);
514 mck2.setCoeff(1, -(CddS1RR.at(1).at(0).at(1).at(0).conjugate() - CddS8RR.at(1).at(0).at(1).at(0).conjugate() / 6.), LO);
515 mck2.setCoeff(2, -CddS8RR.at(1).at(0).at(1).at(0).conjugate() / 2., LO);
516 mck2.setCoeff(3, CddV8LR.at(0).at(1).at(0).at(1), LO);
517 mck2.setCoeff(4, 2. * CddV1LR.at(0).at(1).at(0).at(1) - CddV8LR.at(0).at(1).at(0).at(1) / 3., LO);
518 break;
519 default:
520 std::stringstream out;
521 out << mck2.getOrder();
522 throw std::runtime_error("StandardModelMatching::CMk2(): order " + out.str() + "not implemented");
523 }
524
525 // std::cout << "NPSMEFTd6GeneralMatching::CMk2(): Matching to the Delta F=2 Hamiltonian in the SUSY Basis, checked using 1512.02830" << std::endl;
526 // std::cout << "C1 = " << (*(mck2.getCoeff(LO)))(0) << std::endl;
527 // std::cout << "C2 = " << (*(mck2.getCoeff(LO)))(1) << std::endl;
528 // std::cout << "C3 = " << (*(mck2.getCoeff(LO)))(2) << std::endl;
529 // std::cout << "C4 = " << (*(mck2.getCoeff(LO)))(3) << std::endl;
530 // std::cout << "C5 = " << (*(mck2.getCoeff(LO)))(4) << std::endl;
531 // //mck2.setCoeff(0, 0., LO);
532
533
534 vmck2.push_back(mck2);
535
536 switch (mck2.getOrder())
537 {
538 case NNLO:
539 case NLO:
540 for (int l = 0; l < 5; l++)
541 mck2.setCoeff(l, 0., NLO);
542 case LO:
543 mck2.setCoeff(0, -CddVRR.at(0).at(1).at(0).at(1), LO);
544 mck2.setCoeff(1, -(CddS1RR.at(0).at(1).at(0).at(1) - CddS8RR.at(0).at(1).at(0).at(1) / 6.), LO);
545 mck2.setCoeff(2, -CddS8RR.at(0).at(1).at(0).at(1) / 2., LO);
546 mck2.setCoeff(3, 0., LO);
547 mck2.setCoeff(4, 0., LO);
548 break;
549 default:
550 std::stringstream out;
551 out << mck2.getOrder();
552 throw std::runtime_error("StandardModelMatching::CMk2(): order " + out.str() + "not implemented");
553 }
554
555 vmck2.push_back(mck2);
556
557 // std::cout << "C1t = " << (*(mck2.getCoeff(LO)))(0) << std::endl;
558 // std::cout << "C2t = " << (*(mck2.getCoeff(LO)))(1) << std::endl;
559 // std::cout << "C3t = " << (*(mck2.getCoeff(LO)))(2) << std::endl;
560
561 return (vmck2);
562}

◆ CMkpnn()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMkpnn ( )
virtual
Returns
Wilson coefficients for \( K_{L} \rightarrow \pi \nu \nu \)

Definition at line 792 of file NPSMEFTd6GeneralMatching.cpp.

792 {
793
794 vmckpnn = StandardModelMatching::CMkpnn();
795
797
798 switch (mckpnn.getOrder()) {
799 case NNLO:
800 case NLO:
801 case LO:
802 // assume lepton universality for now
803 mckpnn.setCoeff(0, -(CnudVLL.at(0).at(0).at(1).at(0) + CnudVLL.at(1).at(1).at(1).at(0) + CnudVLL.at(2).at(2).at(1).at(0))/3., LO);
804 mckpnn.setCoeff(1, -(CnudVLR.at(0).at(0).at(1).at(0) + CnudVLR.at(1).at(1).at(1).at(0) + CnudVLR.at(2).at(2).at(1).at(0))/3., LO);
805 break;
806 default:
807 std::stringstream out;
808 out << mckpnn.getOrder();
809 throw std::runtime_error("NPSMEFTd6GeneralMatching::CMkpnn(): order " + out.str() + " not implemented");
810 }
811
812 switch (mckpnn.getOrder_qed()) {
813 case NLO_QED11:
814 case LO_QED:
815 break;
816 default:
817 std::stringstream out;
818 out << mckpnn.getOrder_qed();
819 throw std::runtime_error("NPSMEFTd6GeneralMatching::CMkpnn(): qed order " + out.str() + " not implemented");
820 }
821
822 vmckpnn.push_back(mckpnn);
823 return (vmckpnn);
824
825}
@ LO_QED
Definition: OrderScheme.h:58
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnudVLL
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnudVLR
The dimension-6 operator coefficient .
orders_qed getOrder_qed() const

◆ CMprimebsg()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMprimebsg ( )
virtual
Returns
Wilson coefficients for \( b_L \rightarrow s_R \gamma \)

Implements ModelMatching.

Definition at line 863 of file NPSMEFTd6GeneralMatching.cpp.

863 {
864
865 vmcprimebsg = StandardModelMatching::CMprimebsg();
866
868
869 gslpp::complex LEFT_factor = sqrt(2.) / 4. / mySMEFT.getGF() / mySMEFT.getCKM().computelamt_s() ;
870 gslpp::complex LEFT_factor_radiative = 16. * M_PI * M_PI / mySMEFT.getQuarks(QCD::BOTTOM).getMass() * LEFT_factor / sqrt(4. * M_PI * mySMEFT.getAle());
871
872 switch (mcprimebsg.getOrder()) {
873 case NNLO:
874 case NLO:
875 case LO:
876 // {O1prime, O2prime} = {{-(1/N), (-1 + N^2)/(2 N^2)}, {2, 1/N}} {OV8RRud,OV1RRud}
877 mcprimebsg.setCoeff(0, (-1./mySMEFT.getNc() * getCudV8RR(1,1,1,2) + .5 * (1. - 1./mySMEFT.getNc()/mySMEFT.getNc()) * getCudV1RR(1,1,1,2)) * LEFT_factor, LO);
878 mcprimebsg.setCoeff(1, (2. * getCudV8RR(1,1,1,2) + 1./mySMEFT.getNc() * getCudV1RR(1,1,1,2)) * LEFT_factor, LO);
879 // Add penguin operators in the future
880 mcprimebsg.setCoeff(6, getCdg(2,1).conjugate() * LEFT_factor_radiative, LO);
881 mcprimebsg.setCoeff(7, getCdG(2,1).conjugate() * LEFT_factor_radiative * (mySMEFT.getAle()/mySMEFT.Als(mySMEFT.getQuarks(QCD::BOTTOM).getMass())), LO);
882 break;
883 default:
884 std::stringstream out;
885 out << mcprimebsg.getOrder();
886 throw std::runtime_error("StandardModelMatching::CMbsg(): order " + out.str() + "not implemented");
887 }
888
889 vmcprimebsg.push_back(mcprimebsg);
890 return (vmcprimebsg);
891}
virtual std::vector< WilsonCoefficient > & CMprimebsg()=0
const gslpp::complex getCudV8RR(int i, int j, int k, int l) const
Return CudV8RR.
const gslpp::complex getCudV1RR(int i, int j, int k, int l) const
Return CudV1RR.

◆ getCddS1RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddS1RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CddS1RR.

Returns
\( C_{dd}^{S1,RR} \)

Definition at line 1167 of file NPSMEFTd6GeneralMatching.cpp.

1168{
1169 return (CddS1RR.at(i).at(j).at(k).at(l));
1170}

◆ getCddS8RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddS8RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CddS8RR.

Returns
\( C_{dd}^{S8,RR} \)

Definition at line 1173 of file NPSMEFTd6GeneralMatching.cpp.

1174{
1175 return (CddS8RR.at(i).at(j).at(k).at(l));
1176}

◆ getCddV1LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddV1LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CddV1LR.

Returns
\( C_{dd}^{V1,LR} \)

Definition at line 1078 of file NPSMEFTd6GeneralMatching.cpp.

1079{
1080 return (CddV1LR.at(i).at(j).at(k).at(l));
1081}

◆ getCddV8LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddV8LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CddV8LR.

Returns
\( C_{dd}^{V8,LR} \)

Definition at line 1083 of file NPSMEFTd6GeneralMatching.cpp.

1084{
1085 return (CddV8LR.at(i).at(j).at(k).at(l));
1086}

◆ getCddVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CddVLL.

Returns
\( C_{dd}^{V,LL} \)

Definition at line 944 of file NPSMEFTd6GeneralMatching.cpp.

945{
946 return (CddVLL.at(i).at(j).at(k).at(l));
947}

◆ getCddVRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddVRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CddVRR.

Returns
\( C_{dd}^{V,RR} \)

Definition at line 983 of file NPSMEFTd6GeneralMatching.cpp.

984{
985 return (CddVRR.at(i).at(j).at(k).at(l));
986}

◆ getCdeVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCdeVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CdeVLR.

Returns
\( C_{de}^{V,LR} \)

Definition at line 1038 of file NPSMEFTd6GeneralMatching.cpp.

1039{
1040 return (CdeVLR.at(i).at(j).at(k).at(l));
1041}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CdeVLR
The dimension-6 operator coefficient .

◆ getCdG()

const gslpp::complex NPSMEFTd6GeneralMatching::getCdG ( int  i,
int  j 
) const

Return CdGLR (chromomagnetic dipole operator)

Returns
\( C_{d G}^{LR}(i,j) \)

Definition at line 1209 of file NPSMEFTd6GeneralMatching.cpp.

1210{
1211 return (CdG.at(i).at(j));
1212}
std::array< std::array< gslpp::complex, 3 >, 3 > CdG
The real part of the dimension-5 operator coefficient .

◆ getCdg()

const gslpp::complex NPSMEFTd6GeneralMatching::getCdg ( int  i,
int  j 
) const

Return CdgLR (electric dipole operator)

Returns
\( C_{d \gamma}^{LR}(i,j) \)

Definition at line 1214 of file NPSMEFTd6GeneralMatching.cpp.

1215{
1216 return (Cdg.at(i).at(j));
1217}
std::array< std::array< gslpp::complex, 3 >, 3 > Cdg
The real part of the dimension-5 operator coefficient .

◆ getCduV1LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCduV1LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CduV1LR.

Returns
\( C_{du}^{V1,LR} \)

Definition at line 1068 of file NPSMEFTd6GeneralMatching.cpp.

1069{
1070 return (CduV1LR.at(i).at(j).at(k).at(l));
1071}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CduV1LR
The dimension-6 operator coefficient .

◆ getCduV8LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCduV8LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CduV8LR.

Returns
\( C_{du}^{V8,LR} \)

Definition at line 1073 of file NPSMEFTd6GeneralMatching.cpp.

1074{
1075 return (CduV8LR.at(i).at(j).at(k).at(l));
1076}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CduV8LR
The dimension-6 operator coefficient .

◆ getCedSRL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedSRL ( int  i,
int  j,
int  k,
int  l 
) const

Return CedSRL.

Returns
\( C_{e d}^{S,RL} \)

Definition at line 1198 of file NPSMEFTd6GeneralMatching.cpp.

1199{
1200 return (CedSRL.at(i).at(j).at(k).at(l));
1201}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedSRL
The dimension-6 operator coefficient .

◆ getCedSRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedSRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CedSRR.

Returns
\( C_{ed}^{S,RR} \)

Definition at line 1119 of file NPSMEFTd6GeneralMatching.cpp.

1120{
1121 return (CedSRR.at(i).at(j).at(k).at(l));
1122}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedSRR
The dimension-6 operator coefficient .

◆ getCedTRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedTRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CedTRR.

Returns
\( C_{ed}^{T,RR} \)

Definition at line 1125 of file NPSMEFTd6GeneralMatching.cpp.

1126{
1127 return (CedTRR.at(i).at(j).at(k).at(l));
1128}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedTRR
The dimension-6 operator coefficient .

◆ getCedVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CedVLL.

Returns
\( C_{ed}^{V,LL} \)

Definition at line 929 of file NPSMEFTd6GeneralMatching.cpp.

930{
931 return (CedVLL.at(i).at(j).at(k).at(l));
932}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVLL
The dimension-6 operator coefficient .

◆ getCedVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CedVLR.

Returns
\( C_{ed}^{V,LR} \)

Definition at line 1028 of file NPSMEFTd6GeneralMatching.cpp.

1029{
1030 return (CedVLR.at(i).at(j).at(k).at(l));
1031}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVLR
The dimension-6 operator coefficient .

◆ getCedVRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedVRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CedVRR.

Returns
\( C_{ed}^{V,RR} \)

Definition at line 973 of file NPSMEFTd6GeneralMatching.cpp.

974{
975 return (CedVRR.at(i).at(j).at(k).at(l));
976}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVRR
The dimension-6 operator coefficient .

◆ getCeeSRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeeSRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeeSRR.

Returns
\( C_{ee}^{S,RR} \)

Definition at line 1101 of file NPSMEFTd6GeneralMatching.cpp.

1102{
1103 return (CeeSRR.at(i).at(j).at(k).at(l));
1104}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeSRR
The dimension-6 operator coefficient .

◆ getCeeVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeeVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CeeVLL.

Returns
\( C_{ee}^{V,LL} \)

Definition at line 904 of file NPSMEFTd6GeneralMatching.cpp.

905{
906 return (CeeVLL.at(i).at(j).at(k).at(l));
907}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVLL
The dimension-6 operator coefficient .

◆ getCeeVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeeVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeeVLR.

Returns
\( C_{e e}^{V,LR} \)

Definition at line 1008 of file NPSMEFTd6GeneralMatching.cpp.

1009{
1010 return (CeeVLR.at(i).at(j).at(k).at(l));
1011}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVLR
The dimension-6 operator coefficient .

◆ getCeeVRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeeVRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeeVRR.

Returns
\( C_{ee}^{V,RR} \)

Definition at line 963 of file NPSMEFTd6GeneralMatching.cpp.

964{
965 return (CeeVRR.at(i).at(j).at(k).at(l));
966}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVRR
The dimension-6 operator coefficient .

◆ getCeuSRL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuSRL ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuSRL.

Returns
\( C_{e u}^{S,RL} \)

Definition at line 1193 of file NPSMEFTd6GeneralMatching.cpp.

1194{
1195 return (CeuSRL.at(i).at(j).at(k).at(l));
1196}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuSRL
The dimension-6 operator coefficient .

◆ getCeuSRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuSRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuSRR.

Returns
\( C_{eu}^{S,RR} \)

Definition at line 1107 of file NPSMEFTd6GeneralMatching.cpp.

1108{
1109 return (CeuSRR.at(i).at(j).at(k).at(l));
1110}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuSRR
The dimension-6 operator coefficient .

◆ getCeuTRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuTRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuTRR.

Returns
\( C_{eu}^{T,RR} \)

Definition at line 1113 of file NPSMEFTd6GeneralMatching.cpp.

1114{
1115 return (CeuTRR.at(i).at(j).at(k).at(l));
1116}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuTRR
The dimension-6 operator coefficient .

◆ getCeuVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuVLL.

Returns
\( C_{eu}^{V,LL} \)

Definition at line 924 of file NPSMEFTd6GeneralMatching.cpp.

925{
926 return (CeuVLL.at(i).at(j).at(k).at(l));
927}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVLL
The dimension-6 operator coefficient .

◆ getCeuVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuVLR.

Returns
\( C_{eu}^{V,LR} \)

Definition at line 1023 of file NPSMEFTd6GeneralMatching.cpp.

1024{
1025 return (CeuVLR.at(i).at(j).at(k).at(l));
1026}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVLR
The dimension-6 operator coefficient .

◆ getCeuVRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuVRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuVRR.

Returns
\( C_{eu}^{V,RR} \)

Definition at line 968 of file NPSMEFTd6GeneralMatching.cpp.

969{
970 return (CeuVRR.at(i).at(j).at(k).at(l));
971}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVRR
The dimension-6 operator coefficient .

◆ getCnudVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnudVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnudVLL.

Returns
\( C_{\nu d}^{V,LL} \)

Definition at line 919 of file NPSMEFTd6GeneralMatching.cpp.

920{
921 return (CnudVLL.at(i).at(j).at(k).at(l));
922}

◆ getCnudVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnudVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnudVLR.

Returns
\( C_{\nu d}^{V,LR} \)

Definition at line 1018 of file NPSMEFTd6GeneralMatching.cpp.

1019{
1020 return (CnudVLR.at(i).at(j).at(k).at(l));
1021}

◆ getCnueduSRL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueduSRL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueduSRL.

Returns
\( C_{\nu e d u}^{S,RL} \)

Definition at line 1204 of file NPSMEFTd6GeneralMatching.cpp.

1205{
1206 return (CnueduSRL.at(i).at(j).at(k).at(l));
1207}

◆ getCnueduSRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueduSRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueduSRR.

Returns
\( C_{\nu e d u}^{S,RR} \)

Definition at line 1131 of file NPSMEFTd6GeneralMatching.cpp.

1132{
1133 return (CnueduSRR.at(i).at(j).at(k).at(l));
1134}

◆ getCnueduTRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueduTRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueduTRR.

Returns
\( C_{\nu e d u}^{T,RR} \)

Definition at line 1137 of file NPSMEFTd6GeneralMatching.cpp.

1138{
1139 return (CnueduTRR.at(i).at(j).at(k).at(l));
1140}

◆ getCnueduVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueduVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueduVLL.

Returns
\( C_{\nu e d u}^{V,LL} \)

Definition at line 934 of file NPSMEFTd6GeneralMatching.cpp.

935{
936 return (CnueduVLL.at(i).at(j).at(k).at(l));
937}

◆ getCnueduVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueduVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueduVLR.

Returns
\( C_{\nu e d u}^{V,LR} \)

Definition at line 1043 of file NPSMEFTd6GeneralMatching.cpp.

1044{
1045 return (CnueduVLR.at(i).at(j).at(k).at(l));
1046}

◆ getCnueVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueVLL.

Returns
\( C_{\nu e}^{V,LL} \)

Definition at line 909 of file NPSMEFTd6GeneralMatching.cpp.

910{
911 return (CnueVLL.at(i).at(j).at(k).at(l));
912}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnueVLL
The dimension-6 operator coefficient .

◆ getCnueVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueVLR.

Returns
\( C_{\nu e}^{V,LR} \)

Definition at line 1002 of file NPSMEFTd6GeneralMatching.cpp.

1003{
1004 return (CnueVLR.at(i).at(j).at(k).at(l));
1005}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnueVLR
The dimension-6 operator coefficient .

◆ getCnunuVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnunuVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnunuVLL.

Returns
\( C_{\nu \nu}^{V,LL} \)

Definition at line 899 of file NPSMEFTd6GeneralMatching.cpp.

900{
901 return (CnunuVLL.at(i).at(j).at(k).at(l));
902}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnunuVLL
The dimension-6 operator coefficient .

◆ getCnuuVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnuuVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnuuVLL.

Returns
\( C_{\nu u}^{V,LL} \)

Definition at line 914 of file NPSMEFTd6GeneralMatching.cpp.

915{
916 return (CnuuVLL.at(i).at(j).at(k).at(l));
917}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CnuuVLL
The dimension-6 operator coefficient .

◆ getCnuuVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnuuVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnuuVLR.

Returns
\( C_{\nu u}^{V,LR} \)

Definition at line 1013 of file NPSMEFTd6GeneralMatching.cpp.

1014{
1015 return (CnuuVLR.at(i).at(j).at(k).at(l));
1016}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CnuuVLR
The dimension-6 operator coefficient .

◆ getCudduS1RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudduS1RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudduS1RR.

Returns
\( C_{uddu}^{S1,RR} \)

Definition at line 1179 of file NPSMEFTd6GeneralMatching.cpp.

1180{
1181 return (CudduS1RR.at(i).at(j).at(k).at(l));
1182}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduS1RR
The dimension-6 operator coefficient .

◆ getCudduS8RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudduS8RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudduS8RR.

Returns
\( C_{uddu}^{S8,RR} \)

Definition at line 1185 of file NPSMEFTd6GeneralMatching.cpp.

1186{
1187 return (CudduS8RR.at(i).at(j).at(k).at(l));
1188}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduS8RR
The dimension-6 operator coefficient .

◆ getCudduV1LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudduV1LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudduV1LR.

Returns
\( C_{\uddu}^{V1,LR} \)

Definition at line 1088 of file NPSMEFTd6GeneralMatching.cpp.

1089{
1090 return (CudduV1LR.at(i).at(j).at(k).at(l));
1091}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduV1LR
The dimension-6 operator coefficient .

◆ getCudduV8LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudduV8LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudduV8LR.

Returns
\( C_{uddu}^{V8,LR} \)

Definition at line 1093 of file NPSMEFTd6GeneralMatching.cpp.

1094{
1095 return (CudduV8LR.at(i).at(j).at(k).at(l));
1096}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduV8LR
The dimension-6 operator coefficient .

◆ getCudS1RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudS1RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudS1RR.

Returns
\( C_{ud}^{S1,RR} \)

Definition at line 1155 of file NPSMEFTd6GeneralMatching.cpp.

1156{
1157 return (CudS1RR.at(i).at(j).at(k).at(l));
1158}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudS1RR
The dimension-6 operator coefficient .

◆ getCudS8RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudS8RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudS8RR.

Returns
\( C_{ud}^{S8,RR} \)

Definition at line 1161 of file NPSMEFTd6GeneralMatching.cpp.

1162{
1163 return (CudS8RR.at(i).at(j).at(k).at(l));
1164}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudS8RR
The dimension-6 operator coefficient .

◆ getCudV1LL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV1LL ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV1LL.

Returns
\( C_{ud}^{V1,LL} \)

Definition at line 949 of file NPSMEFTd6GeneralMatching.cpp.

950{
951 return (CudV1LL.at(i).at(j).at(k).at(l));
952}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1LL
The dimension-6 operator coefficient .

◆ getCudV1LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV1LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV1LR.

Returns
\( C_{ud}^{V1,LR} \)

Definition at line 1058 of file NPSMEFTd6GeneralMatching.cpp.

1059{
1060 return (CudV1LR.at(i).at(j).at(k).at(l));
1061}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1LR
The dimension-6 operator coefficient .

◆ getCudV1RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV1RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV1RR.

Returns
\( C_{ud}^{V1,RR} \)

Definition at line 988 of file NPSMEFTd6GeneralMatching.cpp.

989{
990 return (CudV1RR.at(i).at(j).at(k).at(l));
991}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1RR
The dimension-6 operator coefficient .

◆ getCudV8LL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV8LL ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV8LL.

Returns
\( C_{ud}^{V8,LL} \)

Definition at line 954 of file NPSMEFTd6GeneralMatching.cpp.

955{
956 return (CudV8LL.at(i).at(j).at(k).at(l));
957}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8LL
The dimension-6 operator coefficient .

◆ getCudV8LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV8LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV8LR.

Returns
\( C_{ud}^{V8,LR} \)

Definition at line 1063 of file NPSMEFTd6GeneralMatching.cpp.

1064{
1065 return (CudV8LR.at(i).at(j).at(k).at(l));
1066}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8LR
The dimension-6 operator coefficient .

◆ getCudV8RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV8RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV8RR.

Returns
\( C_{ud}^{V8,RR} \)

Definition at line 993 of file NPSMEFTd6GeneralMatching.cpp.

994{
995 return (CudV8RR.at(i).at(j).at(k).at(l));
996}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8RR
The dimension-6 operator coefficient .

◆ getCueVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCueVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CueVLR.

Returns
\( C_{ue}^{V,LR} \)

Definition at line 1033 of file NPSMEFTd6GeneralMatching.cpp.

1034{
1035 return (CueVLR.at(i).at(j).at(k).at(l));
1036}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CueVLR
The dimension-6 operator coefficient .

◆ getCuuS1RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuS1RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuS1RR.

Returns
\( C_{uu}^{S1,RR} \)

Definition at line 1143 of file NPSMEFTd6GeneralMatching.cpp.

1144{
1145 return (CuuS1RR.at(i).at(j).at(k).at(l));
1146}

◆ getCuuS8RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuS8RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuS8RR.

Returns
\( C_{uu}^{S8,RR} \)

Definition at line 1149 of file NPSMEFTd6GeneralMatching.cpp.

1150{
1151 return (CuuS8RR.at(i).at(j).at(k).at(l));
1152}

◆ getCuuV1LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuV1LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuV1LR.

Returns
\( C_{uu}^{V1,LR} \)

Definition at line 1048 of file NPSMEFTd6GeneralMatching.cpp.

1049{
1050 return (CuuV1LR.at(i).at(j).at(k).at(l));
1051}

◆ getCuuV8LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuV8LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuV8LR.

Returns
\( C_{uu}^{V8,LR} \)

Definition at line 1053 of file NPSMEFTd6GeneralMatching.cpp.

1054{
1055 return (CuuV8LR.at(i).at(j).at(k).at(l));
1056}

◆ getCuuVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuVLL.

Returns
\( C_{uu}^{V,LL} \)

Definition at line 939 of file NPSMEFTd6GeneralMatching.cpp.

940{
941 return (CuuVLL.at(i).at(j).at(k).at(l));
942}

◆ getCuuVRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuVRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuVRR.

Returns
\( C_{uu}^{V,RR} \)

Definition at line 978 of file NPSMEFTd6GeneralMatching.cpp.

979{
980 return (CuuVRR.at(i).at(j).at(k).at(l));
981}

◆ getVdL()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVdL ( ) const

Return VdL.

Returns
\( V^{d}_L \)

Definition at line 1231 of file NPSMEFTd6GeneralMatching.cpp.

1232{
1233 return VdL;
1234}

◆ getVdR()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVdR ( ) const

Return VdR.

Returns
\( V^{d}_R \)

Definition at line 1236 of file NPSMEFTd6GeneralMatching.cpp.

1237{
1238 return VdL;
1239}

◆ getVeL()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVeL ( ) const

Return VeL.

Returns
\( V^{e}_L \)

Definition at line 1241 of file NPSMEFTd6GeneralMatching.cpp.

1242{
1243 return VeL;
1244}

◆ getVeR()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVeR ( ) const

Return VeR.

Returns
\( V^{e}_R \)

Definition at line 1246 of file NPSMEFTd6GeneralMatching.cpp.

1247{
1248 return VeR;
1249}

◆ getVuL()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVuL ( ) const

Return VuL.

Returns
\( V^{u}_L \)

Definition at line 1221 of file NPSMEFTd6GeneralMatching.cpp.

1222{
1223 return VuL;
1224}

◆ getVuR()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVuR ( ) const

Return VuR.

Returns
\( V^{u}_R \)

Definition at line 1226 of file NPSMEFTd6GeneralMatching.cpp.

1227{
1228 return VuR;
1229}

◆ updateLEFTGeneralParameters()

void NPSMEFTd6GeneralMatching::updateLEFTGeneralParameters ( )

Updates to new FlavourWilsonCoefficient parameter sets.

Returns

Definition at line 43 of file NPSMEFTd6GeneralMatching.cpp.

44{
45
46 // Dimension 6 operators with no flavour index are assigned directly here
47
49 v = mySMEFT.v(); // This is vtilde in Angelica's notation
50 v2 = v * v; // This is vtilde squared
51
52 // The true VEV, corresponding to vbar in Angelica's notation, is equal to v up to corrections
53 double vT = v;
54 double delta_vT = mySMEFT.getDelta_v();
55 double vTosq2 = vT / sqrt(2.);
56
57 // CG = mySMEFT.getSMEFTCoeffEW("CG")*LambdaNP2;
58 // CW = mySMEFT.getSMEFTCoeffEW("CW")*LambdaNP2;
59 // CHG = mySMEFT.getSMEFTCoeffEW("CHG")*LambdaNP2;
60 // CHW = mySMEFT.getSMEFTCoeffEW("CHW")*LambdaNP2;
61 // CHB = mySMEFT.getSMEFTCoeffEW("CHB")*LambdaNP2;
62 // CHWB = mySMEFT.getSMEFTCoeffEW("CHWB")*LambdaNP2;
63 // CHD = mySMEFT.getSMEFTCoeffEW("CHD")*LambdaNP2;
64 // CHbox = mySMEFT.getSMEFTCoeffEW("CHbox")*LambdaNP2;
65 // CH = mySMEFT.getSMEFTCoeffEW("CH")*LambdaNP2;
66 // CGtilde = mySMEFT.getSMEFTCoeffEW("CGtilde")*LambdaNP2;
67 // CWtilde = mySMEFT.getSMEFTCoeffEW("CWtilde")*LambdaNP2;
68 // CHGtilde = mySMEFT.getSMEFTCoeffEW("CHGtilde")*LambdaNP2;
69 // CHWtilde = mySMEFT.getSMEFTCoeffEW("CHWtilde")*LambdaNP2;
70 // CHBtilde = mySMEFT.getSMEFTCoeffEW("CHBtilde")*LambdaNP2;
71 // CHWtildeB = mySMEFT.getSMEFTCoeffEW("CHWtildeB")*LambdaNP2;
72 //
73 // //Now we do not use the SILH basis anymore, we'll set these operators to zero
74 // C2B = 0.;
75 // C2W = 0.;
76 // C2BS = 0.;
77 // C2WS = 0.;
78 // CDHB = 0.;
79 // CDHW = 0.;
80 // CDB = 0.;
81 // CDW = 0.;
82 // CT = 0.;
83
84 // For operators with quark indices we need to switch to the mass eigenstate basis; leptons are already in the mass eigenstate basis since we do not have any lepton flavour violation
85
86 VuL = mySMEFT.getVuL();
87 VdL = mySMEFT.getVdL();
88 VeL = mySMEFT.getVeL();
92 VuR = mySMEFT.getVuR();
93 VdR = mySMEFT.getVdR();
94 VeR = mySMEFT.getVeR();
98
99 // to implement Manohar's matching formulae we define the couplings
100 // in his notation. Namely, in the formulae below, the barred quantities are
101 // tree level in the theory scheme.
102
103 double cbar = mySMEFT.getXWZ_tree();
104 double sbar = -mySMEFT.getXBZ_tree();
105 double sbar2 = sbar * sbar;
106 // double delta_cbar = mySMEFT.getDelta_xWZ(); not needed currently
107 double delta_sbar = mySMEFT.getDelta_xBZ();
108 double g1bar = mySMEFT.getG1_tree();
109 // double delta_g1bar = mySMEFT.getDelta_g1(); not needed currently
110 double g2bar = mySMEFT.getG2_tree();
111 // double delta_g2bar = mySMEFT.getDelta_g2(); not needed currently
112 double delta_MZ2 = mySMEFT.getDelta_Mz2();
113 double ebar = mySMEFT.getEeMz();
114 // double delta_ebar = mySMEFT.getDelta_ale() / 2.; not needed currently
115 // the Z coupling and its correction were not explicit in Angelica's notes, so they need to be checked
116 double gZbar = ebar / sbar / cbar;
117 double delta_gZbar = (g1bar * g1bar + g2bar * g2bar) / (2. * g1bar * g2bar) * v2 * mySMEFT.getSMEFTCoeffEW("CHWB");
118 double gZ2oMZ2 = gZbar / mySMEFT.getMz();
119 gZ2oMZ2 *= gZ2oMZ2;
120 double delta_gZ2oMZ2 = 2. * delta_gZbar - delta_MZ2;
121 double g22oMW2 = 4. / v2;
122 double delta_g22oMW2 = -2. * delta_vT;
123
124 // std::cout << "CKM from rotated UfA = " << (VuL.hconjugate()) * VdL << std::endl;
125
126 // std::cout << "has the diagonalization worked? " << VuR.hconjugate()*MU*VuL << std::endl;
127 // std::cout << "has the diagonalization worked? " << VdR.hconjugate()*MD*VdL << std::endl;
128
129 // match and rotate following Manohar. This is performed AT LINEAR ORDER for the moment
130
131 // fill all coefficients with zeroes first
132 gslpp::matrix<complex> VCKM = mySMEFT.getCKM().getCKM();
133 gslpp::matrix<complex> VCKMd = VCKM.hconjugate();
134
135 Ceg = zero33;
136 Ceg = zero33;
137 if (Ceg.at(0).at(1) != 0. || Ceg.at(0).at(2) != 0. || Ceg.at(1).at(0) != 0. || Ceg.at(1).at(2) != 0. || Ceg.at(2).at(0) != 0. || Ceg.at(2).at(1) != 0.)
138 throw("Compiler is not putting to zero correctly the 2-d arrays of Wilson coefficients");
139 Cdg = zero33;
140 CdG = zero33;
141 Cug = zero22;
142 CuG = zero22;
143
200
201#ifdef NOLEPTONFLAVOURVIOLATION
202
203 // matching of operators with two external indices and zero internal indices
204
205 for (int i = 0; i < 3; i++)
206 for (int j = 0; j < 3; j++)
207 {
208 Ceg.at(i).at(j) += vTosq2 * (-(mySMEFT.getSMEFTCoeffEW("CeWR", i, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", i, j)) * sbar + (mySMEFT.getSMEFTCoeffEW("CeBR", i, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", i, j)) * cbar);
209
210 CnunuVLL.at(i).at(i).at(j).at(j) += -0.0625 * (delta_gZ2oMZ2 * gZ2oMZ2);
211 CnunuVLL.at(i).at(j).at(j).at(i) += -0.0625 * (delta_gZ2oMZ2 * gZ2oMZ2);
212 CeeVLL.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (-1 + 2 * sbar2) * (delta_gZ2oMZ2 - 2 * delta_gZ2oMZ2 * sbar2 - 8 * delta_sbar * sbar2)) / 16.;
213 CeeVLL.at(i).at(j).at(j).at(i) += (gZ2oMZ2 * (-1 + 2 * sbar2) * (delta_gZ2oMZ2 - 2 * delta_gZ2oMZ2 * sbar2 - 8 * delta_sbar * sbar2)) / 16.;
214 CnueVLL.at(i).at(i).at(j).at(j) += -0.25 * (gZ2oMZ2 * (4 * delta_sbar * sbar2 + delta_gZ2oMZ2 * (-1 + 2 * sbar2)));
215 CnueVLL.at(i).at(j).at(j).at(i) += -0.5 * (delta_g22oMW2 * g22oMW2);
216 CnudVLL.at(i).at(i).at(j).at(j) += -0.08333333333333333 * (gZ2oMZ2 * (4 * delta_sbar * sbar2 + delta_gZ2oMZ2 * (-3 + 2 * sbar2)));
217 CedVLL.at(i).at(i).at(j).at(j) += -0.08333333333333333 * (gZ2oMZ2 * (16 * delta_sbar * (-1 + sbar2) * sbar2 + delta_gZ2oMZ2 * (3 - 8 * sbar2 + 4 * sbar2 * sbar2)));
218 CddVLL.at(i).at(i).at(j).at(j) += -0.013888888888888888 * (gZ2oMZ2 * (-3 + 2 * sbar2) * (8 * delta_sbar * sbar2 + delta_gZ2oMZ2 * (-3 + 2 * sbar2)));
219 CeeVRR.at(i).at(i).at(j).at(j) += -0.25 * ((delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2);
220 CeeVRR.at(i).at(j).at(j).at(i) += -0.25 * ((delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2);
221 CedVRR.at(i).at(i).at(j).at(j) += -0.3333333333333333 * ((delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2);
222 CddVRR.at(i).at(i).at(j).at(j) += -0.05555555555555555 * ((delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2);
223 CnueVLR.at(i).at(i).at(j).at(j) += -0.5 * ((delta_gZ2oMZ2 + 2 * delta_sbar) * gZ2oMZ2 * sbar2);
224 CeeVLR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * sbar2 * (delta_gZ2oMZ2 + delta_sbar * (2 - 8 * sbar2) - 2 * delta_gZ2oMZ2 * sbar2)) / 2.;
225 CnudVLR.at(i).at(i).at(j).at(j) += -0.16666666666666666 * ((delta_gZ2oMZ2 + 2 * delta_sbar) * gZ2oMZ2 * sbar2);
226 CedVLR.at(i).at(i).at(j).at(j) += -0.16666666666666666 * (gZ2oMZ2 * sbar2 * (-delta_gZ2oMZ2 - 2 * delta_sbar + 2 * delta_gZ2oMZ2 * sbar2 + 8 * delta_sbar * sbar2));
227 CdeVLR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (delta_sbar * (6 - 8 * sbar2) + delta_gZ2oMZ2 * (3 - 2 * sbar2)) * sbar2) / 6.;
228 CddV1LR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (delta_sbar * (6 - 8 * sbar2) + delta_gZ2oMZ2 * (3 - 2 * sbar2)) * sbar2) / 18.;
229 for (int k = 0; k < 3; k++)
230 {
231 CnunuVLL.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
232 CnunuVLL.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
233 CnunuVLL.at(j).at(i).at(i).at(k) += (gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
234 CnunuVLL.at(i).at(j).at(k).at(i) += (gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", k, j)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", k, j)))) / 16.;
235 CeeVLL.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
236 CeeVLL.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
237 CeeVLL.at(j).at(i).at(i).at(k) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
238 CeeVLL.at(i).at(j).at(k).at(i) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", k, j)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", k, j)))) / 16.;
239 CnueVLL.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 4.;
240 CnueVLL.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 4.;
241 CnueVLL.at(j).at(i).at(i).at(k) += -0.5 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)));
242 CnueVLL.at(i).at(j).at(k).at(i) += -0.5 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)));
243 CnudVLL.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 12.;
244 CedVLL.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 12.;
245 CeeVRR.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 8.;
246 CeeVRR.at(j).at(k).at(i).at(i) += ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 8.);
247 CeeVRR.at(j).at(i).at(i).at(k) += (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 8.;
248 CeeVRR.at(i).at(j).at(k).at(i) += (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", k, j))) / 8.;
249 CedVRR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 6.;
250 CnueVLR.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 4.;
251 CnueVLR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 2.;
252 CeeVLR.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 4.;
253 CeeVLR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 2.;
254 CnudVLR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 6.;
255 CedVLR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 6.;
256 CdeVLR.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 12.;
257 for (int p = 0; p < 3; p++)
258 for (int r = 0; r < 3; r++)
259 {
260 CnudVLL.at(i).at(i).at(j).at(k) += VdLd(j, p) * ((gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 4.) * VdL(r, k);
261 CedVLL.at(i).at(i).at(j).at(k) += VdLd(j, p) * ((gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 4.) * VdL(r, k);
262 CddVLL.at(i).at(i).at(j).at(k) += VdLd(j, p) * ((gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 24.) * VdL(r, k);
263 CddVLL.at(j).at(k).at(i).at(i) += VdLd(j, p) * ((gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 24.) * VdL(r, k);
264 CedVRR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 2.) * VdR(r, k);
265 CddVRR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 12.) * VdR(r, k);
266 CddVRR.at(j).at(k).at(i).at(i) += VdRd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 12.) * VdR(r, k);
267 CnudVLR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 4.) * VdR(r, k);
268 CedVLR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 4.) * VdR(r, k);
269 CdeVLR.at(j).at(k).at(i).at(i) += VdLd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 2.) * VdL(r, k);
270 CddV1LR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 12.) * VdR(r, k);
271 CddV1LR.at(j).at(k).at(i).at(i) += VdLd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 6.) * VdL(r, k);
272 }
273
274 for (int l = 0; l < 3; l++)
275 {
276 CnunuVLL.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CllR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CllI", i, j, k, l));
277 CeeVLL.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CllR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CllI", i, j, k, l));
278 CnueVLL.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CllR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CllI", i, j, k, l)) + (mySMEFT.getSMEFTCoeffEW("CllR", k, l, i, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CllI", k, l, i, j));
279 CeeVRR.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CeeR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeeI", i, j, k, l));
280 CnueVLR.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CleR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CleI", i, j, k, l));
281 CeeVLR.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CleR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CleI", i, j, k, l));
282 for (int p = 0; p < 3; p++)
283 for (int r = 0; r < 3; r++)
284 {
285 CnudVLL.at(i).at(j).at(k).at(l) += VdLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clq1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq1I", i, j, p, r)) - (mySMEFT.getSMEFTCoeffEW("Clq3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq3I", i, j, p, r))) * VdL(r, l);
286 CedVLL.at(i).at(j).at(k).at(l) += VdLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clq1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq1I", i, j, p, r)) + (mySMEFT.getSMEFTCoeffEW("Clq3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq3I", i, j, p, r))) * VdL(r, l);
287 CedVRR.at(i).at(j).at(k).at(l) += VdRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CedR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CedI", i, j, p, r))) * VdR(r, l);
288 CnudVLR.at(i).at(j).at(k).at(l) += VdRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CldR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CldI", i, j, p, r))) * VdR(r, l);
289 CedVLR.at(i).at(j).at(k).at(l) += VdRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CldR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CldI", i, j, p, r))) * VdR(r, l);
290 CdeVLR.at(i).at(j).at(k).at(l) += VdLd(i, p) * ((mySMEFT.getSMEFTCoeffEW("CqeR", p, r, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CqeI", p, r, k, l))) * VdL(r, j);
291 CedSRL.at(i).at(j).at(k).at(l) += VdRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CledqR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CledqI", i, j, p, r))) * VdL(r, l);
292 for (int s = 0; s < 3; s++)
293 for (int t = 0; t < 3; t++)
294 {
295 CddVLL.at(i).at(j).at(k).at(l) += VdLd(i, p) * VdLd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqq1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq1I", p, r, s, t)) + (mySMEFT.getSMEFTCoeffEW("Cqq3R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", p, r, s, t))) * VdL(r, j) * VdL(t, l);
296 CddVRR.at(i).at(j).at(k).at(l) += VdRd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("CddR", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CddI", p, r, s, t))) * VdR(r, j) * VdR(t, l);
297 CddV1LR.at(i).at(j).at(k).at(l) += VdLd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqd1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqd1I", p, r, s, t))) * VdL(r, j) * VdR(t, l);
298 CddV8LR.at(i).at(j).at(k).at(l) += VdLd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqd8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqd8I", p, r, s, t))) * VdL(r, j) * VdR(t, l);
299 }
300 }
301 }
302 for (int l = 0; l < 2; l++)
303 {
304 CnueduVLL.at(i).at(j).at(k).at(l) += VCKMd(k, l) * (-0.5 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHl3R", i, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", i, j))));
305 for (int p = 0; p < 3; p++)
306 for (int r = 0; r < 3; r++)
307 {
308 CnueduVLL.at(i).at(j).at(k).at(l) += VdLd(k, p) * (2 * (mySMEFT.getSMEFTCoeffEW("Clq3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq3I", i, j, p, r))) * VuL(r, l);
309 CnueduSRL.at(i).at(j).at(k).at(l) += VdRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CledqR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CledqI", i, j, p, r))) * VuL(r, l);
310 CnueduSRR.at(i).at(j).at(k).at(l) += VdLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clequ1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clequ1I", i, j, p, r))) * VuR(r, l);
311 CnueduTRR.at(i).at(j).at(k).at(l) += VdLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clequ3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clequ3I", i, j, p, r))) * VuR(r, l);
312 }
313 }
314 }
315 for (int k = 0; k < 2; k++)
316 {
317 CnueduVLL.at(i).at(i).at(j).at(k) += VCKMd(j, k) * (-0.5 * (delta_g22oMW2 * g22oMW2));
318 for (int p = 0; p < 3; p++)
319 for (int r = 0; r < 3; r++)
320 {
321 CnueduVLL.at(i).at(i).at(j).at(k) += VdLd(j, p) * (-0.5 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p)))) * VuL(r, k);
322 CnueduVLR.at(i).at(i).at(j).at(k) += VdRd(j, p) * (-0.25 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHudR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", r, p)))) * VuR(r, k);
323 }
324 for (int l = 0; l < 2; l++)
325 {
326 for (int p = 0; p < 3; p++)
327 for (int r = 0; r < 3; r++)
328 {
329 CnuuVLL.at(i).at(j).at(k).at(l) += VuLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clq1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq1I", i, j, p, r)) + (mySMEFT.getSMEFTCoeffEW("Clq3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq3I", i, j, p, r))) * VuL(r, l);
330 CeuVLL.at(i).at(j).at(k).at(l) += VuLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clq1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq1I", i, j, p, r)) - (mySMEFT.getSMEFTCoeffEW("Clq3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq3I", i, j, p, r))) * VuL(r, l);
331 CeuVRR.at(i).at(j).at(k).at(l) += VuRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CeuR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeuI", i, j, p, r))) * VuR(r, l);
332 CnuuVLR.at(i).at(j).at(k).at(l) += VuRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CluR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CluI", i, j, p, r))) * VuR(r, l);
333 CeuVLR.at(i).at(j).at(k).at(l) += VuRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CluR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CluI", i, j, p, r))) * VuR(r, l);
334 CeuSRR.at(i).at(j).at(k).at(l) += VuLd(k, p) * (-(mySMEFT.getSMEFTCoeffEW("Clequ1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clequ1I", i, j, p, r))) * VuR(r, l);
335 CeuTRR.at(i).at(j).at(k).at(l) += VuLd(k, p) * (-(mySMEFT.getSMEFTCoeffEW("Clequ3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clequ3I", i, j, p, r))) * VuR(r, l);
336 for (int s = 0; s < 3; s++)
337 for (int t = 0; t < 3; t++)
338 {
339 CduV1LR.at(i).at(j).at(k).at(l) += VdLd(i, p) * VuRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqu1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqu1I", p, r, s, t))) * VdL(r, j) * VuR(t, l);
340 CduV8LR.at(i).at(j).at(k).at(l) += VdLd(i, p) * VuRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqu8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqu8I", p, r, s, t))) * VdL(r, j) * VuR(t, l);
341 }
342 }
343 }
344 }
345 for (int p = 0; p < 3; p++)
346 for (int r = 0; r < 3; r++)
347 {
348 Cdg.at(i).at(j) += vTosq2 * VdLd(i, p) * (-(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)) * sbar + (mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) * cbar) * VdR(r, j);
349 CdG.at(i).at(j) += vTosq2 * VdLd(i, p) * (mySMEFT.getSMEFTCoeffEW("CdGR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdGI", p, r)) * VdR(r, j);
350 }
351 }
352
353 for (int i = 0; i < 3; i++)
354 for (int j = 0; j < 2; j++)
355 {
356 CnuuVLL.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (8 * delta_sbar * sbar2 + delta_gZ2oMZ2 * (-3 + 4 * sbar2))) / 12.;
357 CeuVLL.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (4 * delta_sbar * sbar2 * (-5 + 8 * sbar2) + delta_gZ2oMZ2 * (3 - 10 * sbar2 + 8 * sbar2 * sbar2))) / 12.;
358 CeuVRR.at(i).at(i).at(j).at(j) += (2 * (delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2) / 3.;
359 CnuuVLR.at(i).at(i).at(j).at(j) += ((delta_gZ2oMZ2 + 2 * delta_sbar) * gZ2oMZ2 * sbar2) / 3.;
360 CeuVLR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * sbar2 * (-delta_gZ2oMZ2 - 2 * delta_sbar + 2 * delta_gZ2oMZ2 * sbar2 + 8 * delta_sbar * sbar2)) / 3.;
361 CduV1LR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * sbar2 * (-3 * delta_gZ2oMZ2 - 6 * delta_sbar + 2 * delta_gZ2oMZ2 * sbar2 + 8 * delta_sbar * sbar2)) / 9.;
362 for (int k = 0; k < 2; k++)
363 for (int p = 0; p < 3; p++)
364 for (int r = 0; r < 3; r++)
365 {
366 CudV1LL.at(j).at(k).at(i).at(i) += VuLd(j, p) * ((gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 12.) * VuL(r, k);
367 CnuuVLL.at(i).at(i).at(j).at(k) += VuLd(j, p) * ((gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 4.) * VuL(r, k);
368 CeuVLL.at(i).at(i).at(j).at(k) += VuLd(j, p) * ((gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 4.) * VuL(r, k);
369 CudV1RR.at(j).at(k).at(i).at(i) += VuRd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 6.) * VuR(r, k);
370 CeuVRR.at(i).at(i).at(j).at(k) += VuRd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 2.) * VuR(r, k);
371 CnuuVLR.at(i).at(i).at(j).at(k) += VuRd(j, p) * ((gZ2oMZ2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 4.) * VuR(r, k);
372 CeuVLR.at(i).at(i).at(j).at(k) += VuRd(j, p) * ((gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 4.) * VuR(r, k);
373 CduV1LR.at(i).at(i).at(j).at(k) += VuRd(j, p) * ((gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 12.) * VuR(r, k);
374 CudV1LR.at(j).at(k).at(i).at(i) += VuLd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 6.) * VuL(r, k);
375 CueVLR.at(j).at(k).at(i).at(i) += VuLd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 2.) * VuL(r, k);
376 }
377 }
378
379 for (int i = 0; i < 2; i++)
380 for (int j = 0; j < 3; j++)
381 {
382 CudV1LL.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (4 * delta_sbar * sbar2 * (-9 + 8 * sbar2) + delta_gZ2oMZ2 * (9 - 18 * sbar2 + 8 * sbar2 * sbar2))) / 36.;
383 CudV1RR.at(i).at(i).at(j).at(j) += (2 * (delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2) / 9.;
384 CudV1LR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * sbar2 * (delta_gZ2oMZ2 * (-3 + 4 * sbar2) + 2 * delta_sbar * (-3 + 8 * sbar2))) / 18.;
385 CueVLR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * sbar2 * (delta_gZ2oMZ2 * (-3 + 4 * sbar2) + 2 * delta_sbar * (-3 + 8 * sbar2))) / 6.;
386 for (int k = 0; k < 3; k++)
387 {
388 CeuVLL.at(j).at(k).at(i).at(i) += -0.08333333333333333 * (gZ2oMZ2 * (-3 + 4 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k))));
389 CnuuVLL.at(j).at(k).at(i).at(i) += -0.08333333333333333 * (gZ2oMZ2 * (-3 + 4 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k))));
390 CeuVRR.at(j).at(k).at(i).at(i) += -0.3333333333333333 * (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k)));
391 CnuuVLR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * (-(mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 3.;
392 CeuVLR.at(j).at(k).at(i).at(i) += -0.3333333333333333 * (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k))));
393 CueVLR.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * (3 - 4 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 12.;
394 for (int p = 0; p < 3; p++)
395 for (int r = 0; r < 3; r++)
396 {
397 CudV1LL.at(i).at(i).at(j).at(k) += VdLd(j, p) * (-0.08333333333333333 * (gZ2oMZ2 * (-3 + 4 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))))) * VdL(r, k);
398 CudV1RR.at(i).at(i).at(j).at(k) += VdRd(j, p) * (-0.3333333333333333 * (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r)))) * VdR(r, k);
399 CudV1LR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * (3 - 4 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 12.) * VdR(r, k);
400 CduV1LR.at(j).at(k).at(i).at(i) += VdLd(j, p) * (-0.3333333333333333 * (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))))) * VdL(r, k);
401 }
402 for (int l = 0; l < 2; l++)
403 {
404 for (int p = 0; p < 3; p++)
405 for (int r = 0; r < 3; r++)
406 {
407 CudduV1LR.at(i).at(j).at(k).at(l) += VCKM(i, j) * VdRd(k, p) * (-0.25 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHudR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", r, p)))) * VuR(r, k);
408 for (int s = 0; s < 3; s++)
409 for (int t = 0; t < 3; t++)
410 {
411 CudduS1RR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * (-(mySMEFT.getSMEFTCoeffEW("Cquqd1R", s, t, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cquqd1I", s, t, p, r))) * VdR(r, j) * VuR(t, l);
412 CudduS8RR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * (-(mySMEFT.getSMEFTCoeffEW("Cquqd8R", s, t, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cquqd8I", s, t, p, r))) * VdR(r, j) * VuR(t, l);
413 }
414 }
415 }
416 }
417 }
418
419 for (int i = 0; i < 2; i++)
420 for (int j = 0; j < 2; j++)
421 {
422 CuuVLL.at(i).at(i).at(j).at(j) += -0.013888888888888888 * (gZ2oMZ2 * (-3 + 4 * sbar2) * (16 * delta_sbar * sbar2 + delta_gZ2oMZ2 * (-3 + 4 * sbar2)));
423 CuuVRR.at(i).at(i).at(j).at(j) += (-2 * (delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2) / 9.;
424 CuuV1LR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (2 * delta_sbar * (3 - 8 * sbar2) + delta_gZ2oMZ2 * (3 - 4 * sbar2)) * sbar2) / 9.;
425 for (int k = 0; k < 3; k++)
426 {
427 for (int l = 0; l < 3; l++)
428 {
429 CudV1LL.at(i).at(j).at(k).at(l) += VCKM(i, l) * VCKMd(k, j) * (-0.16666666666666666 * (delta_g22oMW2 * g22oMW2));
430 CudV8LL.at(i).at(j).at(k).at(l) += VCKM(i, l) * VCKMd(k, j) * (-(delta_g22oMW2 * g22oMW2));
431 for (int p = 0; p < 3; p++)
432 for (int r = 0; r < 3; r++)
433 {
434 CudV1LL.at(i).at(j).at(k).at(l) += VCKMd(k, j) * VuLd(i, p) * (-0.16666666666666666 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) * VdL(r, l);
435 CudV1LL.at(i).at(j).at(k).at(l) += VCKM(i, l) * VdLd(k, p) * (-0.16666666666666666 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p)))) * VuL(r, j);
436 CudV8LL.at(i).at(j).at(k).at(l) += VCKMd(k, j) * VuLd(i, p) * (-(g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) * VdL(r, l);
437 CudV8LL.at(i).at(j).at(k).at(l) += VCKM(i, l) * VdLd(k, p) * (-(g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p)))) * VuL(r, j);
438 CueVLR.at(i).at(j).at(k).at(l) += VuLd(i, p) * ((mySMEFT.getSMEFTCoeffEW("CqeR", p, r, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CqeI", p, r, k, l))) * VuL(r, j);
439 for (int s = 0; s < 3; s++)
440 for (int t = 0; t < 3; t++)
441 {
442 CudV1LL.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqq1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq1I", p, r, s, t)) + (mySMEFT.getSMEFTCoeffEW("Cqq1R", s, t, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq1I", s, t, p, r)) - (mySMEFT.getSMEFTCoeffEW("Cqq3R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", p, r, s, t)) + (2 * (mySMEFT.getSMEFTCoeffEW("Cqq3R", p, t, s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", p, t, s, r))) / 3. + (2 * (mySMEFT.getSMEFTCoeffEW("Cqq3R", s, r, p, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", s, r, p, t))) / 3. - (mySMEFT.getSMEFTCoeffEW("Cqq3R", s, t, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", s, t, p, r))) * VuL(r, j) * VdL(t, l);
443 CudV8LL.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * (4 * ((mySMEFT.getSMEFTCoeffEW("Cqq3R", p, t, s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", p, t, s, r)) + (mySMEFT.getSMEFTCoeffEW("Cqq3R", s, r, p, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", s, r, p, t)))) * VuL(r, j) * VdL(t, l);
444 CudV1RR.at(i).at(j).at(k).at(l) += VuRd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cud1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cud1I", p, r, s, t))) * VuR(r, j) * VdR(t, l);
445 CudV8RR.at(i).at(j).at(k).at(l) += VuRd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cud8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cud8I", p, r, s, t))) * VuR(r, j) * VdR(t, l);
446 CudV1LR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqd1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqd1I", p, r, s, t))) * VuL(r, j) * VdR(t, l);
447 CudV8LR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqd8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqd8I", p, r, s, t))) * VuL(r, j) * VdR(t, l);
448 CudS1RR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cquqd1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cquqd1I", p, r, s, t))) * VuR(r, j) * VdR(t, l);
449 CudS8RR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cquqd8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cquqd8I", p, r, s, t))) * VuR(r, j) * VdR(t, l);
450 }
451 }
452 }
453 }
454 for (int k = 0; k < 2; k++)
455 {
456 for (int p = 0; p < 3; p++)
457 for (int r = 0; r < 3; r++)
458 {
459 CuuVLL.at(i).at(i).at(j).at(k) += VuLd(j, p) * (-0.041666666666666664 * (gZ2oMZ2 * (-3 + 4 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))))) * VuL(r, k);
460 CuuVLL.at(j).at(k).at(i).at(i) += VuLd(j, p) * (-0.041666666666666664 * (gZ2oMZ2 * (-3 + 4 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))))) * VuL(r, k);
461 CuuVRR.at(i).at(i).at(j).at(k) += VuRd(j, p) * (-0.16666666666666666 * (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r)))) * VuR(r, k);
462 CuuVRR.at(j).at(k).at(i).at(i) += VuRd(j, p) * (-0.16666666666666666 * (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r)))) * VuR(r, k);
463 CuuV1LR.at(i).at(i).at(j).at(k) += VuRd(j, p) * ((gZ2oMZ2 * (3 - 4 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 12.) * VuR(r, k);
464 CuuV1LR.at(j).at(k).at(i).at(i) += VuLd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (-(mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 3.) * VuL(r, k);
465 }
466 for (int l = 0; l < 2; l++)
467 for (int p = 0; p < 3; p++)
468 for (int r = 0; r < 3; r++)
469 for (int s = 0; s < 3; s++)
470 for (int t = 0; t < 3; t++)
471 {
472 CuuVLL.at(i).at(j).at(k).at(l) += VuLd(i, p) * VuLd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqq1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq1I", p, r, s, t)) + (mySMEFT.getSMEFTCoeffEW("Cqq3R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", p, r, s, t))) * VuL(r, j) * VuL(t, l);
473 CuuVRR.at(i).at(j).at(k).at(l) += VuRd(i, p) * VuRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("CuuR", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuuI", p, r, s, t))) * VuR(r, j) * VuR(t, l);
474 CuuV1LR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VuRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqu1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqu1I", p, r, s, t))) * VuL(r, j) * VuR(t, l);
475 CuuV8LR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VuRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqu8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqu8I", p, r, s, t))) * VuL(r, j) * VuR(t, l);
476 }
477 }
478
479 for (int p = 0; p < 3; p++)
480 for (int r = 0; r < 3; r++)
481 {
482 Cug.at(i).at(j) += vTosq2 * VuLd(i, p) * ((mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)) * sbar + (mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) * cbar) * VuR(r, j);
483 CuG.at(i).at(j) += vTosq2 * VuLd(i, p) * (mySMEFT.getSMEFTCoeffEW("CuGR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuGI", p, r)) * VuR(r, j);
484 }
485 }
486
487#endif
488
490}
const gslpp::matrix< gslpp::complex > getCKM() const
A member for returning the CKM matrix.
Definition: CKM.h:59
const double getEeMz() const
const gslpp::matrix< gslpp::complex > & getVeRd() const
const gslpp::matrix< gslpp::complex > & getVdLd() const
const gslpp::matrix< gslpp::complex > & getVeL() const
const double getDelta_v() const
const gslpp::matrix< gslpp::complex > & getVdRd() const
const double getG1_tree() const
const double getXWZ_tree() const
const double getXBZ_tree() const
const gslpp::matrix< gslpp::complex > & getVuR() const
const gslpp::matrix< gslpp::complex > & getVeR() const
const double getDelta_Mz2() const
const double getG2_tree() const
const gslpp::matrix< gslpp::complex > & getVdR() const
const gslpp::matrix< gslpp::complex > & getVuLd() const
const gslpp::matrix< gslpp::complex > & getVdL() const
const gslpp::matrix< gslpp::complex > & getVeLd() const
const gslpp::matrix< gslpp::complex > & getVuL() const
const gslpp::matrix< gslpp::complex > & getVuRd() const
double getLambda_NP() const
Return Lambda_NP.
double getSMEFTCoeffEW(const std::string name) const
const double getDelta_xBZ() const
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > zero2222
std::array< std::array< gslpp::complex, 3 >, 3 > Ceg
The real part of the dimension-5 operator coefficient .
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > zero3322
std::array< std::array< gslpp::complex, 2 >, 2 > Cug
The real part of the dimension-5 operator coefficient .
const std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > zero2233
std::array< std::array< gslpp::complex, 2 >, 2 > CuG
The real part of the dimension-5 operator coefficient .
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > zero3332
const std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > zero3333
const std::array< std::array< gslpp::complex, 2 >, 2 > zero22
const std::array< std::array< gslpp::complex, 3 >, 3 > zero33
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > zero2332
const double getMz() const
A get method to access the mass of the boson .
const double v() const
The Higgs vacuum expectation value.
void updateSMParameters()
Updates to new Standard Model parameter sets.
A class for the CKM elements .
Definition: VCKM.h:21
Test Observable.
Test Observable.

Member Data Documentation

◆ CddS1RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddS1RR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 574 of file NPSMEFTd6GeneralMatching.h.

◆ CddS8RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddS8RR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 575 of file NPSMEFTd6GeneralMatching.h.

◆ CddV1LR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddV1LR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 556 of file NPSMEFTd6GeneralMatching.h.

◆ CddV8LR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddV8LR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 557 of file NPSMEFTd6GeneralMatching.h.

◆ CddVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddVLL = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 525 of file NPSMEFTd6GeneralMatching.h.

◆ CddVRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddVRR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 535 of file NPSMEFTd6GeneralMatching.h.

◆ CdeVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CdeVLR = {}
protected

The dimension-6 operator coefficient \((C_{d e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 548 of file NPSMEFTd6GeneralMatching.h.

◆ Cdg

std::array<std::array<gslpp::complex, 3>, 3> NPSMEFTd6GeneralMatching::Cdg = {}
protected

The real part of the dimension-5 operator coefficient \((C_{d\gamma})_{ij}(\Lambda_{\rm{EW}})\).

Definition at line 505 of file NPSMEFTd6GeneralMatching.h.

◆ CdG

std::array<std::array<gslpp::complex, 3>, 3> NPSMEFTd6GeneralMatching::CdG = {}
protected

The real part of the dimension-5 operator coefficient \((C_{dG})_{ij}(\Lambda_{\rm{EW}})\).

Definition at line 507 of file NPSMEFTd6GeneralMatching.h.

◆ CduV1LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CduV1LR = {}
protected

The dimension-6 operator coefficient \((C_{du}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 554 of file NPSMEFTd6GeneralMatching.h.

◆ CduV8LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CduV8LR = {}
protected

The dimension-6 operator coefficient \((C_{du}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 555 of file NPSMEFTd6GeneralMatching.h.

◆ CedSRL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedSRL = {}
protected

The dimension-6 operator coefficient \((C_{ed}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 582 of file NPSMEFTd6GeneralMatching.h.

◆ CedSRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedSRR = {}
protected

The dimension-6 operator coefficient \((C_{ed}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 566 of file NPSMEFTd6GeneralMatching.h.

◆ CedTRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedTRR = {}
protected

The dimension-6 operator coefficient \((C_{ed}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 567 of file NPSMEFTd6GeneralMatching.h.

◆ CedVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedVLL = {}
protected

The dimension-6 operator coefficient \((C_{e d}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 522 of file NPSMEFTd6GeneralMatching.h.

◆ CedVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedVLR = {}
protected

The dimension-6 operator coefficient \((C_{e d}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 546 of file NPSMEFTd6GeneralMatching.h.

◆ CedVRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedVRR = {}
protected

The dimension-6 operator coefficient \((C_{e d}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 533 of file NPSMEFTd6GeneralMatching.h.

◆ CeeSRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CeeSRR = {}
protected

The dimension-6 operator coefficient \((C_{ee}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 563 of file NPSMEFTd6GeneralMatching.h.

◆ CeeVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CeeVLL = {}
protected

The dimension-6 operator coefficient \((C_{ee}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 517 of file NPSMEFTd6GeneralMatching.h.

◆ CeeVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CeeVLR = {}
protected

The dimension-6 operator coefficient \((C_{ee}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 542 of file NPSMEFTd6GeneralMatching.h.

◆ CeeVRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CeeVRR = {}
protected

The dimension-6 operator coefficient \((C_{ee}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 531 of file NPSMEFTd6GeneralMatching.h.

◆ Ceg

std::array<std::array<gslpp::complex, 3>, 3> NPSMEFTd6GeneralMatching::Ceg = {}
protected

The real part of the dimension-5 operator coefficient \((C_{e\gamma})_{ij}(\Lambda_{\rm{EW}})\).

Definition at line 503 of file NPSMEFTd6GeneralMatching.h.

◆ CeuSRL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuSRL = {}
protected

The dimension-6 operator coefficient \((C_{eu}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 581 of file NPSMEFTd6GeneralMatching.h.

◆ CeuSRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuSRR = {}
protected

The dimension-6 operator coefficient \((C_{eu}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 564 of file NPSMEFTd6GeneralMatching.h.

◆ CeuTRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuTRR = {}
protected

The dimension-6 operator coefficient \((C_{eu}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 565 of file NPSMEFTd6GeneralMatching.h.

◆ CeuVLL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuVLL = {}
protected

The dimension-6 operator coefficient \((C_{e u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 521 of file NPSMEFTd6GeneralMatching.h.

◆ CeuVLR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuVLR = {}
protected

The dimension-6 operator coefficient \((C_{e u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 545 of file NPSMEFTd6GeneralMatching.h.

◆ CeuVRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuVRR = {}
protected

The dimension-6 operator coefficient \((C_{e u}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 532 of file NPSMEFTd6GeneralMatching.h.

◆ CG

double NPSMEFTd6GeneralMatching::CG = 0.
protected

The dimension-6 operator coefficient \(C_{G}(\Lambda_{\rm{EW}})\).

Definition at line 511 of file NPSMEFTd6GeneralMatching.h.

◆ CGtilde

double NPSMEFTd6GeneralMatching::CGtilde = 0.
protected

The dimension-6 operator coefficient \(C_{\tilde{G}}(\Lambda_{\rm{EW}})\).

Definition at line 512 of file NPSMEFTd6GeneralMatching.h.

◆ CnudVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnudVLL = {}
protected

The dimension-6 operator coefficient \((C_{\nu d}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 520 of file NPSMEFTd6GeneralMatching.h.

◆ CnudVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnudVLR = {}
protected

The dimension-6 operator coefficient \((C_{\nu d}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 544 of file NPSMEFTd6GeneralMatching.h.

◆ CnueduSRL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueduSRL = {}
protected

The dimension-6 operator coefficient \((C_{nedu}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 583 of file NPSMEFTd6GeneralMatching.h.

◆ CnueduSRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueduSRR = {}
protected

The dimension-6 operator coefficient \((C_{nedu}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 568 of file NPSMEFTd6GeneralMatching.h.

◆ CnueduTRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueduTRR = {}
protected

The dimension-6 operator coefficient \((C_{nedu}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 569 of file NPSMEFTd6GeneralMatching.h.

◆ CnueduVLL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueduVLL = {}
protected

The dimension-6 operator coefficient \((C_{\nu e d u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 523 of file NPSMEFTd6GeneralMatching.h.

◆ CnueduVLR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueduVLR = {}
protected

The dimension-6 operator coefficient \((C_{\nu e d u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 549 of file NPSMEFTd6GeneralMatching.h.

◆ CnueVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueVLL = {}
protected

The dimension-6 operator coefficient \((C_{\nu e}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 518 of file NPSMEFTd6GeneralMatching.h.

◆ CnueVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueVLR = {}
protected

The dimension-6 operator coefficient \((C_{\nu e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 541 of file NPSMEFTd6GeneralMatching.h.

◆ CnunuVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnunuVLL = {}
protected

The dimension-6 operator coefficient \((C_{\nu\nu}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 516 of file NPSMEFTd6GeneralMatching.h.

◆ CnuuVLL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CnuuVLL = {}
protected

The dimension-6 operator coefficient \((C_{\nu u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 519 of file NPSMEFTd6GeneralMatching.h.

◆ CnuuVLR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CnuuVLR = {}
protected

The dimension-6 operator coefficient \((C_{\nu u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 543 of file NPSMEFTd6GeneralMatching.h.

◆ CudduS1RR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 2> NPSMEFTd6GeneralMatching::CudduS1RR = {}
protected

The dimension-6 operator coefficient \((C_{uddu}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 576 of file NPSMEFTd6GeneralMatching.h.

◆ CudduS8RR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 2> NPSMEFTd6GeneralMatching::CudduS8RR = {}
protected

The dimension-6 operator coefficient \((C_{uddu}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 577 of file NPSMEFTd6GeneralMatching.h.

◆ CudduV1LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 2> NPSMEFTd6GeneralMatching::CudduV1LR = {}
protected

The dimension-6 operator coefficient \((C_{uddu}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 558 of file NPSMEFTd6GeneralMatching.h.

◆ CudduV8LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 2> NPSMEFTd6GeneralMatching::CudduV8LR = {}
protected

The dimension-6 operator coefficient \((C_{uddu}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 559 of file NPSMEFTd6GeneralMatching.h.

◆ CudS1RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudS1RR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 572 of file NPSMEFTd6GeneralMatching.h.

◆ CudS8RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudS8RR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 573 of file NPSMEFTd6GeneralMatching.h.

◆ CudV1LL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV1LL = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V1,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 526 of file NPSMEFTd6GeneralMatching.h.

◆ CudV1LR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV1LR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 552 of file NPSMEFTd6GeneralMatching.h.

◆ CudV1RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV1RR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V1,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 536 of file NPSMEFTd6GeneralMatching.h.

◆ CudV8LL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV8LL = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V8,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 527 of file NPSMEFTd6GeneralMatching.h.

◆ CudV8LR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV8LR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 553 of file NPSMEFTd6GeneralMatching.h.

◆ CudV8RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV8RR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V8,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 537 of file NPSMEFTd6GeneralMatching.h.

◆ CueVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CueVLR = {}
protected

The dimension-6 operator coefficient \((C_{u e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 547 of file NPSMEFTd6GeneralMatching.h.

◆ Cug

std::array<std::array<gslpp::complex, 2>, 2> NPSMEFTd6GeneralMatching::Cug = {}
protected

The real part of the dimension-5 operator coefficient \((C_{u\gamma})_{ij}(\Lambda_{\rm{EW}})\).

Definition at line 504 of file NPSMEFTd6GeneralMatching.h.

◆ CuG

std::array<std::array<gslpp::complex, 2>, 2> NPSMEFTd6GeneralMatching::CuG = {}
protected

The real part of the dimension-5 operator coefficient \((C_{uG})_{ij}(\Lambda_{\rm{EW}})\).

Definition at line 506 of file NPSMEFTd6GeneralMatching.h.

◆ CuuS1RR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuS1RR = {}
protected

The dimension-6 operator coefficient \((C_{uu}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 570 of file NPSMEFTd6GeneralMatching.h.

◆ CuuS8RR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuS8RR = {}
protected

The dimension-6 operator coefficient \((C_{uu}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 571 of file NPSMEFTd6GeneralMatching.h.

◆ CuuV1LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuV1LR = {}
protected

The dimension-6 operator coefficient \((C_{uu}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 550 of file NPSMEFTd6GeneralMatching.h.

◆ CuuV8LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuV8LR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 551 of file NPSMEFTd6GeneralMatching.h.

◆ CuuVLL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuVLL = {}
protected

The dimension-6 operator coefficient \((C_{uu}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 524 of file NPSMEFTd6GeneralMatching.h.

◆ CuuVRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuVRR = {}
protected

The dimension-6 operator coefficient \((C_{uu}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 534 of file NPSMEFTd6GeneralMatching.h.

◆ LambdaNP2

double NPSMEFTd6GeneralMatching::LambdaNP2
private

Definition at line 587 of file NPSMEFTd6GeneralMatching.h.

◆ mcbd

WilsonCoefficient NPSMEFTd6GeneralMatching::mcbd
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mcbs

WilsonCoefficient NPSMEFTd6GeneralMatching::mcbs
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mcbsg

WilsonCoefficient NPSMEFTd6GeneralMatching::mcbsg
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mcd1

WilsonCoefficient NPSMEFTd6GeneralMatching::mcd1
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mcd2

WilsonCoefficient NPSMEFTd6GeneralMatching::mcd2
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mck2

WilsonCoefficient NPSMEFTd6GeneralMatching::mck2
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mckpnn

WilsonCoefficient NPSMEFTd6GeneralMatching::mckpnn
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mcprimebsg

WilsonCoefficient NPSMEFTd6GeneralMatching::mcprimebsg
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mculeptonnu

WilsonCoefficient NPSMEFTd6GeneralMatching::mculeptonnu
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ MD

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::MD
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ MU

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::MU
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ mySMEFT

const NPSMEFTd6General& NPSMEFTd6GeneralMatching::mySMEFT
private

Definition at line 586 of file NPSMEFTd6GeneralMatching.h.

◆ v

double NPSMEFTd6GeneralMatching::v
private

Definition at line 589 of file NPSMEFTd6GeneralMatching.h.

◆ v2

double NPSMEFTd6GeneralMatching::v2
private

Definition at line 588 of file NPSMEFTd6GeneralMatching.h.

◆ VdL

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VdL
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VdLd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VdLd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VdR

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VdR
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VdRd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VdRd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VeL

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VeL
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VeLd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VeLd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VeR

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VeR
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VeRd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VeRd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VuL

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VuL
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VuLd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VuLd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VuR

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VuR
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VuRd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VuRd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ zero22

const std::array<std::array<gslpp::complex, 2>, 2> NPSMEFTd6GeneralMatching::zero22 {}
protected

Definition at line 493 of file NPSMEFTd6GeneralMatching.h.

◆ zero2222

const std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::zero2222 {}
protected

Definition at line 499 of file NPSMEFTd6GeneralMatching.h.

◆ zero2233

const std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::zero2233 {}
protected

Definition at line 496 of file NPSMEFTd6GeneralMatching.h.

◆ zero2332

const std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 2> NPSMEFTd6GeneralMatching::zero2332 {}
protected

Definition at line 497 of file NPSMEFTd6GeneralMatching.h.

◆ zero33

const std::array<std::array<gslpp::complex, 3>, 3> NPSMEFTd6GeneralMatching::zero33 {}
protected

Definition at line 492 of file NPSMEFTd6GeneralMatching.h.

◆ zero3322

const std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::zero3322 {}
protected

Definition at line 495 of file NPSMEFTd6GeneralMatching.h.

◆ zero3332

const std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::zero3332 {}
protected

Definition at line 498 of file NPSMEFTd6GeneralMatching.h.

◆ zero3333

const std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::zero3333 {}
protected

Definition at line 494 of file NPSMEFTd6GeneralMatching.h.


The documentation for this class was generated from the following files: