a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models Logo
NPSMEFTd6GeneralMatching Class Reference

A class for the matching in the NPSMEFTd6_General model at the scale \( \mu_W \). More...

#include <NPSMEFTd6GeneralMatching.h>

+ Inheritance diagram for NPSMEFTd6GeneralMatching:

Detailed Description

A class for the matching in the NPSMEFTd6_General model at the scale \( \mu_W \).

Author
HEPfit Collaboration

This class, after update, contains the SMEFT coefficients at the scale \( \mu_W \) defined in the SMEFT model

Definition at line 25 of file NPSMEFTd6GeneralMatching.h.

Public Member Functions

virtual std::vector< WilsonCoefficient > & CMbsg ()
 
virtual std::vector< WilsonCoefficient > & CMdbd2 ()
 \( \Delta S = 2 \) More...
 
virtual std::vector< WilsonCoefficient > & CMdbs2 ()
 \( \Delta S = 2 \) More...
 
virtual std::vector< WilsonCoefficient > & CMdd2 ()
 \( \Delta C = 2 \) More...
 
virtual std::vector< WilsonCoefficient > & CMdiujleptonknu (int i, int j, int k)
 
virtual std::vector< WilsonCoefficient > & CMdk2 ()
 \( \Delta S = 2 \) More...
 
virtual std::vector< WilsonCoefficient > & CMkpnn ()
 
virtual std::vector< WilsonCoefficient > & CMprimebsg ()
 
const gslpp::complex getCddS1RR (int i, int j, int k, int l) const
 Return CddS1RR. More...
 
const gslpp::complex getCddS8RR (int i, int j, int k, int l) const
 Return CddS8RR. More...
 
const gslpp::complex getCddV1LR (int i, int j, int k, int l) const
 Return CddV1LR. More...
 
const gslpp::complex getCddV8LR (int i, int j, int k, int l) const
 Return CddV8LR. More...
 
const gslpp::complex getCddVLL (int i, int j, int k, int l) const
 Return CddVLL. More...
 
const gslpp::complex getCddVRR (int i, int j, int k, int l) const
 Return CddVRR. More...
 
const gslpp::complex getCdeVLR (int i, int j, int k, int l) const
 Return CdeVLR. More...
 
const gslpp::complex getCdG (int i, int j) const
 Return CdGLR (chromomagnetic dipole operator) More...
 
const gslpp::complex getCdg (int i, int j) const
 Return CdgLR (electric dipole operator) More...
 
const gslpp::complex getCduV1LR (int i, int j, int k, int l) const
 Return CduV1LR. More...
 
const gslpp::complex getCduV8LR (int i, int j, int k, int l) const
 Return CduV8LR. More...
 
const gslpp::complex getCedSRL (int i, int j, int k, int l) const
 Return CedSRL. More...
 
const gslpp::complex getCedSRR (int i, int j, int k, int l) const
 Return CedSRR. More...
 
const gslpp::complex getCedTRR (int i, int j, int k, int l) const
 Return CedTRR. More...
 
const gslpp::complex getCedVLL (int i, int j, int k, int l) const
 Return CedVLL. More...
 
const gslpp::complex getCedVLR (int i, int j, int k, int l) const
 Return CedVLR. More...
 
const gslpp::complex getCedVRR (int i, int j, int k, int l) const
 Return CedVRR. More...
 
const gslpp::complex getCeeSRR (int i, int j, int k, int l) const
 Return CeeSRR. More...
 
const gslpp::complex getCeeVLL (int i, int j, int k, int l) const
 Return CeeVLL. More...
 
const gslpp::complex getCeeVLR (int i, int j, int k, int l) const
 Return CeeVLR. More...
 
const gslpp::complex getCeeVRR (int i, int j, int k, int l) const
 Return CeeVRR. More...
 
const gslpp::complex getCeuSRL (int i, int j, int k, int l) const
 Return CeuSRL. More...
 
const gslpp::complex getCeuSRR (int i, int j, int k, int l) const
 Return CeuSRR. More...
 
const gslpp::complex getCeuTRR (int i, int j, int k, int l) const
 Return CeuTRR. More...
 
const gslpp::complex getCeuVLL (int i, int j, int k, int l) const
 Return CeuVLL. More...
 
const gslpp::complex getCeuVLR (int i, int j, int k, int l) const
 Return CeuVLR. More...
 
const gslpp::complex getCeuVRR (int i, int j, int k, int l) const
 Return CeuVRR. More...
 
const gslpp::complex getCnudVLL (int i, int j, int k, int l) const
 Return CnudVLL. More...
 
const gslpp::complex getCnudVLR (int i, int j, int k, int l) const
 Return CnudVLR. More...
 
const gslpp::complex getCnueduSRL (int i, int j, int k, int l) const
 Return CnueduSRL. More...
 
const gslpp::complex getCnueduSRR (int i, int j, int k, int l) const
 Return CnueduSRR. More...
 
const gslpp::complex getCnueduTRR (int i, int j, int k, int l) const
 Return CnueduTRR. More...
 
const gslpp::complex getCnueduVLL (int i, int j, int k, int l) const
 Return CnueduVLL. More...
 
const gslpp::complex getCnueduVLR (int i, int j, int k, int l) const
 Return CnueduVLR. More...
 
const gslpp::complex getCnueVLL (int i, int j, int k, int l) const
 Return CnueVLL. More...
 
const gslpp::complex getCnueVLR (int i, int j, int k, int l) const
 Return CnueVLR. More...
 
const gslpp::complex getCnunuVLL (int i, int j, int k, int l) const
 Return CnunuVLL. More...
 
const gslpp::complex getCnuuVLL (int i, int j, int k, int l) const
 Return CnuuVLL. More...
 
const gslpp::complex getCnuuVLR (int i, int j, int k, int l) const
 Return CnuuVLR. More...
 
const gslpp::complex getCudduS1RR (int i, int j, int k, int l) const
 Return CudduS1RR. More...
 
const gslpp::complex getCudduS8RR (int i, int j, int k, int l) const
 Return CudduS8RR. More...
 
const gslpp::complex getCudduV1LR (int i, int j, int k, int l) const
 Return CudduV1LR. More...
 
const gslpp::complex getCudduV8LR (int i, int j, int k, int l) const
 Return CudduV8LR. More...
 
const gslpp::complex getCudS1RR (int i, int j, int k, int l) const
 Return CudS1RR. More...
 
const gslpp::complex getCudS8RR (int i, int j, int k, int l) const
 Return CudS8RR. More...
 
const gslpp::complex getCudV1LL (int i, int j, int k, int l) const
 Return CudV1LL. More...
 
const gslpp::complex getCudV1LR (int i, int j, int k, int l) const
 Return CudV1LR. More...
 
const gslpp::complex getCudV1RR (int i, int j, int k, int l) const
 Return CudV1RR. More...
 
const gslpp::complex getCudV8LL (int i, int j, int k, int l) const
 Return CudV8LL. More...
 
const gslpp::complex getCudV8LR (int i, int j, int k, int l) const
 Return CudV8LR. More...
 
const gslpp::complex getCudV8RR (int i, int j, int k, int l) const
 Return CudV8RR. More...
 
const gslpp::complex getCueVLR (int i, int j, int k, int l) const
 Return CueVLR. More...
 
const gslpp::complex getCuuS1RR (int i, int j, int k, int l) const
 Return CuuS1RR. More...
 
const gslpp::complex getCuuS8RR (int i, int j, int k, int l) const
 Return CuuS8RR. More...
 
const gslpp::complex getCuuV1LR (int i, int j, int k, int l) const
 Return CuuV1LR. More...
 
const gslpp::complex getCuuV8LR (int i, int j, int k, int l) const
 Return CuuV8LR. More...
 
const gslpp::complex getCuuVLL (int i, int j, int k, int l) const
 Return CuuVLL. More...
 
const gslpp::complex getCuuVRR (int i, int j, int k, int l) const
 Return CuuVRR. More...
 
const gslpp::matrix< gslpp::complex > getVdL () const
 Return VdL. More...
 
const gslpp::matrix< gslpp::complex > getVdR () const
 Return VdR. More...
 
const gslpp::matrix< gslpp::complex > getVeL () const
 Return VeL. More...
 
const gslpp::matrix< gslpp::complex > getVeR () const
 Return VeR. More...
 
const gslpp::matrix< gslpp::complex > getVuL () const
 Return VuL. More...
 
const gslpp::matrix< gslpp::complex > getVuR () const
 Return VuR. More...
 
 NPSMEFTd6GeneralMatching (const NPSMEFTd6General &NPSMEFTd6General_i)
 
void updateLEFTGeneralParameters ()
 Updates to new FlavourWilsonCoefficient parameter sets. More...
 
virtual ~NPSMEFTd6GeneralMatching ()
 
- Public Member Functions inherited from StandardModelMatching
 StandardModelMatching (const StandardModel &SM_i)
 
void updateSMParameters ()
 Updates to new Standard Model parameter sets. More...
 
virtual ~StandardModelMatching ()
 
- Public Member Functions inherited from ModelMatching
virtual std::vector< WilsonCoefficient > & CMBMll (QCD::lepton lepton)=0
 
virtual std::vector< WilsonCoefficient > & CMbnlep (int a)=0
 
virtual std::vector< WilsonCoefficient > & CMbnlepCC (const int a)=0
 
virtual std::vector< WilsonCoefficient > & CMBXsnn (QCD::lepton lepton)=0
 
virtual std::vector< WilsonCoefficient > & CMd1 ()=0
 
virtual std::vector< WilsonCoefficient > & CMd1Buras ()=0
 
virtual std::vector< WilsonCoefficientNew > & CMDF1 (std::string blocks, unsigned int nops)=0
 
virtual std::vector< WilsonCoefficient > & CMprimeBMll (QCD::lepton lepton)=0
 
virtual ~ModelMatching ()
 

Protected Attributes

std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddS1RR = {}
 The dimension-6 operator coefficient \((C_{dd}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddS8RR = {}
 The dimension-6 operator coefficient \((C_{dd}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddV1LR = {}
 The dimension-6 operator coefficient \((C_{dd}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddV8LR = {}
 The dimension-6 operator coefficient \((C_{dd}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddVLL = {}
 The dimension-6 operator coefficient \((C_{dd}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddVRR = {}
 The dimension-6 operator coefficient \((C_{dd}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CdeVLR = {}
 The dimension-6 operator coefficient \((C_{d e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< gslpp::complex, 3 >, 3 > Cdg = {}
 The real part of the dimension-5 operator coefficient \((C_{d\gamma})_{ij}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< gslpp::complex, 3 >, 3 > CdG = {}
 The real part of the dimension-5 operator coefficient \((C_{dG})_{ij}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CduV1LR = {}
 The dimension-6 operator coefficient \((C_{du}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CduV8LR = {}
 The dimension-6 operator coefficient \((C_{du}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedSRL = {}
 The dimension-6 operator coefficient \((C_{ed}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedSRR = {}
 The dimension-6 operator coefficient \((C_{ed}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedTRR = {}
 The dimension-6 operator coefficient \((C_{ed}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVLL = {}
 The dimension-6 operator coefficient \((C_{e d}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVLR = {}
 The dimension-6 operator coefficient \((C_{e d}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVRR = {}
 The dimension-6 operator coefficient \((C_{e d}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeSRR = {}
 The dimension-6 operator coefficient \((C_{ee}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVLL = {}
 The dimension-6 operator coefficient \((C_{ee}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVLR = {}
 The dimension-6 operator coefficient \((C_{ee}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVRR = {}
 The dimension-6 operator coefficient \((C_{ee}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< gslpp::complex, 3 >, 3 > Ceg = {}
 The real part of the dimension-5 operator coefficient \((C_{e\gamma})_{ij}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuSRL = {}
 The dimension-6 operator coefficient \((C_{eu}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuSRR = {}
 The dimension-6 operator coefficient \((C_{eu}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuTRR = {}
 The dimension-6 operator coefficient \((C_{eu}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVLL = {}
 The dimension-6 operator coefficient \((C_{e u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVLR = {}
 The dimension-6 operator coefficient \((C_{e u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVRR = {}
 The dimension-6 operator coefficient \((C_{e u}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
double CG = 0.
 The dimension-6 operator coefficient \(C_{G}(\Lambda_{\rm{EW}})\). More...
 
double CGtilde = 0.
 The dimension-6 operator coefficient \(C_{\tilde{G}}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnudVLL = {}
 The dimension-6 operator coefficient \((C_{\nu d}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnudVLR = {}
 The dimension-6 operator coefficient \((C_{\nu d}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduSRL = {}
 The dimension-6 operator coefficient \((C_{nedu}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduSRR = {}
 The dimension-6 operator coefficient \((C_{nedu}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduTRR = {}
 The dimension-6 operator coefficient \((C_{nedu}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduVLL = {}
 The dimension-6 operator coefficient \((C_{\nu e d u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduVLR = {}
 The dimension-6 operator coefficient \((C_{\nu e d u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnueVLL = {}
 The dimension-6 operator coefficient \((C_{\nu e}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnueVLR = {}
 The dimension-6 operator coefficient \((C_{\nu e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnunuVLL = {}
 The dimension-6 operator coefficient \((C_{\nu\nu}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CnuuVLL = {}
 The dimension-6 operator coefficient \((C_{\nu u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CnuuVLR = {}
 The dimension-6 operator coefficient \((C_{\nu u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduS1RR = {}
 The dimension-6 operator coefficient \((C_{uddu}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduS8RR = {}
 The dimension-6 operator coefficient \((C_{uddu}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduV1LR = {}
 The dimension-6 operator coefficient \((C_{uddu}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduV8LR = {}
 The dimension-6 operator coefficient \((C_{uddu}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudS1RR = {}
 The dimension-6 operator coefficient \((C_{ud}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudS8RR = {}
 The dimension-6 operator coefficient \((C_{ud}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1LL = {}
 The dimension-6 operator coefficient \((C_{ud}^{V1,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1LR = {}
 The dimension-6 operator coefficient \((C_{ud}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1RR = {}
 The dimension-6 operator coefficient \((C_{ud}^{V1,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8LL = {}
 The dimension-6 operator coefficient \((C_{ud}^{V8,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8LR = {}
 The dimension-6 operator coefficient \((C_{ud}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8RR = {}
 The dimension-6 operator coefficient \((C_{ud}^{V8,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CueVLR = {}
 The dimension-6 operator coefficient \((C_{u e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< gslpp::complex, 2 >, 2 > Cug = {}
 The real part of the dimension-5 operator coefficient \((C_{u\gamma})_{ij}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< gslpp::complex, 2 >, 2 > CuG = {}
 The real part of the dimension-5 operator coefficient \((C_{uG})_{ij}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuS1RR = {}
 The dimension-6 operator coefficient \((C_{uu}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuS8RR = {}
 The dimension-6 operator coefficient \((C_{uu}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuV1LR = {}
 The dimension-6 operator coefficient \((C_{uu}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuV8LR = {}
 The dimension-6 operator coefficient \((C_{dd}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuVLL = {}
 The dimension-6 operator coefficient \((C_{uu}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuVRR = {}
 The dimension-6 operator coefficient \((C_{uu}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\). More...
 
const std::array< std::array< gslpp::complex, 2 >, 2 > zero22 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > zero2222 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > zero2233 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > zero2332 {}
 
const std::array< std::array< gslpp::complex, 3 >, 3 > zero33 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > zero3322 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > zero3332 {}
 
const std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > zero3333 {}
 

Private Attributes

double LambdaNP2
 
WilsonCoefficient mcbd
 
WilsonCoefficient mcbs
 
WilsonCoefficient mcbsg
 
WilsonCoefficient mcd1
 
WilsonCoefficient mcd2
 
WilsonCoefficient mck2
 
WilsonCoefficient mckpnn
 
WilsonCoefficient mcprimebsg
 
WilsonCoefficient mculeptonnu
 
gslpp::matrix< gslpp::complex > MD
 
gslpp::matrix< gslpp::complex > MU
 
const NPSMEFTd6GeneralmySMEFT
 
double v
 
double v2
 
gslpp::matrix< gslpp::complex > VdL
 
gslpp::matrix< gslpp::complex > VdLd
 
gslpp::matrix< gslpp::complex > VdR
 
gslpp::matrix< gslpp::complex > VdRd
 
gslpp::matrix< gslpp::complex > VeL
 
gslpp::matrix< gslpp::complex > VeLd
 
gslpp::matrix< gslpp::complex > VeR
 
gslpp::matrix< gslpp::complex > VeRd
 
gslpp::matrix< gslpp::complex > VuL
 
gslpp::matrix< gslpp::complex > VuLd
 
gslpp::matrix< gslpp::complex > VuR
 
gslpp::matrix< gslpp::complex > VuRd
 

Constructor & Destructor Documentation

◆ NPSMEFTd6GeneralMatching()

NPSMEFTd6GeneralMatching::NPSMEFTd6GeneralMatching ( const NPSMEFTd6General NPSMEFTd6General_i)

Definition at line 14 of file NPSMEFTd6GeneralMatching.cpp.

14 : StandardModelMatching(NPSMEFTd6General_i),
15 mySMEFT(NPSMEFTd6General_i),
16 VuL(gslpp::matrix<complex>::Id(3)),
17 VuLd(gslpp::matrix<complex>::Id(3)),
18 VuR(gslpp::matrix<complex>::Id(3)),
19 VuRd(gslpp::matrix<complex>::Id(3)),
20 VdL(gslpp::matrix<complex>::Id(3)),
21 VdLd(gslpp::matrix<complex>::Id(3)),
22 VdR(gslpp::matrix<complex>::Id(3)),
23 VdRd(gslpp::matrix<complex>::Id(3)),
24 VeL(gslpp::matrix<complex>::Id(3)),
25 VeLd(gslpp::matrix<complex>::Id(3)),
26 VeR(gslpp::matrix<complex>::Id(3)),
27 VeRd(gslpp::matrix<complex>::Id(3)),
28 MU(3, 0.),
29 MD(3, 0.),
30 mcd2(5, NDR, NLO),
31 mcd1(10, NDR, NLO),
32 mcbd(5, NDR, NLO),
33 mcbs(5, NDR, NLO),
34 mck2(5, NDR, NLO),
35 mculeptonnu(5, NDR, LO),
36 mckpnn(2, NDR, NLO, NLO_QED11),
37 mcbsg(8, NDR, NNLO),
39
40{
41}
@ NNLO
Definition: OrderScheme.h:36
@ LO
Definition: OrderScheme.h:34
@ NLO
Definition: OrderScheme.h:35
@ NDR
Definition: OrderScheme.h:21
@ NLO_QED11
Definition: OrderScheme.h:59
const NPSMEFTd6General & mySMEFT
gslpp::matrix< gslpp::complex > VuL
gslpp::matrix< gslpp::complex > VeR
gslpp::matrix< gslpp::complex > VdL
gslpp::matrix< gslpp::complex > VeL
gslpp::matrix< gslpp::complex > VeRd
gslpp::matrix< gslpp::complex > VuR
gslpp::matrix< gslpp::complex > VuRd
gslpp::matrix< gslpp::complex > VdRd
gslpp::matrix< gslpp::complex > VdR
gslpp::matrix< gslpp::complex > MD
gslpp::matrix< gslpp::complex > MU
gslpp::matrix< gslpp::complex > VeLd
gslpp::matrix< gslpp::complex > VdLd
gslpp::matrix< gslpp::complex > VuLd
StandardModelMatching(const StandardModel &SM_i)

◆ ~NPSMEFTd6GeneralMatching()

NPSMEFTd6GeneralMatching::~NPSMEFTd6GeneralMatching ( )
virtual

Definition at line 826 of file NPSMEFTd6GeneralMatching.cpp.

827{
828}

Member Function Documentation

◆ CMbsg()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMbsg ( )
virtual
Returns
Wilson coefficients for \( b_R \rightarrow s_L \gamma \)

Implements ModelMatching.

Definition at line 1167 of file NPSMEFTd6GeneralMatching.cpp.

1167 {
1168
1170
1172
1173 gslpp::complex LEFT_factor = sqrt(2.) / 4. / mySMEFT.getGF() / mySMEFT.getCKM().computelamt_s() ;
1174 gslpp::complex LEFT_factor_radiative = 16. * M_PI * M_PI / mySMEFT.Mrun(mySMEFT.getMuw(),mySMEFT.getQuarks(QCD::BOTTOM).getMass(),QCD::BOTTOM) * LEFT_factor / sqrt(4. * M_PI * mySMEFT.getAle());
1175
1176 switch (mcbsg.getOrder()) {
1177 case NNLO:
1178 case NLO:
1179 case LO:
1180 // {O1, O2} = {{-(1/N), (-1 + N^2)/(2 N^2)}, {2, 1/N}} {OV8LLud,OV1LLud}
1181 mcbsg.setCoeff(0, (-1./mySMEFT.getNc() * getCudV8LL(1,1,1,2) + .5 * (1. - 1./mySMEFT.getNc()/mySMEFT.getNc()) * getCudV1LL(1,1,1,2)) * LEFT_factor, LO);
1182 mcbsg.setCoeff(1, (2. * getCudV8LL(1,1,1,2) + 1./mySMEFT.getNc() * getCudV1LL(1,1,1,2)) * LEFT_factor, LO);
1183 // Add penguin operators in the future
1184 mcbsg.setCoeff(6, getCdg(1,2) * LEFT_factor_radiative, LO);
1185 mcbsg.setCoeff(7, getCdG(1,2) * LEFT_factor_radiative * sqrt(mySMEFT.getAle()/mySMEFT.Als(mySMEFT.getMuw())), LO);
1186 break;
1187 default:
1188 std::stringstream out;
1189 out << mcbsg.getOrder();
1190 throw std::runtime_error("StandardModelMatching::CMbsg(): order " + out.str() + "not implemented");
1191 }
1192
1193 vmcbsg.push_back(mcbsg);
1194 return (vmcbsg);
1195}
const gslpp::complex computelamt_s() const
The product of the CKM elements .
Definition: CKM.cpp:174
virtual std::vector< WilsonCoefficient > & CMbsg()=0
const gslpp::complex getCudV1LL(int i, int j, int k, int l) const
Return CudV1LL.
const gslpp::complex getCdG(int i, int j) const
Return CdGLR (chromomagnetic dipole operator)
const gslpp::complex getCdg(int i, int j) const
Return CdgLR (electric dipole operator)
const gslpp::complex getCudV8LL(int i, int j, int k, int l) const
Return CudV8LL.
const double & getMass() const
A get method to access the particle mass.
Definition: Particle.h:61
const double Mrun(const double mu, const double m, const quark q, const orders order=FULLNNLO) const
Computes a running quark mass from .
Definition: QCD.cpp:1353
@ BOTTOM
Definition: QCD.h:329
const Particle & getQuarks(const QCD::quark q) const
A get method to access a quark as an object of the type Particle.
Definition: QCD.h:536
const double getNc() const
A get method to access the number of colours .
Definition: QCD.h:507
const double getMuw() const
A get method to retrieve the matching scale around the weak scale.
const CKM & getCKM() const
A get method to retrieve the member object of type CKM.
const double getGF() const
A get method to retrieve the Fermi constant .
const double Als(const double mu, const orders order, const bool Nf_thr, const bool qed_flag) const
The running QCD coupling in the scheme including QED corrections.
const double getAle() const
A get method to retrieve the fine-structure constant .
void setCoeff(const gslpp::vector< gslpp::complex > &z, orders order_i)
virtual void setMu(double mu)
orders getOrder() const

◆ CMdbd2()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMdbd2 ( )
virtual

\( \Delta S = 2 \)

Returns
the vector of 8 wilson coefficients: SM + SMEFT

Reimplemented from StandardModelMatching.

Definition at line 963 of file NPSMEFTd6GeneralMatching.cpp.

964{
965
966 vmcdb.clear();
968
970
971 switch (mcbd.getOrder())
972 {
973 case NNLO:
974 case NLO:
975 for (int l = 0; l < 5; l++)
976 mcbd.setCoeff(l, 0., NLO);
977 case LO:
978 mcbd.setCoeff(0, -CddVLL.at(0).at(2).at(0).at(2), LO);
979 mcbd.setCoeff(1, -(CddS1RR.at(2).at(0).at(2).at(0).conjugate() - CddS8RR.at(2).at(0).at(2).at(0).conjugate() / 6.), LO);
980 mcbd.setCoeff(2, -CddS8RR.at(2).at(0).at(2).at(0).conjugate() / 2., LO);
981 mcbd.setCoeff(3, CddV8LR.at(0).at(2).at(0).at(2), LO);
982 mcbd.setCoeff(4, 2. * CddV1LR.at(0).at(2).at(0).at(2) - CddV8LR.at(0).at(2).at(0).at(2) / 3., LO);
983 break;
984 default:
985 std::stringstream out;
986 out << mcbd.getOrder();
987 throw std::runtime_error("StandardModelMatching::CMdbd2(): order " + out.str() + "not implemented");
988 }
989
990
991 // std::cout << "NPSMEFTd6GeneralMatching::CMdbd2(): Matching to the Delta B=2 Hamiltonian in the SUSY Basis, checked using 1512.02830" << std::endl;
992 // std::cout << "C1 = " << (*(mcbd.getCoeff(LO)))(0) << std::endl;
993 // std::cout << "C2 = " << (*(mcbd.getCoeff(LO)))(1) << std::endl;
994 // std::cout << "C3 = " << (*(mcbd.getCoeff(LO)))(2) << std::endl;
995 // std::cout << "C4 = " << (*(mcbd.getCoeff(LO)))(3) << std::endl;
996 // std::cout << "C5 = " << (*(mcbd.getCoeff(LO)))(4) << std::endl;
997 // //mcbd.setCoeff(0, 0., LO);
998
999 vmcdb.push_back(mcbd);
1000
1001 switch (mcbd.getOrder())
1002 {
1003 case NNLO:
1004 case NLO:
1005 for (int l = 0; l < 5; l++)
1006 mcbd.setCoeff(l, 0., NLO);
1007 case LO:
1008 mcbd.setCoeff(0, -CddVRR.at(0).at(2).at(0).at(2), LO);
1009 mcbd.setCoeff(1, -(CddS1RR.at(0).at(2).at(0).at(2) - CddS8RR.at(0).at(2).at(0).at(2) / 6.), LO);
1010 mcbd.setCoeff(2, -CddS8RR.at(0).at(2).at(0).at(2) / 2., LO);
1011 mcbd.setCoeff(3, 0., LO);
1012 mcbd.setCoeff(4, 0., LO);
1013 break;
1014 default:
1015 std::stringstream out;
1016 out << mcbd.getOrder();
1017 throw std::runtime_error("StandardModelMatching::CMdbd2(): order " + out.str() + "not implemented");
1018 }
1019
1020 vmcdb.push_back(mcbd);
1021
1022 // std::cout << "C1t = " << (*(mcbd.getCoeff(LO)))(0) << std::endl;
1023 // std::cout << "C2t = " << (*(mcbd.getCoeff(LO)))(1) << std::endl;
1024 // std::cout << "C3t = " << (*(mcbd.getCoeff(LO)))(2) << std::endl;
1025
1026 return (vmcdb);
1027}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddVRR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddV1LR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddV8LR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddS8RR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddVLL
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CddS1RR
The dimension-6 operator coefficient .
virtual std::vector< WilsonCoefficient > & CMdbd2()
,

◆ CMdbs2()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMdbs2 ( )
virtual

\( \Delta S = 2 \)

Returns
the vector of 8 wilson coefficients: SM + SMEFT

Reimplemented from StandardModelMatching.

Definition at line 1029 of file NPSMEFTd6GeneralMatching.cpp.

1030{
1031
1032 vmcds.clear();
1034
1036
1037 switch (mcbs.getOrder())
1038 {
1039 case NNLO:
1040 case NLO:
1041 for (int l = 0; l < 5; l++)
1042 mcbs.setCoeff(l, 0., NLO);
1043 case LO:
1044 mcbs.setCoeff(0, -CddVLL.at(1).at(2).at(1).at(2), LO);
1045 mcbs.setCoeff(1, -(CddS1RR.at(2).at(1).at(2).at(1).conjugate() - CddS8RR.at(2).at(1).at(2).at(1).conjugate() / 6.), LO);
1046 mcbs.setCoeff(2, -CddS8RR.at(2).at(1).at(2).at(1).conjugate() / 2., LO);
1047 mcbs.setCoeff(3, CddV8LR.at(1).at(2).at(1).at(2), LO);
1048 mcbs.setCoeff(4, 2. * CddV1LR.at(1).at(2).at(1).at(2) - CddV8LR.at(1).at(2).at(1).at(2) / 3., LO);
1049 break;
1050 default:
1051 std::stringstream out;
1052 out << mcbs.getOrder();
1053 throw std::runtime_error("StandardModelMatching::CMdbs2(): order " + out.str() + "not implemented");
1054 }
1055
1056
1057 // std::cout << "NPSMEFTd6GeneralMatching::CMdbs2(): Matching to the Delta BS=2 Hamiltonian in the SUSY Basis, checked using 1512.02830" << std::endl;
1058 // std::cout << "C1 = " << (*(mcbs.getCoeff(LO)))(0) << std::endl;
1059 // std::cout << "C2 = " << (*(mcbs.getCoeff(LO)))(1) << std::endl;
1060 // std::cout << "C3 = " << (*(mcbs.getCoeff(LO)))(2) << std::endl;
1061 // std::cout << "C4 = " << (*(mcbs.getCoeff(LO)))(3) << std::endl;
1062 // std::cout << "C5 = " << (*(mcbs.getCoeff(LO)))(4) << std::endl;
1063 // //mcbs.setCoeff(0, 0., LO);
1064
1065 vmcds.push_back(mcbs);
1066
1067 switch (mcbs.getOrder())
1068 {
1069 case NNLO:
1070 case NLO:
1071 for (int l = 0; l < 5; l++)
1072 mcbs.setCoeff(l, 0., NLO);
1073 case LO:
1074 mcbs.setCoeff(0, -CddVRR.at(1).at(2).at(1).at(2), LO);
1075 mcbs.setCoeff(1, -(CddS1RR.at(1).at(2).at(1).at(2) - CddS8RR.at(1).at(2).at(1).at(2) / 6.), LO);
1076 mcbs.setCoeff(2, - CddS8RR.at(1).at(2).at(1).at(2) / 2., LO);
1077 mcbs.setCoeff(3, 0., LO);
1078 mcbs.setCoeff(4, 0., LO);
1079 break;
1080 default:
1081 std::stringstream out;
1082 out << mcbs.getOrder();
1083 throw std::runtime_error("StandardModelMatching::CMdbs2(): order " + out.str() + "not implemented");
1084 }
1085
1086 vmcds.push_back(mcbs);
1087 // std::cout << "C1t = " << (*(mcbs.getCoeff(LO)))(0) << std::endl;
1088 // std::cout << "C2t = " << (*(mcbs.getCoeff(LO)))(1) << std::endl;
1089 // std::cout << "C3t = " << (*(mcbs.getCoeff(LO)))(2) << std::endl;
1090
1091 return (vmcds);
1092}
virtual std::vector< WilsonCoefficient > & CMdbs2()
,

◆ CMdd2()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMdd2 ( )
virtual

\( \Delta C = 2 \)

Returns
the vector of 8 wilson coefficients: SM + SMEFT

Reimplemented from StandardModelMatching.

Definition at line 898 of file NPSMEFTd6GeneralMatching.cpp.

899{
900
901 vmcd2.clear();
903
905
906 switch (mcd2.getOrder())
907 {
908 case NNLO:
909 case NLO:
910 for (int l = 0; l < 5; l++)
911 mcd2.setCoeff(l, 0., NLO);
912 case LO:
913 mcd2.setCoeff(0, -CuuVLL.at(0).at(1).at(0).at(1), LO);
914 mcd2.setCoeff(1, -(CuuS1RR.at(1).at(0).at(1).at(0).conjugate() - CuuS8RR.at(1).at(0).at(1).at(0).conjugate() / 6.), LO);
915 mcd2.setCoeff(2, -CuuS8RR.at(1).at(0).at(1).at(0).conjugate() / 2., LO);
916 mcd2.setCoeff(3, CuuV8LR.at(0).at(1).at(0).at(1), LO);
917 mcd2.setCoeff(4, 2. * CuuV1LR.at(0).at(1).at(0).at(1) - CuuV8LR.at(0).at(1).at(0).at(1) / 3., LO);
918 break;
919 default:
920 std::stringstream out;
921 out << mcd2.getOrder();
922 throw std::runtime_error("StandardModelMatching::CMdd2(): order " + out.str() + "not implemented");
923 }
924
925 // std::cout << "NPSMEFTd6GeneralMatching::CMdd2(): Matching to the Delta B=2 Hamiltonian in the SUSY Basis, checked using 1512.02830" << std::endl;
926 // std::cout << "C1 = " << (*(mcd2.getCoeff(LO)))(0) << std::endl;
927 // std::cout << "C2 = " << (*(mcd2.getCoeff(LO)))(1) << std::endl;
928 // std::cout << "C3 = " << (*(mcd2.getCoeff(LO)))(2) << std::endl;
929 // std::cout << "C4 = " << (*(mcd2.getCoeff(LO)))(3) << std::endl;
930 // std::cout << "C5 = " << (*(mcd2.getCoeff(LO)))(4) << std::endl;
931 // //mcd2.setCoeff(0, 0., LO);
932
933 vmcd2.push_back(mcd2);
934
935 switch (mcd2.getOrder())
936 {
937 case NNLO:
938 case NLO:
939 for (int l = 0; l < 5; l++)
940 mcd2.setCoeff(l, 0., NLO);
941 case LO:
942 mcd2.setCoeff(0, -CuuVRR.at(0).at(1).at(0).at(1), LO);
943 mcd2.setCoeff(1, -(CuuS1RR.at(0).at(1).at(0).at(1) - CuuS8RR.at(0).at(1).at(0).at(1) / 6.), LO);
944 mcd2.setCoeff(2, -CuuS8RR.at(0).at(1).at(0).at(1) / 2., LO);
945 mcd2.setCoeff(3, 0., LO);
946 mcd2.setCoeff(4, 0., LO);
947 break;
948 default:
949 std::stringstream out;
950 out << mcd2.getOrder();
951 throw std::runtime_error("StandardModelMatching::CMdd2(): order " + out.str() + "not implemented");
952 }
953
954 vmcd2.push_back(mcd2);
955
956 // std::cout << "C1t = " << (*(mcd2.getCoeff(LO)))(0) << std::endl;
957 // std::cout << "C2t = " << (*(mcd2.getCoeff(LO)))(1) << std::endl;
958 // std::cout << "C3t = " << (*(mcd2.getCoeff(LO)))(2) << std::endl;
959
960 return (vmcd2);
961}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuV1LR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuS1RR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuV8LR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuS8RR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuVRR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > CuuVLL
The dimension-6 operator coefficient .
virtual std::vector< WilsonCoefficient > & CMdd2()
,

◆ CMdiujleptonknu()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMdiujleptonknu ( int  i,
int  j,
int  k 
)
virtual
Returns
Wilson coefficients for \( \bar{d}_i u_j \bar{\nu} \ell_k \) operators in the JMS basis ordered as CnueduVLLkkij, CnueduVLRkkij, CnueduSRRkkij, CnueduSRLkkij, CnueduTRRkkij

Definition at line 1097 of file NPSMEFTd6GeneralMatching.cpp.

1098{
1099
1100 vmculeptonnu.clear();
1101 vmculeptonnu = StandardModelMatching::CMdiujleptonknu(i, j, k);
1102
1104
1105 switch (mculeptonnu.getOrder())
1106 {
1107 case NNLO:
1108 case NLO:
1109 case LO:
1110 mculeptonnu.setCoeff(0, -(CnueduVLL.at(k).at(k).at(i).at(j)).conjugate(), LO);
1111 mculeptonnu.setCoeff(1, -(CnueduVLR.at(k).at(k).at(i).at(j)).conjugate(), LO);
1112 mculeptonnu.setCoeff(2, -(CnueduSRR.at(k).at(k).at(i).at(j)).conjugate(), LO);
1113 mculeptonnu.setCoeff(3, -(CnueduSRL.at(k).at(k).at(i).at(j)).conjugate(), LO);
1114 mculeptonnu.setCoeff(4, -(CnueduTRR.at(k).at(k).at(i).at(j)).conjugate(), LO);
1115 break;
1116 default:
1117 std::stringstream out;
1118 out << mculeptonnu.getOrder();
1119 throw std::runtime_error("StandardModelMatching::CMuleptonnu(): order " + out.str() + "not implemented");
1120 }
1121
1122 vmculeptonnu.push_back(mculeptonnu);
1123 return (vmculeptonnu);
1124}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduVLR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduTRR
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduVLL
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduSRL
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > CnueduSRR
The dimension-6 operator coefficient .

◆ CMdk2()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMdk2 ( )
virtual

\( \Delta S = 2 \)

Returns
the vector of 8 wilson coefficients: SM + SMEFT

Definition at line 832 of file NPSMEFTd6GeneralMatching.cpp.

833{
834
835 vmck2.clear();
836 vmck2 = StandardModelMatching::CMdk2();
837
839
840 switch (mck2.getOrder())
841 {
842 case NNLO:
843 case NLO:
844 for (int l = 0; l < 5; l++)
845 mck2.setCoeff(l, 0., NLO);
846 case LO:
847 mck2.setCoeff(0, -CddVLL.at(0).at(1).at(0).at(1), LO);
848 mck2.setCoeff(1, -(CddS1RR.at(1).at(0).at(1).at(0).conjugate() - CddS8RR.at(1).at(0).at(1).at(0).conjugate() / 6.), LO);
849 mck2.setCoeff(2, -CddS8RR.at(1).at(0).at(1).at(0).conjugate() / 2., LO);
850 mck2.setCoeff(3, CddV8LR.at(0).at(1).at(0).at(1), LO);
851 mck2.setCoeff(4, 2. * CddV1LR.at(0).at(1).at(0).at(1) - CddV8LR.at(0).at(1).at(0).at(1) / 3., LO);
852 break;
853 default:
854 std::stringstream out;
855 out << mck2.getOrder();
856 throw std::runtime_error("StandardModelMatching::CMk2(): order " + out.str() + "not implemented");
857 }
858
859 // std::cout << "NPSMEFTd6GeneralMatching::CMk2(): Matching to the Delta F=2 Hamiltonian in the SUSY Basis, checked using 1512.02830" << std::endl;
860 // std::cout << "C1 = " << (*(mck2.getCoeff(LO)))(0) << std::endl;
861 // std::cout << "C2 = " << (*(mck2.getCoeff(LO)))(1) << std::endl;
862 // std::cout << "C3 = " << (*(mck2.getCoeff(LO)))(2) << std::endl;
863 // std::cout << "C4 = " << (*(mck2.getCoeff(LO)))(3) << std::endl;
864 // std::cout << "C5 = " << (*(mck2.getCoeff(LO)))(4) << std::endl;
865 // //mck2.setCoeff(0, 0., LO);
866
867
868 vmck2.push_back(mck2);
869
870 switch (mck2.getOrder())
871 {
872 case NNLO:
873 case NLO:
874 for (int l = 0; l < 5; l++)
875 mck2.setCoeff(l, 0., NLO);
876 case LO:
877 mck2.setCoeff(0, -CddVRR.at(0).at(1).at(0).at(1), LO);
878 mck2.setCoeff(1, -(CddS1RR.at(0).at(1).at(0).at(1) - CddS8RR.at(0).at(1).at(0).at(1) / 6.), LO);
879 mck2.setCoeff(2, -CddS8RR.at(0).at(1).at(0).at(1) / 2., LO);
880 mck2.setCoeff(3, 0., LO);
881 mck2.setCoeff(4, 0., LO);
882 break;
883 default:
884 std::stringstream out;
885 out << mck2.getOrder();
886 throw std::runtime_error("StandardModelMatching::CMk2(): order " + out.str() + "not implemented");
887 }
888
889 vmck2.push_back(mck2);
890
891 // std::cout << "C1t = " << (*(mck2.getCoeff(LO)))(0) << std::endl;
892 // std::cout << "C2t = " << (*(mck2.getCoeff(LO)))(1) << std::endl;
893 // std::cout << "C3t = " << (*(mck2.getCoeff(LO)))(2) << std::endl;
894
895 return (vmck2);
896}

◆ CMkpnn()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMkpnn ( )
virtual
Returns
Wilson coefficients for \( K_{L} \rightarrow \pi \nu \nu \)

Definition at line 1126 of file NPSMEFTd6GeneralMatching.cpp.

1126 {
1127
1128 vmckpnn = StandardModelMatching::CMkpnn();
1129
1131
1132 switch (mckpnn.getOrder()) {
1133 case NNLO:
1134 case NLO:
1135 case LO:
1136 // assume lepton universality for now
1137 mckpnn.setCoeff(0, -(CnudVLL.at(0).at(0).at(1).at(0) + CnudVLL.at(1).at(1).at(1).at(0) + CnudVLL.at(2).at(2).at(1).at(0))/3., LO);
1138 mckpnn.setCoeff(1, -(CnudVLR.at(0).at(0).at(1).at(0) + CnudVLR.at(1).at(1).at(1).at(0) + CnudVLR.at(2).at(2).at(1).at(0))/3., LO);
1139 break;
1140 default:
1141 std::stringstream out;
1142 out << mckpnn.getOrder();
1143 throw std::runtime_error("NPSMEFTd6GeneralMatching::CMkpnn(): order " + out.str() + " not implemented");
1144 }
1145
1146 switch (mckpnn.getOrder_qed()) {
1147 case NLO_QED11:
1148 case LO_QED:
1149 break;
1150 default:
1151 std::stringstream out;
1152 out << mckpnn.getOrder_qed();
1153 throw std::runtime_error("NPSMEFTd6GeneralMatching::CMkpnn(): qed order " + out.str() + " not implemented");
1154 }
1155
1156 vmckpnn.push_back(mckpnn);
1157 return (vmckpnn);
1158
1159}
@ LO_QED
Definition: OrderScheme.h:58
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnudVLL
The dimension-6 operator coefficient .
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnudVLR
The dimension-6 operator coefficient .
orders_qed getOrder_qed() const

◆ CMprimebsg()

std::vector< WilsonCoefficient > & NPSMEFTd6GeneralMatching::CMprimebsg ( )
virtual
Returns
Wilson coefficients for \( b_L \rightarrow s_R \gamma \)

Implements ModelMatching.

Definition at line 1197 of file NPSMEFTd6GeneralMatching.cpp.

1197 {
1198
1199 vmcprimebsg = StandardModelMatching::CMprimebsg();
1200
1202
1203 gslpp::complex LEFT_factor = sqrt(2.) / 4. / mySMEFT.getGF() / mySMEFT.getCKM().computelamt_s() ;
1204 gslpp::complex LEFT_factor_radiative = 16. * M_PI * M_PI / mySMEFT.getQuarks(QCD::BOTTOM).getMass() * LEFT_factor / sqrt(4. * M_PI * mySMEFT.getAle());
1205
1206 switch (mcprimebsg.getOrder()) {
1207 case NNLO:
1208 case NLO:
1209 case LO:
1210 // {O1prime, O2prime} = {{-(1/N), (-1 + N^2)/(2 N^2)}, {2, 1/N}} {OV8RRud,OV1RRud}
1211 mcprimebsg.setCoeff(0, (-1./mySMEFT.getNc() * getCudV8RR(1,1,1,2) + .5 * (1. - 1./mySMEFT.getNc()/mySMEFT.getNc()) * getCudV1RR(1,1,1,2)) * LEFT_factor, LO);
1212 mcprimebsg.setCoeff(1, (2. * getCudV8RR(1,1,1,2) + 1./mySMEFT.getNc() * getCudV1RR(1,1,1,2)) * LEFT_factor, LO);
1213 // Add penguin operators in the future
1214 mcprimebsg.setCoeff(6, getCdg(2,1).conjugate() * LEFT_factor_radiative, LO);
1215 mcprimebsg.setCoeff(7, getCdG(2,1).conjugate() * LEFT_factor_radiative * (mySMEFT.getAle()/mySMEFT.Als(mySMEFT.getQuarks(QCD::BOTTOM).getMass())), LO);
1216 break;
1217 default:
1218 std::stringstream out;
1219 out << mcprimebsg.getOrder();
1220 throw std::runtime_error("StandardModelMatching::CMbsg(): order " + out.str() + "not implemented");
1221 }
1222
1223 vmcprimebsg.push_back(mcprimebsg);
1224 return (vmcprimebsg);
1225}
virtual std::vector< WilsonCoefficient > & CMprimebsg()=0
const gslpp::complex getCudV8RR(int i, int j, int k, int l) const
Return CudV8RR.
const gslpp::complex getCudV1RR(int i, int j, int k, int l) const
Return CudV1RR.

◆ getCddS1RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddS1RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CddS1RR.

Returns
\( C_{dd}^{S1,RR} \)

Definition at line 1501 of file NPSMEFTd6GeneralMatching.cpp.

1502{
1503 return (CddS1RR.at(i).at(j).at(k).at(l));
1504}

◆ getCddS8RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddS8RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CddS8RR.

Returns
\( C_{dd}^{S8,RR} \)

Definition at line 1507 of file NPSMEFTd6GeneralMatching.cpp.

1508{
1509 return (CddS8RR.at(i).at(j).at(k).at(l));
1510}

◆ getCddV1LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddV1LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CddV1LR.

Returns
\( C_{dd}^{V1,LR} \)

Definition at line 1412 of file NPSMEFTd6GeneralMatching.cpp.

1413{
1414 return (CddV1LR.at(i).at(j).at(k).at(l));
1415}

◆ getCddV8LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddV8LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CddV8LR.

Returns
\( C_{dd}^{V8,LR} \)

Definition at line 1417 of file NPSMEFTd6GeneralMatching.cpp.

1418{
1419 return (CddV8LR.at(i).at(j).at(k).at(l));
1420}

◆ getCddVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CddVLL.

Returns
\( C_{dd}^{V,LL} \)

Definition at line 1278 of file NPSMEFTd6GeneralMatching.cpp.

1279{
1280 return (CddVLL.at(i).at(j).at(k).at(l));
1281}

◆ getCddVRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCddVRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CddVRR.

Returns
\( C_{dd}^{V,RR} \)

Definition at line 1317 of file NPSMEFTd6GeneralMatching.cpp.

1318{
1319 return (CddVRR.at(i).at(j).at(k).at(l));
1320}

◆ getCdeVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCdeVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CdeVLR.

Returns
\( C_{de}^{V,LR} \)

Definition at line 1372 of file NPSMEFTd6GeneralMatching.cpp.

1373{
1374 return (CdeVLR.at(i).at(j).at(k).at(l));
1375}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CdeVLR
The dimension-6 operator coefficient .

◆ getCdG()

const gslpp::complex NPSMEFTd6GeneralMatching::getCdG ( int  i,
int  j 
) const

Return CdGLR (chromomagnetic dipole operator)

Returns
\( C_{d G}^{LR}(i,j) \)

Definition at line 1543 of file NPSMEFTd6GeneralMatching.cpp.

1544{
1545 return (CdG.at(i).at(j));
1546}
std::array< std::array< gslpp::complex, 3 >, 3 > CdG
The real part of the dimension-5 operator coefficient .

◆ getCdg()

const gslpp::complex NPSMEFTd6GeneralMatching::getCdg ( int  i,
int  j 
) const

Return CdgLR (electric dipole operator)

Returns
\( C_{d \gamma}^{LR}(i,j) \)

Definition at line 1548 of file NPSMEFTd6GeneralMatching.cpp.

1549{
1550 return (Cdg.at(i).at(j));
1551}
std::array< std::array< gslpp::complex, 3 >, 3 > Cdg
The real part of the dimension-5 operator coefficient .

◆ getCduV1LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCduV1LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CduV1LR.

Returns
\( C_{du}^{V1,LR} \)

Definition at line 1402 of file NPSMEFTd6GeneralMatching.cpp.

1403{
1404 return (CduV1LR.at(i).at(j).at(k).at(l));
1405}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CduV1LR
The dimension-6 operator coefficient .

◆ getCduV8LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCduV8LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CduV8LR.

Returns
\( C_{du}^{V8,LR} \)

Definition at line 1407 of file NPSMEFTd6GeneralMatching.cpp.

1408{
1409 return (CduV8LR.at(i).at(j).at(k).at(l));
1410}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CduV8LR
The dimension-6 operator coefficient .

◆ getCedSRL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedSRL ( int  i,
int  j,
int  k,
int  l 
) const

Return CedSRL.

Returns
\( C_{e d}^{S,RL} \)

Definition at line 1532 of file NPSMEFTd6GeneralMatching.cpp.

1533{
1534 return (CedSRL.at(i).at(j).at(k).at(l));
1535}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedSRL
The dimension-6 operator coefficient .

◆ getCedSRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedSRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CedSRR.

Returns
\( C_{ed}^{S,RR} \)

Definition at line 1453 of file NPSMEFTd6GeneralMatching.cpp.

1454{
1455 return (CedSRR.at(i).at(j).at(k).at(l));
1456}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedSRR
The dimension-6 operator coefficient .

◆ getCedTRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedTRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CedTRR.

Returns
\( C_{ed}^{T,RR} \)

Definition at line 1459 of file NPSMEFTd6GeneralMatching.cpp.

1460{
1461 return (CedTRR.at(i).at(j).at(k).at(l));
1462}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedTRR
The dimension-6 operator coefficient .

◆ getCedVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CedVLL.

Returns
\( C_{ed}^{V,LL} \)

Definition at line 1263 of file NPSMEFTd6GeneralMatching.cpp.

1264{
1265 return (CedVLL.at(i).at(j).at(k).at(l));
1266}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVLL
The dimension-6 operator coefficient .

◆ getCedVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CedVLR.

Returns
\( C_{ed}^{V,LR} \)

Definition at line 1362 of file NPSMEFTd6GeneralMatching.cpp.

1363{
1364 return (CedVLR.at(i).at(j).at(k).at(l));
1365}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVLR
The dimension-6 operator coefficient .

◆ getCedVRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCedVRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CedVRR.

Returns
\( C_{ed}^{V,RR} \)

Definition at line 1307 of file NPSMEFTd6GeneralMatching.cpp.

1308{
1309 return (CedVRR.at(i).at(j).at(k).at(l));
1310}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CedVRR
The dimension-6 operator coefficient .

◆ getCeeSRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeeSRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeeSRR.

Returns
\( C_{ee}^{S,RR} \)

Definition at line 1435 of file NPSMEFTd6GeneralMatching.cpp.

1436{
1437 return (CeeSRR.at(i).at(j).at(k).at(l));
1438}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeSRR
The dimension-6 operator coefficient .

◆ getCeeVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeeVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CeeVLL.

Returns
\( C_{ee}^{V,LL} \)

Definition at line 1238 of file NPSMEFTd6GeneralMatching.cpp.

1239{
1240 return (CeeVLL.at(i).at(j).at(k).at(l));
1241}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVLL
The dimension-6 operator coefficient .

◆ getCeeVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeeVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeeVLR.

Returns
\( C_{e e}^{V,LR} \)

Definition at line 1342 of file NPSMEFTd6GeneralMatching.cpp.

1343{
1344 return (CeeVLR.at(i).at(j).at(k).at(l));
1345}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVLR
The dimension-6 operator coefficient .

◆ getCeeVRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeeVRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeeVRR.

Returns
\( C_{ee}^{V,RR} \)

Definition at line 1297 of file NPSMEFTd6GeneralMatching.cpp.

1298{
1299 return (CeeVRR.at(i).at(j).at(k).at(l));
1300}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CeeVRR
The dimension-6 operator coefficient .

◆ getCeuSRL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuSRL ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuSRL.

Returns
\( C_{e u}^{S,RL} \)

Definition at line 1527 of file NPSMEFTd6GeneralMatching.cpp.

1528{
1529 return (CeuSRL.at(i).at(j).at(k).at(l));
1530}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuSRL
The dimension-6 operator coefficient .

◆ getCeuSRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuSRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuSRR.

Returns
\( C_{eu}^{S,RR} \)

Definition at line 1441 of file NPSMEFTd6GeneralMatching.cpp.

1442{
1443 return (CeuSRR.at(i).at(j).at(k).at(l));
1444}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuSRR
The dimension-6 operator coefficient .

◆ getCeuTRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuTRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuTRR.

Returns
\( C_{eu}^{T,RR} \)

Definition at line 1447 of file NPSMEFTd6GeneralMatching.cpp.

1448{
1449 return (CeuTRR.at(i).at(j).at(k).at(l));
1450}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuTRR
The dimension-6 operator coefficient .

◆ getCeuVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuVLL.

Returns
\( C_{eu}^{V,LL} \)

Definition at line 1258 of file NPSMEFTd6GeneralMatching.cpp.

1259{
1260 return (CeuVLL.at(i).at(j).at(k).at(l));
1261}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVLL
The dimension-6 operator coefficient .

◆ getCeuVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuVLR.

Returns
\( C_{eu}^{V,LR} \)

Definition at line 1357 of file NPSMEFTd6GeneralMatching.cpp.

1358{
1359 return (CeuVLR.at(i).at(j).at(k).at(l));
1360}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVLR
The dimension-6 operator coefficient .

◆ getCeuVRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCeuVRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CeuVRR.

Returns
\( C_{eu}^{V,RR} \)

Definition at line 1302 of file NPSMEFTd6GeneralMatching.cpp.

1303{
1304 return (CeuVRR.at(i).at(j).at(k).at(l));
1305}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CeuVRR
The dimension-6 operator coefficient .

◆ getCnudVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnudVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnudVLL.

Returns
\( C_{\nu d}^{V,LL} \)

Definition at line 1253 of file NPSMEFTd6GeneralMatching.cpp.

1254{
1255 return (CnudVLL.at(i).at(j).at(k).at(l));
1256}

◆ getCnudVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnudVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnudVLR.

Returns
\( C_{\nu d}^{V,LR} \)

Definition at line 1352 of file NPSMEFTd6GeneralMatching.cpp.

1353{
1354 return (CnudVLR.at(i).at(j).at(k).at(l));
1355}

◆ getCnueduSRL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueduSRL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueduSRL.

Returns
\( C_{\nu e d u}^{S,RL} \)

Definition at line 1538 of file NPSMEFTd6GeneralMatching.cpp.

1539{
1540 return (CnueduSRL.at(i).at(j).at(k).at(l));
1541}

◆ getCnueduSRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueduSRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueduSRR.

Returns
\( C_{\nu e d u}^{S,RR} \)

Definition at line 1465 of file NPSMEFTd6GeneralMatching.cpp.

1466{
1467 return (CnueduSRR.at(i).at(j).at(k).at(l));
1468}

◆ getCnueduTRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueduTRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueduTRR.

Returns
\( C_{\nu e d u}^{T,RR} \)

Definition at line 1471 of file NPSMEFTd6GeneralMatching.cpp.

1472{
1473 return (CnueduTRR.at(i).at(j).at(k).at(l));
1474}

◆ getCnueduVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueduVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueduVLL.

Returns
\( C_{\nu e d u}^{V,LL} \)

Definition at line 1268 of file NPSMEFTd6GeneralMatching.cpp.

1269{
1270 return (CnueduVLL.at(i).at(j).at(k).at(l));
1271}

◆ getCnueduVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueduVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueduVLR.

Returns
\( C_{\nu e d u}^{V,LR} \)

Definition at line 1377 of file NPSMEFTd6GeneralMatching.cpp.

1378{
1379 return (CnueduVLR.at(i).at(j).at(k).at(l));
1380}

◆ getCnueVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueVLL.

Returns
\( C_{\nu e}^{V,LL} \)

Definition at line 1243 of file NPSMEFTd6GeneralMatching.cpp.

1244{
1245 return (CnueVLL.at(i).at(j).at(k).at(l));
1246}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnueVLL
The dimension-6 operator coefficient .

◆ getCnueVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnueVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnueVLR.

Returns
\( C_{\nu e}^{V,LR} \)

Definition at line 1336 of file NPSMEFTd6GeneralMatching.cpp.

1337{
1338 return (CnueVLR.at(i).at(j).at(k).at(l));
1339}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnueVLR
The dimension-6 operator coefficient .

◆ getCnunuVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnunuVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnunuVLL.

Returns
\( C_{\nu \nu}^{V,LL} \)

Definition at line 1233 of file NPSMEFTd6GeneralMatching.cpp.

1234{
1235 return (CnunuVLL.at(i).at(j).at(k).at(l));
1236}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > CnunuVLL
The dimension-6 operator coefficient .

◆ getCnuuVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnuuVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CnuuVLL.

Returns
\( C_{\nu u}^{V,LL} \)

Definition at line 1248 of file NPSMEFTd6GeneralMatching.cpp.

1249{
1250 return (CnuuVLL.at(i).at(j).at(k).at(l));
1251}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CnuuVLL
The dimension-6 operator coefficient .

◆ getCnuuVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCnuuVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CnuuVLR.

Returns
\( C_{\nu u}^{V,LR} \)

Definition at line 1347 of file NPSMEFTd6GeneralMatching.cpp.

1348{
1349 return (CnuuVLR.at(i).at(j).at(k).at(l));
1350}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > CnuuVLR
The dimension-6 operator coefficient .

◆ getCudduS1RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudduS1RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudduS1RR.

Returns
\( C_{uddu}^{S1,RR} \)

Definition at line 1513 of file NPSMEFTd6GeneralMatching.cpp.

1514{
1515 return (CudduS1RR.at(i).at(j).at(k).at(l));
1516}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduS1RR
The dimension-6 operator coefficient .

◆ getCudduS8RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudduS8RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudduS8RR.

Returns
\( C_{uddu}^{S8,RR} \)

Definition at line 1519 of file NPSMEFTd6GeneralMatching.cpp.

1520{
1521 return (CudduS8RR.at(i).at(j).at(k).at(l));
1522}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduS8RR
The dimension-6 operator coefficient .

◆ getCudduV1LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudduV1LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudduV1LR.

Returns
\( C_{\uddu}^{V1,LR} \)

Definition at line 1422 of file NPSMEFTd6GeneralMatching.cpp.

1423{
1424 return (CudduV1LR.at(i).at(j).at(k).at(l));
1425}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduV1LR
The dimension-6 operator coefficient .

◆ getCudduV8LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudduV8LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudduV8LR.

Returns
\( C_{uddu}^{V8,LR} \)

Definition at line 1427 of file NPSMEFTd6GeneralMatching.cpp.

1428{
1429 return (CudduV8LR.at(i).at(j).at(k).at(l));
1430}
std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > CudduV8LR
The dimension-6 operator coefficient .

◆ getCudS1RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudS1RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudS1RR.

Returns
\( C_{ud}^{S1,RR} \)

Definition at line 1489 of file NPSMEFTd6GeneralMatching.cpp.

1490{
1491 return (CudS1RR.at(i).at(j).at(k).at(l));
1492}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudS1RR
The dimension-6 operator coefficient .

◆ getCudS8RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudS8RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudS8RR.

Returns
\( C_{ud}^{S8,RR} \)

Definition at line 1495 of file NPSMEFTd6GeneralMatching.cpp.

1496{
1497 return (CudS8RR.at(i).at(j).at(k).at(l));
1498}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudS8RR
The dimension-6 operator coefficient .

◆ getCudV1LL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV1LL ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV1LL.

Returns
\( C_{ud}^{V1,LL} \)

Definition at line 1283 of file NPSMEFTd6GeneralMatching.cpp.

1284{
1285 return (CudV1LL.at(i).at(j).at(k).at(l));
1286}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1LL
The dimension-6 operator coefficient .

◆ getCudV1LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV1LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV1LR.

Returns
\( C_{ud}^{V1,LR} \)

Definition at line 1392 of file NPSMEFTd6GeneralMatching.cpp.

1393{
1394 return (CudV1LR.at(i).at(j).at(k).at(l));
1395}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1LR
The dimension-6 operator coefficient .

◆ getCudV1RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV1RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV1RR.

Returns
\( C_{ud}^{V1,RR} \)

Definition at line 1322 of file NPSMEFTd6GeneralMatching.cpp.

1323{
1324 return (CudV1RR.at(i).at(j).at(k).at(l));
1325}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV1RR
The dimension-6 operator coefficient .

◆ getCudV8LL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV8LL ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV8LL.

Returns
\( C_{ud}^{V8,LL} \)

Definition at line 1288 of file NPSMEFTd6GeneralMatching.cpp.

1289{
1290 return (CudV8LL.at(i).at(j).at(k).at(l));
1291}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8LL
The dimension-6 operator coefficient .

◆ getCudV8LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV8LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV8LR.

Returns
\( C_{ud}^{V8,LR} \)

Definition at line 1397 of file NPSMEFTd6GeneralMatching.cpp.

1398{
1399 return (CudV8LR.at(i).at(j).at(k).at(l));
1400}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8LR
The dimension-6 operator coefficient .

◆ getCudV8RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCudV8RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CudV8RR.

Returns
\( C_{ud}^{V8,RR} \)

Definition at line 1327 of file NPSMEFTd6GeneralMatching.cpp.

1328{
1329 return (CudV8RR.at(i).at(j).at(k).at(l));
1330}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CudV8RR
The dimension-6 operator coefficient .

◆ getCueVLR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCueVLR ( int  i,
int  j,
int  k,
int  l 
) const

Return CueVLR.

Returns
\( C_{ue}^{V,LR} \)

Definition at line 1367 of file NPSMEFTd6GeneralMatching.cpp.

1368{
1369 return (CueVLR.at(i).at(j).at(k).at(l));
1370}
std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > CueVLR
The dimension-6 operator coefficient .

◆ getCuuS1RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuS1RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuS1RR.

Returns
\( C_{uu}^{S1,RR} \)

Definition at line 1477 of file NPSMEFTd6GeneralMatching.cpp.

1478{
1479 return (CuuS1RR.at(i).at(j).at(k).at(l));
1480}

◆ getCuuS8RR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuS8RR ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuS8RR.

Returns
\( C_{uu}^{S8,RR} \)

Definition at line 1483 of file NPSMEFTd6GeneralMatching.cpp.

1484{
1485 return (CuuS8RR.at(i).at(j).at(k).at(l));
1486}

◆ getCuuV1LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuV1LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuV1LR.

Returns
\( C_{uu}^{V1,LR} \)

Definition at line 1382 of file NPSMEFTd6GeneralMatching.cpp.

1383{
1384 return (CuuV1LR.at(i).at(j).at(k).at(l));
1385}

◆ getCuuV8LR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuV8LR ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuV8LR.

Returns
\( C_{uu}^{V8,LR} \)

Definition at line 1387 of file NPSMEFTd6GeneralMatching.cpp.

1388{
1389 return (CuuV8LR.at(i).at(j).at(k).at(l));
1390}

◆ getCuuVLL()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuVLL ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuVLL.

Returns
\( C_{uu}^{V,LL} \)

Definition at line 1273 of file NPSMEFTd6GeneralMatching.cpp.

1274{
1275 return (CuuVLL.at(i).at(j).at(k).at(l));
1276}

◆ getCuuVRR()

const gslpp::complex NPSMEFTd6GeneralMatching::getCuuVRR ( int  i,
int  j,
int  k,
int  l 
) const

Return CuuVRR.

Returns
\( C_{uu}^{V,RR} \)

Definition at line 1312 of file NPSMEFTd6GeneralMatching.cpp.

1313{
1314 return (CuuVRR.at(i).at(j).at(k).at(l));
1315}

◆ getVdL()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVdL ( ) const

Return VdL.

Returns
\( V^{d}_L \)

Definition at line 1565 of file NPSMEFTd6GeneralMatching.cpp.

1566{
1567 return VdL;
1568}

◆ getVdR()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVdR ( ) const

Return VdR.

Returns
\( V^{d}_R \)

Definition at line 1570 of file NPSMEFTd6GeneralMatching.cpp.

1571{
1572 return VdL;
1573}

◆ getVeL()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVeL ( ) const

Return VeL.

Returns
\( V^{e}_L \)

Definition at line 1575 of file NPSMEFTd6GeneralMatching.cpp.

1576{
1577 return VeL;
1578}

◆ getVeR()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVeR ( ) const

Return VeR.

Returns
\( V^{e}_R \)

Definition at line 1580 of file NPSMEFTd6GeneralMatching.cpp.

1581{
1582 return VeR;
1583}

◆ getVuL()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVuL ( ) const

Return VuL.

Returns
\( V^{u}_L \)

Definition at line 1555 of file NPSMEFTd6GeneralMatching.cpp.

1556{
1557 return VuL;
1558}

◆ getVuR()

const gslpp::matrix< gslpp::complex > NPSMEFTd6GeneralMatching::getVuR ( ) const

Return VuR.

Returns
\( V^{u}_R \)

Definition at line 1560 of file NPSMEFTd6GeneralMatching.cpp.

1561{
1562 return VuR;
1563}

◆ updateLEFTGeneralParameters()

void NPSMEFTd6GeneralMatching::updateLEFTGeneralParameters ( )

Updates to new FlavourWilsonCoefficient parameter sets.

Returns

Definition at line 43 of file NPSMEFTd6GeneralMatching.cpp.

44{
45
46 // Dimension 6 operators with no flavour index are assigned directly here
47
49 v = mySMEFT.v(); // This is vtilde in Angelica's notation
50 v2 = v * v; // This is vtilde squared
51
52 // The true VEV, corresponding to vbar in Angelica's notation, is equal to v up to corrections
53 double vT = v;
54 double delta_vT = mySMEFT.getDelta_v();
55 double vTosq2 = vT / sqrt(2.);
56
57 // CG = mySMEFT.getSMEFTCoeffEW("CG")*LambdaNP2;
58 // CW = mySMEFT.getSMEFTCoeffEW("CW")*LambdaNP2;
59 // CHG = mySMEFT.getSMEFTCoeffEW("CHG")*LambdaNP2;
60 // CHW = mySMEFT.getSMEFTCoeffEW("CHW")*LambdaNP2;
61 // CHB = mySMEFT.getSMEFTCoeffEW("CHB")*LambdaNP2;
62 // CHWB = mySMEFT.getSMEFTCoeffEW("CHWB")*LambdaNP2;
63 // CHD = mySMEFT.getSMEFTCoeffEW("CHD")*LambdaNP2;
64 // CHbox = mySMEFT.getSMEFTCoeffEW("CHbox")*LambdaNP2;
65 // CH = mySMEFT.getSMEFTCoeffEW("CH")*LambdaNP2;
66 // CGtilde = mySMEFT.getSMEFTCoeffEW("CGtilde")*LambdaNP2;
67 // CWtilde = mySMEFT.getSMEFTCoeffEW("CWtilde")*LambdaNP2;
68 // CHGtilde = mySMEFT.getSMEFTCoeffEW("CHGtilde")*LambdaNP2;
69 // CHWtilde = mySMEFT.getSMEFTCoeffEW("CHWtilde")*LambdaNP2;
70 // CHBtilde = mySMEFT.getSMEFTCoeffEW("CHBtilde")*LambdaNP2;
71 // CHWtildeB = mySMEFT.getSMEFTCoeffEW("CHWtildeB")*LambdaNP2;
72 //
73 // //Now we do not use the SILH basis anymore, we'll set these operators to zero
74 // C2B = 0.;
75 // C2W = 0.;
76 // C2BS = 0.;
77 // C2WS = 0.;
78 // CDHB = 0.;
79 // CDHW = 0.;
80 // CDB = 0.;
81 // CDW = 0.;
82 // CT = 0.;
83
84 // For operators with quark indices we need to switch to the mass eigenstate basis; leptons are already in the mass eigenstate basis since we do not have any lepton flavour violation
85
86 VuL = mySMEFT.getVuL();
87 VdL = mySMEFT.getVdL();
88 VeL = mySMEFT.getVeL();
89 VuLd = mySMEFT.getVuLd();
90 VdLd = mySMEFT.getVdLd();
91 VeLd = mySMEFT.getVeLd();
92 VuR = mySMEFT.getVuR();
93 VdR = mySMEFT.getVdR();
94 VeR = mySMEFT.getVeR();
95 VuRd = mySMEFT.getVuRd();
96 VdRd = mySMEFT.getVdRd();
97 VeRd = mySMEFT.getVeRd();
98
99 // to implement Manohar's matching formulae we define the couplings
100 // in his notation. Namely, in the formulae below, the barred quantities are
101 // tree level in the theory scheme.
102
103 double cbar = mySMEFT.getXWZ_tree();
104 double sbar = -mySMEFT.getXBZ_tree();
105 double sbar2 = sbar * sbar;
106 // double delta_cbar = mySMEFT.getDelta_xWZ(); not needed currently
107 double delta_sbar = mySMEFT.getDelta_xBZ();
108 double g1bar = mySMEFT.getG1_tree();
109 // double delta_g1bar = mySMEFT.getDelta_g1(); not needed currently
110 double g2bar = mySMEFT.getG2_tree();
111 // double delta_g2bar = mySMEFT.getDelta_g2(); not needed currently
112 double delta_MZ2 = mySMEFT.getDelta_Mz2();
113 double ebar = mySMEFT.getEeMz();
114 // double delta_ebar = mySMEFT.getDelta_ale() / 2.; not needed currently
115 // the Z coupling and its correction were not explicit in Angelica's notes, so they need to be checked
116 double gZbar = ebar / sbar / cbar;
117 double delta_gZbar = (g1bar * g1bar + g2bar * g2bar) / (2. * g1bar * g2bar) * v2 * mySMEFT.getSMEFTCoeffEW("CHWB");
118 // indeed a piece was missing, I add it here
119 delta_gZbar += -(g1bar * g1bar * g1bar * g1bar + g2bar * g2bar * g2bar * g2bar) / (2. * (g1bar * g1bar + g2bar * g2bar) * g1bar * g2bar) * v2 * mySMEFT.getSMEFTCoeffEW("CHWB");
120 double gZ2oMZ2 = gZbar / mySMEFT.getMz();
121 gZ2oMZ2 *= gZ2oMZ2;
122 double delta_gZ2oMZ2 = 2. * delta_gZbar - delta_MZ2;
123 double g22oMW2 = 4. / v2;
124 double delta_g22oMW2 = -2. * delta_vT;
125 //new terms from now on
126 //Z boson
127 double gZbar2oMZ3 = gZ2oMZ2 / mySMEFT.getMz();
128 double gZbar2oMZ4 = gZbar2oMZ3 / mySMEFT.getMz();
129 double deltagZbar2oMZ4 = 2. * delta_gZbar - 2. * delta_MZ2;
130 //W boson
131 double g2bar2oMW3 = g22oMW2 / mySMEFT.getMw();
132 double g2bar2oMW4 = g2bar2oMW3 / mySMEFT.getMw();
133 double deltag2bar2oMW4 = -4. * delta_vT;
134 //h boson
135 double lambda = mySMEFT.getLambdaH_tree() * 2.;
136 double oneoMh2 = 1. / (lambda * v2);
137 double deltaoneoMh2 = (- 2. * mySMEFT.getSMEFTCoeffEW("CHbox") + 0.5 * mySMEFT.getSMEFTCoeffEW("CHD") + 3 * mySMEFT.getSMEFTCoeffEW("CH") / lambda) * v2;
138 std::array<double, 3> Me = mySMEFT.getMe_LEW();
139 std::array<double, 3> Mu = mySMEFT.getMu_LEW();
140 std::array<double, 3> Md = mySMEFT.getMd_LEW();
141
142 // std::cout << "CKM from rotated UfA = " << (VuL.hconjugate()) * VdL << std::endl;
143
144 // std::cout << "has the diagonalization worked? " << VuR.hconjugate()*MU*VuL << std::endl;
145 // std::cout << "has the diagonalization worked? " << VdR.hconjugate()*MD*VdL << std::endl;
146
147 // match and rotate following Manohar. This is performed AT LINEAR ORDER for the moment
148
149 // fill all coefficients with zeroes first
150 gslpp::matrix<complex> VCKM = mySMEFT.getCKM().getCKM();
151 gslpp::matrix<complex> VCKMd = VCKM.hconjugate();
152
153 Ceg = zero33;
154 Ceg = zero33;
155 if (Ceg.at(0).at(1) != 0. || Ceg.at(0).at(2) != 0. || Ceg.at(1).at(0) != 0. || Ceg.at(1).at(2) != 0. || Ceg.at(2).at(0) != 0. || Ceg.at(2).at(1) != 0.)
156 throw("Compiler is not putting to zero correctly the 2-d arrays of Wilson coefficients");
157 Cdg = zero33;
158 CdG = zero33;
159 Cug = zero22;
160 CuG = zero22;
161
218
219#ifdef NOLEPTONFLAVOURVIOLATION
220
221 // matching of operators with two external indices and zero internal indices
222
223 for (int i = 0; i < 3; i++)
224 for (int j = 0; j < 3; j++)
225 {
226 Ceg.at(i).at(j) += vTosq2 * (-(mySMEFT.getSMEFTCoeffEW("CeWR", i, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", i, j)) * sbar + (mySMEFT.getSMEFTCoeffEW("CeBR", i, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", i, j)) * cbar);
227
228 CnunuVLL.at(i).at(i).at(j).at(j) += -0.0625 * (delta_gZ2oMZ2 * gZ2oMZ2);
229 CnunuVLL.at(i).at(j).at(j).at(i) += -0.0625 * (delta_gZ2oMZ2 * gZ2oMZ2);
230 CeeVLL.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (-1 + 2 * sbar2) * (delta_gZ2oMZ2 - 2 * delta_gZ2oMZ2 * sbar2 - 8 * delta_sbar * sbar2)) / 16.;
231 CeeVLL.at(i).at(j).at(j).at(i) += (gZ2oMZ2 * (-1 + 2 * sbar2) * (delta_gZ2oMZ2 - 2 * delta_gZ2oMZ2 * sbar2 - 8 * delta_sbar * sbar2)) / 16.;
232 CnueVLL.at(i).at(i).at(j).at(j) += -0.25 * (gZ2oMZ2 * (4 * delta_sbar * sbar2 + delta_gZ2oMZ2 * (-1 + 2 * sbar2)));
233 CnueVLL.at(i).at(j).at(j).at(i) += -0.5 * (delta_g22oMW2 * g22oMW2);
234 CnudVLL.at(i).at(i).at(j).at(j) += -0.08333333333333333 * (gZ2oMZ2 * (4 * delta_sbar * sbar2 + delta_gZ2oMZ2 * (-3 + 2 * sbar2)));
235 CedVLL.at(i).at(i).at(j).at(j) += -0.08333333333333333 * (gZ2oMZ2 * (16 * delta_sbar * (-1 + sbar2) * sbar2 + delta_gZ2oMZ2 * (3 - 8 * sbar2 + 4 * sbar2 * sbar2)));
236 CddVLL.at(i).at(i).at(j).at(j) += -0.013888888888888888 * (gZ2oMZ2 * (-3 + 2 * sbar2) * (8 * delta_sbar * sbar2 + delta_gZ2oMZ2 * (-3 + 2 * sbar2)));
237 CeeVRR.at(i).at(i).at(j).at(j) += -0.25 * ((delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2);
238 CeeVRR.at(i).at(j).at(j).at(i) += -0.25 * ((delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2);
239 CedVRR.at(i).at(i).at(j).at(j) += -0.3333333333333333 * ((delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2);
240 CddVRR.at(i).at(i).at(j).at(j) += -0.05555555555555555 * ((delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2);
241 CnueVLR.at(i).at(i).at(j).at(j) += -0.5 * ((delta_gZ2oMZ2 + 2 * delta_sbar) * gZ2oMZ2 * sbar2);
242 CeeVLR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * sbar2 * (delta_gZ2oMZ2 + delta_sbar * (2 - 8 * sbar2) - 2 * delta_gZ2oMZ2 * sbar2)) / 2.;
243 CnudVLR.at(i).at(i).at(j).at(j) += -0.16666666666666666 * ((delta_gZ2oMZ2 + 2 * delta_sbar) * gZ2oMZ2 * sbar2);
244 CedVLR.at(i).at(i).at(j).at(j) += -0.16666666666666666 * (gZ2oMZ2 * sbar2 * (-delta_gZ2oMZ2 - 2 * delta_sbar + 2 * delta_gZ2oMZ2 * sbar2 + 8 * delta_sbar * sbar2));
245 CdeVLR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (delta_sbar * (6 - 8 * sbar2) + delta_gZ2oMZ2 * (3 - 2 * sbar2)) * sbar2) / 6.;
246 CddV1LR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (delta_sbar * (6 - 8 * sbar2) + delta_gZ2oMZ2 * (3 - 2 * sbar2)) * sbar2) / 18.;
247 if (mySMEFT.FlagNewTerms) {
248 CnueVLR.at(i).at(j).at(j).at(i) += -0.25*((1 + deltag2bar2oMW4)*g2bar2oMW4*Me[i]*Me[j]);
249 CeeVLR.at(i).at(j).at(j).at(i) += -0.125*(gZbar2oMZ4*(-1 + 2*sbar2)*(-1 + (2 + 8*delta_sbar)*sbar2 + deltagZbar2oMZ4*(-1 + 2*sbar2))*Me[i]*Me[j]);
250 CeeVLR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*sbar2*(-1 + 2*sbar2 + deltagZbar2oMZ4*(-1 + 2*sbar2) + delta_sbar*(-2 + 8*sbar2))*Me[i]*Me[j])/4.;
251 CeeVLR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*sbar2*(-1 + 2*sbar2 + deltagZbar2oMZ4*(-1 + 2*sbar2) + delta_sbar*(-2 + 8*sbar2))*Me[i]*Me[j])/4.;
252 CeeVLR.at(i).at(j).at(j).at(i) += -0.5*((1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Me[i]*Me[j]);
253 CddV1LR.at(i).at(j).at(j).at(i) += -0.004629629629629629*(gZbar2oMZ4*(-3 + 2*sbar2)*(-3 + (2 + 8*delta_sbar)*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2))*Md[i]*Md[j]);
254 CddV1LR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*sbar2*(-3 + 2*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2) + delta_sbar*(-6 + 8*sbar2))*Md[i]*Md[j])/108.;
255 CddV1LR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*sbar2*(-3 + 2*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2) + delta_sbar*(-6 + 8*sbar2))*Md[i]*Md[j])/108.;
256 CddV1LR.at(i).at(j).at(j).at(i) += -0.018518518518518517*((1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Md[i]*Md[j]);
257 CddV8LR.at(i).at(j).at(j).at(i) += -0.027777777777777776*(gZbar2oMZ4*(-3 + 2*sbar2)*(-3 + (2 + 8*delta_sbar)*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2))*Md[i]*Md[j]);
258 CddV8LR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*sbar2*(-3 + 2*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2) + delta_sbar*(-6 + 8*sbar2))*Md[i]*Md[j])/18.;
259 CddV8LR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*sbar2*(-3 + 2*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2) + delta_sbar*(-6 + 8*sbar2))*Md[i]*Md[j])/18.;
260 CddV8LR.at(i).at(j).at(j).at(i) += -0.1111111111111111*((1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Md[i]*Md[j]);
261 CedSRL.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*(3 - 8*(1 + 2*delta_sbar)*sbar2 + 4*(1 + 4*delta_sbar)*pow(sbar2,2) + deltagZbar2oMZ4*(3 - 8*sbar2 + 4*pow(sbar2,2)))*Md[j]*Me[i])/12.;
262 CedSRL.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(1 + deltagZbar2oMZ4 + delta_sbar*(2 - 8*sbar2) - 2*sbar2 - 2*deltagZbar2oMZ4*sbar2)*Md[j]*Me[i])/6.;
263 CedSRL.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*(3 + delta_sbar*(6 - 8*sbar2) + deltagZbar2oMZ4*(3 - 2*sbar2) - 2*sbar2)*sbar2*Md[j]*Me[i])/6.;
264 CedSRL.at(i).at(i).at(j).at(j) += ((1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Md[j]*Me[i])/3.;
265 CeeSRR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(-1 + 2*sbar2 + deltagZbar2oMZ4*(-1 + 2*sbar2) + delta_sbar*(-2 + 8*sbar2))*Me[i]*Me[j])/4.;
266 CeeSRR.at(i).at(i).at(j).at(j) += -0.125*(gZbar2oMZ4*(-1 + 2*sbar2)*(-1 + (2 + 8*delta_sbar)*sbar2 + deltagZbar2oMZ4*(-1 + 2*sbar2))*Me[i]*Me[j]);
267 CeeSRR.at(i).at(i).at(j).at(j) += -0.5*((1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Me[i]*Me[j]);
268 CeeSRR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(-1 + 2*sbar2 + deltagZbar2oMZ4*(-1 + 2*sbar2) + delta_sbar*(-2 + 8*sbar2))*Me[i]*Me[j])/4.;
269 CedSRR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(-1 + 2*sbar2 + deltagZbar2oMZ4*(-1 + 2*sbar2) + delta_sbar*(-2 + 8*sbar2))*Md[j]*Me[i])/6.;
270 CedSRR.at(i).at(i).at(j).at(j) += -0.08333333333333333*(gZbar2oMZ4*(3 - 8*(1 + 2*delta_sbar)*sbar2 + 4*(1 + 4*delta_sbar)*pow(sbar2,2) + deltagZbar2oMZ4*(3 - 8*sbar2 + 4*pow(sbar2,2)))*Md[j]*Me[i]);
271 CedSRR.at(i).at(i).at(j).at(j) += -0.3333333333333333*((1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Md[j]*Me[i]);
272 CedSRR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(-3 + 2*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2) + delta_sbar*(-6 + 8*sbar2))*Md[j]*Me[i])/6.;
273 CddS1RR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(-3 + 2*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2) + delta_sbar*(-6 + 8*sbar2))*Md[i]*Md[j])/18.;
274 CddS1RR.at(i).at(i).at(j).at(j) += -0.027777777777777776*(gZbar2oMZ4*(-3 + 2*sbar2)*(-3 + (2 + 8*delta_sbar)*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2))*Md[i]*Md[j]);
275 CddS1RR.at(i).at(i).at(j).at(j) += -0.1111111111111111*((1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Md[i]*Md[j]);
276 CddS1RR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(-3 + 2*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2) + delta_sbar*(-6 + 8*sbar2))*Md[i]*Md[j])/18.;
277 }
278 for (int k = 0; k < 3; k++)
279 {
280 CnunuVLL.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
281 CnunuVLL.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
282 CnunuVLL.at(j).at(i).at(i).at(k) += (gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
283 CnunuVLL.at(i).at(j).at(k).at(i) += (gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", k, j)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", k, j)))) / 16.;
284 CeeVLL.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
285 CeeVLL.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
286 CeeVLL.at(j).at(i).at(i).at(k) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 16.;
287 CeeVLL.at(i).at(j).at(k).at(i) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", k, j)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", k, j)))) / 16.;
288 CnueVLL.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 4.;
289 CnueVLL.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 4.;
290 CnueVLL.at(j).at(i).at(i).at(k) += -0.5 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)));
291 CnueVLL.at(i).at(j).at(k).at(i) += -0.5 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)));
292 CnudVLL.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 12.;
293 CedVLL.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 12.;
294 CeeVRR.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 8.;
295 CeeVRR.at(j).at(k).at(i).at(i) += ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 8.);
296 CeeVRR.at(j).at(i).at(i).at(k) += (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 8.;
297 CeeVRR.at(i).at(j).at(k).at(i) += (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", k, j))) / 8.;
298 CedVRR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 6.;
299 CnueVLR.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 4.;
300 CnueVLR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 2.;
301 CeeVLR.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 4.;
302 CeeVLR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 2.;
303 CnudVLR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 6.;
304 CedVLR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 6.;
305 CdeVLR.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 12.;
306 if (mySMEFT.FlagNewTerms) {
307 CeeVLL.at(i).at(i).at(j).at(k) += (gZbar2oMZ3*(0.5 - sbar2)*v2*((sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j)))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[k]))/(4.*sqrt(2));
308 CeeVLL.at(j).at(k).at(i).at(i) += -0.125*(gZbar2oMZ3*(-1 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[k]))/sqrt(2);
309 CeeVLL.at(j).at(i).at(i).at(k) += -0.125*(gZbar2oMZ3*(-1 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[k]))/sqrt(2);
310 CeeVLL.at(i).at(j).at(k).at(i) += -0.125*(gZbar2oMZ3*(-1 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[k]))/sqrt(2);
311 CnueVLL.at(i).at(i).at(j).at(k) += -0.5*(gZbar2oMZ3*v2*((sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j)))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[k]))/sqrt(2);
312 CnueVLL.at(j).at(i).at(i).at(k) += (g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k))*Me[k])/sqrt(2);
313 CnueVLL.at(i).at(j).at(k).at(i) += -((g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k))*Me[k])/sqrt(2));
314 CedVLL.at(j).at(k).at(i).at(i) += -0.16666666666666666*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[k]))/sqrt(2);
315 CeeVRR.at(i).at(i).at(j).at(k) += -0.25*(gZbar2oMZ3*sbar2*v2*((sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j)))*Me[k]))/sqrt(2);
316 CeeVRR.at(j).at(k).at(i).at(i) += -0.25*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j)))*Me[k]))/sqrt(2);
317 CeeVRR.at(j).at(i).at(i).at(k) += -0.25*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j)))*Me[k]))/sqrt(2);
318 CeeVRR.at(i).at(j).at(k).at(i) += -0.25*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[k]))/sqrt(2);
319 CedVRR.at(j).at(k).at(i).at(i) += -0.3333333333333333*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j)))*Me[k]))/sqrt(2);
320 CnueVLR.at(i).at(j).at(k).at(i) += -0.25*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k))*Me[i]*Me[k]);
321 CnueVLR.at(j).at(i).at(i).at(k) += -0.25*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k))*Me[i]*Me[k]);
322 CnueVLR.at(i).at(i).at(j).at(k) += -0.5*(gZbar2oMZ3*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j)))*Me[k]))/sqrt(2);
323 CeeVLR.at(i).at(j).at(k).at(i) += (gZbar2oMZ4*v2*Me[i]*((mySMEFT.getSMEFTCoeffEW("CHeR", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", k, j))*Me[j] - ((mySMEFT.getSMEFTCoeffEW("CHl1R", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", k, j)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", k, j)))*Me[k]))/8.;
324 CeeVLR.at(j).at(i).at(i).at(k) += (gZbar2oMZ4*v2*Me[i]*((mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))*Me[j] - ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))*Me[k]))/8.;
325 CeeVLR.at(i).at(i).at(j).at(k) += -0.5*(gZbar2oMZ3*(-1 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j)))*Me[k]))/sqrt(2);
326 CeeVLR.at(j).at(k).at(i).at(i) += -((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[k]))/sqrt(2));
327 CedVLR.at(j).at(k).at(i).at(i) += -0.3333333333333333*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[k]))/sqrt(2);
328 CdeVLR.at(i).at(i).at(j).at(k) += -0.16666666666666666*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*((sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j)))*Me[k]))/sqrt(2);
329 CedSRL.at(j).at(k).at(i).at(i) += (gZbar2oMZ4*v2*Md[i]*(-((mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))*Me[j]) + ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))*Me[k]))/4.;
330 CeeSRR.at(i).at(i).at(j).at(k) += (gZbar2oMZ4*v2*Me[i]*((mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))*Me[j] - ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))*Me[k]))/8.;
331 CeeSRR.at(j).at(k).at(i).at(i) += (gZbar2oMZ4*v2*Me[i]*((mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))*Me[j] - ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))*Me[k]))/8.;
332 CedSRR.at(j).at(k).at(i).at(i) += (gZbar2oMZ4*v2*Md[i]*((mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))*Me[j] - ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))*Me[k]))/4.;
333 }
334 for (int p = 0; p < 3; p++)
335 for (int r = 0; r < 3; r++)
336 {
337 CnudVLL.at(i).at(i).at(j).at(k) += VdLd(j, p) * ((gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 4.) * VdL(r, k);
338 CedVLL.at(i).at(i).at(j).at(k) += VdLd(j, p) * ((gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 4.) * VdL(r, k);
339 CddVLL.at(i).at(i).at(j).at(k) += VdLd(j, p) * ((gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 24.) * VdL(r, k);
340 CddVLL.at(j).at(k).at(i).at(i) += VdLd(j, p) * ((gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 24.) * VdL(r, k);
341 CedVRR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 2.) * VdR(r, k);
342 CddVRR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 12.) * VdR(r, k);
343 CddVRR.at(j).at(k).at(i).at(i) += VdRd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 12.) * VdR(r, k);
344 CnudVLR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 4.) * VdR(r, k);
345 CnudVLR.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-0.5*(gZbar2oMZ3*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[j])/sqrt(2)) * VdR(r,k);
346 CedVLR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 4.) * VdR(r, k);
347 CdeVLR.at(j).at(k).at(i).at(i) += VdLd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 2.) * VdL(r, k);
348 CddV1LR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 12.) * VdR(r, k);
349 CddV1LR.at(j).at(k).at(i).at(i) += VdLd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 6.) * VdL(r, k);
350 if (mySMEFT.FlagNewTerms) {
351 CnudVLL.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-0.5*(gZbar2oMZ3*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[j])/sqrt(2)) * VdL(r,k);
352 CnudVLL.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-0.5*(gZbar2oMZ3*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[k])/sqrt(2)) * VdR(r,k);
353 CedVLL.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-((gZbar2oMZ3*(-0.5 + sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[j])/sqrt(2))) * VdL(r,k);
354 CedVLL.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-((gZbar2oMZ3*(-0.5 + sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[k])/sqrt(2))) * VdR(r,k);
355 CddVLL.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-0.041666666666666664*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[j])/sqrt(2)) * VdL(r,k);
356 CddVLL.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-0.041666666666666664*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[k])/sqrt(2)) * VdR(r,k);
357 CddVLL.at(j).at(k).at(i).at(i) += VdRd(j,p) * (-0.041666666666666664*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[j])/sqrt(2)) * VdL(r,k);
358 CddVLL.at(j).at(k).at(i).at(i) += VdLd(j,p) * (-0.041666666666666664*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[k])/sqrt(2)) * VdR(r,k);
359 CedVRR.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[k])/sqrt(2))) * VdL(r,k);
360 CedVRR.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[j])/sqrt(2))) * VdR(r,k);
361 CddVRR.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-0.16666666666666666*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[k])/sqrt(2)) * VdL(r,k);
362 CddVRR.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-0.16666666666666666*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[j])/sqrt(2)) * VdR(r,k);
363 CddVRR.at(j).at(k).at(i).at(i) += VdRd(j,p) * (-0.16666666666666666*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[k])/sqrt(2)) * VdL(r,k);
364 CddVRR.at(j).at(k).at(i).at(i) += VdLd(j,p) * (-0.16666666666666666*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[j])/sqrt(2)) * VdR(r,k);
365 CnudVLR.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-0.5*(gZbar2oMZ3*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[k])/sqrt(2)) * VdL(r,k);
366 CnudVLR.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-0.5*(gZbar2oMZ3*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[j])/sqrt(2)) * VdR(r,k);
367 CedVLR.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-((gZbar2oMZ3*(-0.5 + sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[k])/sqrt(2))) * VdL(r,k);
368 CedVLR.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-((gZbar2oMZ3*(-0.5 + sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[j])/sqrt(2))) * VdR(r,k);
369 CdeVLR.at(j).at(k).at(i).at(i) += VdRd(j,p) * (-((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[j])/sqrt(2))) * VdL(r,k);
370 CdeVLR.at(j).at(k).at(i).at(i) += VdLd(j,p) * (-((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[k])/sqrt(2))) * VdR(r,k);
371 CddV1LR.at(i).at(j).at(k).at(i) += VdLd(k,p) * (-0.041666666666666664*(gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[i]*Md[k])) * VdL(r,j);
372 CddV1LR.at(i).at(j).at(k).at(i) += VdRd(k,p) * ((gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))*Md[i]*Md[j])/24.) * VdR(r,j);
373 CddV1LR.at(j).at(i).at(i).at(k) += VdLd(j,p) * (-0.041666666666666664*(gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[i]*Md[k])) * VdL(r,k);
374 CddV1LR.at(j).at(i).at(i).at(k) += VdRd(j,p) * ((gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))*Md[i]*Md[j])/24.) * VdR(r,k);
375 CddV1LR.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-0.16666666666666666*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[k])/sqrt(2)) * VdL(r,k);
376 CddV1LR.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-0.16666666666666666*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[j])/sqrt(2)) * VdR(r,k);
377 CddV1LR.at(j).at(k).at(i).at(i) += VdRd(j,p) * (-0.3333333333333333*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[j])/sqrt(2)) * VdL(r,k);
378 CddV1LR.at(j).at(k).at(i).at(i) += VdLd(j,p) * (-0.3333333333333333*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[k])/sqrt(2)) * VdR(r,k);
379 CddV8LR.at(i).at(j).at(k).at(i) += VdLd(k,p) * (-0.25*(gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[i]*Md[k])) * VdL(r,j);
380 CddV8LR.at(i).at(j).at(k).at(i) += VdRd(k,p) * ((gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))*Md[i]*Md[j])/4.) * VdR(r,j);
381 CddV8LR.at(j).at(i).at(i).at(k) += VdLd(j,p) * (-0.25*(gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[i]*Md[k])) * VdL(r,k);
382 CddV8LR.at(j).at(i).at(i).at(k) += VdRd(j,p) * ((gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))*Md[i]*Md[j])/4.) * VdR(r,k);
383 CedSRL.at(i).at(i).at(j).at(k) += VdLd(j,p) * ((gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[j]*Me[i])/4.) * VdL(r,k);
384 CedSRL.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-0.25*(gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))*Md[k]*Me[i])) * VdR(r,k);
385 CedSRR.at(i).at(i).at(j).at(k) += VdRd(j,p) * ((gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))*Md[j]*Me[i])/4.) * VdR(r,k);
386 CedSRR.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-0.25*(gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[k]*Me[i])) * VdL(r,k);
387 CddS1RR.at(i).at(i).at(j).at(k) += VdRd(j,p) * ((gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))*Md[i]*Md[j])/4.) * VdR(r,k);
388 CddS1RR.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-0.25*(gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[i]*Md[k])) * VdL(r,k);
389 CddS1RR.at(j).at(k).at(i).at(i) += VdLd(j,p) * (-0.25*(gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[i]*Md[k])) * VdL(r,k);
390 CddS1RR.at(j).at(k).at(i).at(i) += VdRd(j,p) * ((gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))*Md[i]*Md[j])/4.) * VdR(r,k);
391 }
392 }
393
394 for (int l = 0; l < 3; l++)
395 {
396 CnunuVLL.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CllR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CllI", i, j, k, l));
397 CeeVLL.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CllR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CllI", i, j, k, l));
398 CnueVLL.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CllR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CllI", i, j, k, l)) + (mySMEFT.getSMEFTCoeffEW("CllR", k, l, i, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CllI", k, l, i, j));
399 CeeVRR.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CeeR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeeI", i, j, k, l));
400 CnueVLR.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CleR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CleI", i, j, k, l));
401 CeeVLR.at(i).at(j).at(k).at(l) += (mySMEFT.getSMEFTCoeffEW("CleR", i, j, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CleI", i, j, k, l));
402 if (mySMEFT.FlagNewTerms) {
403 CeeVLR.at(i).at(j).at(k).at(l) += (oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CeHR", l, i) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeHI", l, i))*(mySMEFT.getSMEFTCoeffEW("YeR", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", k, j)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CeHR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeHI", k, j)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YeR", k, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", k, j)))*(mySMEFT.getSMEFTCoeffEW("YeR", l, i) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", l, i))))/4.;
404 CedSRL.at(i).at(j).at(k).at(l) += VCKMd(k,l) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHl3R", i, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", i, j))*Md[k]*Me[j])/2.);
405 CeeSRR.at(i).at(j).at(k).at(l) += -0.25*(oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CeHR", l, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeHI", l, k))*(mySMEFT.getSMEFTCoeffEW("YeR", j, i) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", j, i)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CeHR", j, i) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeHI", j, i)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YeR", j, i) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", j, i)))*(mySMEFT.getSMEFTCoeffEW("YeR", l, k) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", l, k))));
406 }
407 for (int p = 0; p < 3; p++)
408 for (int r = 0; r < 3; r++)
409 {
410 CnudVLL.at(i).at(j).at(k).at(l) += VdLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clq1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq1I", i, j, p, r)) - (mySMEFT.getSMEFTCoeffEW("Clq3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq3I", i, j, p, r))) * VdL(r, l);
411 CedVLL.at(i).at(j).at(k).at(l) += VdLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clq1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq1I", i, j, p, r)) + (mySMEFT.getSMEFTCoeffEW("Clq3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq3I", i, j, p, r))) * VdL(r, l);
412 CedVRR.at(i).at(j).at(k).at(l) += VdRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CedR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CedI", i, j, p, r))) * VdR(r, l);
413 CnudVLR.at(i).at(j).at(k).at(l) += VdRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CldR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CldI", i, j, p, r))) * VdR(r, l);
414 CedVLR.at(i).at(j).at(k).at(l) += VdRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CldR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CldI", i, j, p, r))) * VdR(r, l);
415 CdeVLR.at(i).at(j).at(k).at(l) += VdLd(i, p) * ((mySMEFT.getSMEFTCoeffEW("CqeR", p, r, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CqeI", p, r, k, l))) * VdL(r, j);
416 CedSRL.at(i).at(j).at(k).at(l) += VdRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CledqR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CledqI", i, j, p, r))) * VdL(r, l);
417 if (mySMEFT.FlagNewTerms) {
418 CedSRL.at(i).at(j).at(k).at(l) += VdRd(k,p) * (-0.5*(oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CeHR", j, i) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeHI", j, i))*(mySMEFT.getSMEFTCoeffEW("YdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", p, r)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", p, r) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", p, r)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", p, r)))*(mySMEFT.getSMEFTCoeffEW("YeR", j, i) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", j, i)))))* VdL(r,l);
419 CedSRR.at(i).at(j).at(k).at(l) += VdLd(k,p) * (-0.5*(oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CeHR", j, i) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeHI", j, i))*(mySMEFT.getSMEFTCoeffEW("YdR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", r, p)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", r, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", r, p)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YdR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", r, p)))*(mySMEFT.getSMEFTCoeffEW("YeR", j, i) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", j, i))))) * VdR(r,l);
420
421 }
422 for (int s = 0; s < 3; s++)
423 for (int t = 0; t < 3; t++)
424 {
425 CddVLL.at(i).at(j).at(k).at(l) += VdLd(i, p) * VdLd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqq1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq1I", p, r, s, t)) + (mySMEFT.getSMEFTCoeffEW("Cqq3R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", p, r, s, t))) * VdL(r, j) * VdL(t, l);
426 CddVRR.at(i).at(j).at(k).at(l) += VdRd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("CddR", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CddI", p, r, s, t))) * VdR(r, j) * VdR(t, l);
427 CddV1LR.at(i).at(j).at(k).at(l) += VdLd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqd1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqd1I", p, r, s, t))) * VdL(r, j) * VdR(t, l);
428 CddV8LR.at(i).at(j).at(k).at(l) += VdLd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqd8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqd8I", p, r, s, t))) * VdL(r, j) * VdR(t, l);
429 if (mySMEFT.FlagNewTerms) {
430 CddV1LR.at(i).at(j).at(k).at(l) += VdLd(i,p) * VdRd(k,s) * ((oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", t, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", t, p))*(mySMEFT.getSMEFTCoeffEW("YdR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", s, r)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", s, r) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", s, r)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YdR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", s, r)))*(mySMEFT.getSMEFTCoeffEW("YdR", t, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", t, p))))/12.) * VdL(r,j) * VdR(t,l);
431 CddV8LR.at(i).at(j).at(k).at(l) += VdLd(i,p) * VdRd(k,s) * ((oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", t, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", t, p))*(mySMEFT.getSMEFTCoeffEW("YdR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", s, r)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", s, r) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", s, r)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YdR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", s, r)))*(mySMEFT.getSMEFTCoeffEW("YdR", t, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", t, p))))/2.) * VdL(r,j) * VdR(t,l);
432 CddS1RR.at(i).at(j).at(k).at(l) += VdLd(i,p) * VdLd(k,s) * (-0.25*(oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", t, s) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", t, s))*(mySMEFT.getSMEFTCoeffEW("YdR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", r, p)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", r, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", r, p)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YdR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", r, p)))*(mySMEFT.getSMEFTCoeffEW("YdR", t, s) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", t, s))))) * VdR(r,j) * VdR(t,l);
433 }
434 }
435 }
436 }
437 for (int l = 0; l < 2; l++)
438 {
439 CnueduVLL.at(i).at(j).at(k).at(l) += VCKMd(k, l) * (-0.5 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHl3R", i, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", i, j))));
440 if (mySMEFT.FlagNewTerms) {
441 CnueduVLL.at(i).at(j).at(k).at(l) += VCKMd(k,l) *((g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CeWR", i, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", i, j))*Me[j])/sqrt(2));
442 CnueduSRR.at(i).at(j).at(k).at(l) += VCKMd(k,l) * (-0.5*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHl3R", i, j) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", i, j))*Me[j]*Mu[l]));
443 }
444 for (int p = 0; p < 3; p++)
445 for (int r = 0; r < 3; r++)
446 {
447 CnueduVLL.at(i).at(j).at(k).at(l) += VdLd(k, p) * (2 * (mySMEFT.getSMEFTCoeffEW("Clq3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq3I", i, j, p, r))) * VuL(r, l);
448 CnueduSRL.at(i).at(j).at(k).at(l) += VdRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CledqR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CledqI", i, j, p, r))) * VuL(r, l);
449 CnueduSRR.at(i).at(j).at(k).at(l) += VdLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clequ1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clequ1I", i, j, p, r))) * VuR(r, l);
450 CnueduTRR.at(i).at(j).at(k).at(l) += VdLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clequ3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clequ3I", i, j, p, r))) * VuR(r, l);
451 }
452 }
453 }
454 for (int k = 0; k < 2; k++)
455 {
456 CnueduVLL.at(i).at(i).at(j).at(k) += VCKMd(j, k) * (-0.5 * (delta_g22oMW2 * g22oMW2));
457 if (mySMEFT.FlagNewTerms) {
458 CnueduSRR.at(i).at(i).at(j).at(k) += VCKMd(j,k) * (-0.5*((1 + deltag2bar2oMW4)*g2bar2oMW4*Me[i]*Mu[k]));
459 }
460 for (int p = 0; p < 3; p++)
461 for (int r = 0; r < 3; r++)
462 {
463 CnueduVLL.at(i).at(i).at(j).at(k) += VdLd(j, p) * (-0.5 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p)))) * VuL(r, k);
464 CnueduVLR.at(i).at(i).at(j).at(k) += VdRd(j, p) * (-0.25 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHudR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", r, p)))) * VuR(r, k);
465 if (mySMEFT.FlagNewTerms) {
466 CnueduVLL.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-((g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p))*Md[j])/sqrt(2))) * VuL(r,k);
467 CnueduVLL.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-((g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r))*Mu[k])/sqrt(2))) * VuR(r,k);
468 CnueduVLR.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-((g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p))*Mu[k])/sqrt(2))) * VuL(r,k);
469 CnueduVLR.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-((g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r))*Md[j])/sqrt(2))) * VuR(r,k);
470 CnueduSRL.at(i).at(i).at(j).at(k) += VdLd(j,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p))*Md[j]*Me[i])/2.) * VuL(r,k);
471 CnueduSRL.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-0.25*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", r, p))*Me[i]*Mu[k])) * VuR(r,k);
472 CnueduSRR.at(i).at(i).at(j).at(k) += VdRd(j,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", r, p))*Md[j]*Me[i])/4.) * VuR(r,k);
473 CnueduSRR.at(i).at(i).at(j).at(k) += VdLd(j,p) * (-0.5*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p))*Me[i]*Mu[k])) * VuL(r,k);
474 }
475 }
476 for (int l = 0; l < 2; l++)
477 {
478 if (mySMEFT.FlagNewTerms) {
479 CduV1LR.at(i).at(j).at(k).at(l) += VCKMd(i,l) * VCKM(k,j) * (-0.08333333333333333*((1 + deltag2bar2oMW4)*g2bar2oMW4*Mu[k]*Mu[l]));
480 CduV8LR.at(i).at(j).at(k).at(l) += VCKMd(i,l) * VCKM(k,j) * (-0.5*((1 + deltag2bar2oMW4)*g2bar2oMW4*Mu[k]*Mu[l]));
481 }
482 for (int p = 0; p < 3; p++)
483 for (int r = 0; r < 3; r++)
484 {
485 CnuuVLL.at(i).at(j).at(k).at(l) += VuLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clq1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq1I", i, j, p, r)) + (mySMEFT.getSMEFTCoeffEW("Clq3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq3I", i, j, p, r))) * VuL(r, l);
486 CeuVLL.at(i).at(j).at(k).at(l) += VuLd(k, p) * ((mySMEFT.getSMEFTCoeffEW("Clq1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq1I", i, j, p, r)) - (mySMEFT.getSMEFTCoeffEW("Clq3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clq3I", i, j, p, r))) * VuL(r, l);
487 CeuVRR.at(i).at(j).at(k).at(l) += VuRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CeuR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeuI", i, j, p, r))) * VuR(r, l);
488 CnuuVLR.at(i).at(j).at(k).at(l) += VuRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CluR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CluI", i, j, p, r))) * VuR(r, l);
489 CeuVLR.at(i).at(j).at(k).at(l) += VuRd(k, p) * ((mySMEFT.getSMEFTCoeffEW("CluR", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CluI", i, j, p, r))) * VuR(r, l);
490 CeuSRR.at(i).at(j).at(k).at(l) += VuLd(k, p) * (-(mySMEFT.getSMEFTCoeffEW("Clequ1R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clequ1I", i, j, p, r))) * VuR(r, l);
491 CeuTRR.at(i).at(j).at(k).at(l) += VuLd(k, p) * (-(mySMEFT.getSMEFTCoeffEW("Clequ3R", i, j, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Clequ3I", i, j, p, r))) * VuR(r, l);
492 if (mySMEFT.FlagNewTerms) {
493 CduV1LR.at(i).at(j).at(k).at(l) += VCKMd(i,l) * VuLd(k,p) * (-0.08333333333333333*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))*Mu[k]*Mu[l])) * VdL(r,j);
494 CduV1LR.at(i).at(j).at(k).at(l) += VCKMd(i,l) * VuRd(k,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", p, r))*Md[j]*Mu[l])/24.) * VdR(r,j);
495 CduV1LR.at(i).at(j).at(k).at(l) += VCKM(k,j) * VdLd(i,p) * (-0.08333333333333333*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p))*Mu[k]*Mu[l])) * VuL(r,l);
496 CduV1LR.at(i).at(j).at(k).at(l) += VCKM(k,j) * VdRd(i,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", r, p))*Md[i]*Mu[k])/24.) * VuR(r,l);
497 CduV8LR.at(i).at(j).at(k).at(l) += VCKMd(i,l) * VuLd(k,p) * (-0.5*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))*Mu[k]*Mu[l])) * VdL(r,j);
498 CduV8LR.at(i).at(j).at(k).at(l) += VCKMd(i,l) * VuRd(k,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", p, r))*Md[j]*Mu[l])/4.) * VdR(r,j);
499 CduV8LR.at(i).at(j).at(k).at(l) += VCKM(k,j) * VdLd(i,p) * (-0.5*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p))*Mu[k]*Mu[l])) * VuL(r,l);
500 CduV8LR.at(i).at(j).at(k).at(l) += VCKM(k,j) * VdRd(i,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", r, p))*Md[i]*Mu[k])/4.) * VuR(r,l);
501 CeuSRL.at(i).at(j).at(k).at(l) += VuRd(k,p) * (-0.5*(oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CuHR", p, r) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuHI", p, r))*(mySMEFT.getSMEFTCoeffEW("YeR", j, i) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", j, i)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CeHR", j, i) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeHI", j, i)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YeR", j, i) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", j, i)))*(mySMEFT.getSMEFTCoeffEW("YuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", p, r)))))* VuL(r,l);
502 CeuSRR.at(i).at(j).at(k).at(l) += VuLd(k,p) * (-0.5*(oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CuHR", r, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuHI", r, p))*(mySMEFT.getSMEFTCoeffEW("YeR", j, i) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", j, i)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CeHR", j, i) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeHI", j, i)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YeR", j, i) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YeI", j, i)))*(mySMEFT.getSMEFTCoeffEW("YuR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", r, p))))) * VuR(r,l);
503 }
504 for (int s = 0; s < 3; s++)
505 for (int t = 0; t < 3; t++)
506 {
507 CduV1LR.at(i).at(j).at(k).at(l) += VdLd(i, p) * VuRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqu1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqu1I", p, r, s, t))) * VdL(r, j) * VuR(t, l);
508 CduV8LR.at(i).at(j).at(k).at(l) += VdLd(i, p) * VuRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqu8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqu8I", p, r, s, t))) * VdL(r, j) * VuR(t, l);
509 }
510 }
511 }
512 }
513 for (int p = 0; p < 3; p++)
514 for (int r = 0; r < 3; r++)
515 {
516 Cdg.at(i).at(j) += vTosq2 * VdLd(i, p) * (-(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)) * sbar + (mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) * cbar) * VdR(r, j);
517 CdG.at(i).at(j) += vTosq2 * VdLd(i, p) * (mySMEFT.getSMEFTCoeffEW("CdGR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdGI", p, r)) * VdR(r, j);
518 }
519 }
520
521 for (int i = 0; i < 3; i++)
522 for (int j = 0; j < 2; j++)
523 {
524 CnuuVLL.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (8 * delta_sbar * sbar2 + delta_gZ2oMZ2 * (-3 + 4 * sbar2))) / 12.;
525 CeuVLL.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (4 * delta_sbar * sbar2 * (-5 + 8 * sbar2) + delta_gZ2oMZ2 * (3 - 10 * sbar2 + 8 * sbar2 * sbar2))) / 12.;
526 CeuVRR.at(i).at(i).at(j).at(j) += (2 * (delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2) / 3.;
527 CnuuVLR.at(i).at(i).at(j).at(j) += ((delta_gZ2oMZ2 + 2 * delta_sbar) * gZ2oMZ2 * sbar2) / 3.;
528 CeuVLR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * sbar2 * (-delta_gZ2oMZ2 - 2 * delta_sbar + 2 * delta_gZ2oMZ2 * sbar2 + 8 * delta_sbar * sbar2)) / 3.;
529 CduV1LR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * sbar2 * (-3 * delta_gZ2oMZ2 - 6 * delta_sbar + 2 * delta_gZ2oMZ2 * sbar2 + 8 * delta_sbar * sbar2)) / 9.;
530 if (mySMEFT.FlagNewTerms) {
531 CeuSRL.at(i).at(i).at(j).at(j) += -0.08333333333333333*(gZbar2oMZ4*(3 - 10*(1 + 2*delta_sbar)*sbar2 + 8*(1 + 4*delta_sbar)*pow(sbar2,2) + deltagZbar2oMZ4*(3 - 10*sbar2 + 8*pow(sbar2,2)))*Me[i]*Mu[j]);
532 CeuSRL.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(-1 + 2*sbar2 + deltagZbar2oMZ4*(-1 + 2*sbar2) + delta_sbar*(-2 + 8*sbar2))*Me[i]*Mu[j])/3.;
533 CeuSRL.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(-3 + 4*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2) + 2*delta_sbar*(-3 + 8*sbar2))*Me[i]*Mu[j])/6.;
534 CeuSRL.at(i).at(i).at(j).at(j) += (-2*(1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Me[i]*Mu[j])/3.;
535 CeuSRR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(1 + deltagZbar2oMZ4 + delta_sbar*(2 - 8*sbar2) - 2*sbar2 - 2*deltagZbar2oMZ4*sbar2)*Me[i]*Mu[j])/3.;
536 CeuSRR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*(3 - 10*(1 + 2*delta_sbar)*sbar2 + 8*(1 + 4*delta_sbar)*pow(sbar2,2) + deltagZbar2oMZ4*(3 - 10*sbar2 + 8*pow(sbar2,2)))*Me[i]*Mu[j])/12.;
537 CeuSRR.at(i).at(i).at(j).at(j) += (2*(1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Me[i]*Mu[j])/3.;
538 CeuSRR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*(3 + delta_sbar*(6 - 16*sbar2) + deltagZbar2oMZ4*(3 - 4*sbar2) - 4*sbar2)*sbar2*Me[i]*Mu[j])/6.;
539 }
540 for (int k = 0; k < 2; k++)
541 for (int p = 0; p < 3; p++)
542 for (int r = 0; r < 3; r++)
543 {
544 CudV1LL.at(j).at(k).at(i).at(i) += VuLd(j, p) * ((gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 12.) * VuL(r, k);
545 CnuuVLL.at(i).at(i).at(j).at(k) += VuLd(j, p) * ((gZ2oMZ2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 4.) * VuL(r, k);
546 CeuVLL.at(i).at(i).at(j).at(k) += VuLd(j, p) * ((gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 4.) * VuL(r, k);
547 CudV1RR.at(j).at(k).at(i).at(i) += VuRd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 6.) * VuR(r, k);
548 CeuVRR.at(i).at(i).at(j).at(k) += VuRd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 2.) * VuR(r, k);
549 CnuuVLR.at(i).at(i).at(j).at(k) += VuRd(j, p) * ((gZ2oMZ2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 4.) * VuR(r, k);
550 CeuVLR.at(i).at(i).at(j).at(k) += VuRd(j, p) * ((gZ2oMZ2 * (-1 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 4.) * VuR(r, k);
551 CduV1LR.at(i).at(i).at(j).at(k) += VuRd(j, p) * ((gZ2oMZ2 * (-3 + 2 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 12.) * VuR(r, k);
552 CudV1LR.at(j).at(k).at(i).at(i) += VuLd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 6.) * VuL(r, k);
553 CueVLR.at(j).at(k).at(i).at(i) += VuLd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 2.) * VuL(r, k);
554 if (mySMEFT.FlagNewTerms) {
555 CnuuVLL.at(i).at(i).at(j).at(k) += VuRd(j,p) * (-0.5*(gZbar2oMZ3*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[j])/sqrt(2)) * VuL(r,k);
556 CnuuVLL.at(i).at(i).at(j).at(k) += VuLd(j,p) * (-0.5*(gZbar2oMZ3*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[k])/sqrt(2)) * VuR(r,k);
557 CeuVLL.at(i).at(i).at(j).at(k) += VuRd(j,p) * (-((gZbar2oMZ3*(-0.5 + sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[j])/sqrt(2))) * VuL(r,k);
558 CeuVLL.at(i).at(i).at(j).at(k) += VuLd(j,p) * (-((gZbar2oMZ3*(-0.5 + sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[k])/sqrt(2))) * VuR(r,k);
559 CudV1LL.at(j).at(k).at(i).at(i) += VuRd(j,p) * (-0.16666666666666666*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[j])/sqrt(2)) * VuL(r,k);
560 CudV1LL.at(j).at(k).at(i).at(i) += VuLd(j,p) * (-0.16666666666666666*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[k])/sqrt(2)) * VuR(r,k);
561 CeuVRR.at(i).at(i).at(j).at(k) += VuRd(j,p) * (-((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[k])/sqrt(2))) * VuL(r,k);
562 CeuVRR.at(i).at(i).at(j).at(k) += VuLd(j,p) * (-((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[j])/sqrt(2))) * VuR(r,k);
563 CudV1RR.at(j).at(k).at(i).at(i) += VuRd(j,p) * (-0.3333333333333333*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[k])/sqrt(2)) * VuL(r,k);
564 CudV1RR.at(j).at(k).at(i).at(i) += VuLd(j,p) * (-0.3333333333333333*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[j])/sqrt(2)) * VuR(r,k);
565 CnuuVLR.at(i).at(i).at(j).at(k) += VuRd(j,p) * (-0.5*(gZbar2oMZ3*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[k])/sqrt(2)) * VuL(r,k);
566 CnuuVLR.at(i).at(i).at(j).at(k) += VuLd(j,p) * (-0.5*(gZbar2oMZ3*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[j])/sqrt(2)) * VuR(r,k);
567 CeuVLR.at(i).at(i).at(j).at(k) += VuRd(j,p) * (-((gZbar2oMZ3*(-0.5 + sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[k])/sqrt(2))) * VuL(r,k);
568 CeuVLR.at(i).at(i).at(j).at(k) += VuLd(j,p) * (-((gZbar2oMZ3*(-0.5 + sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[j])/sqrt(2))) * VuR(r,k);
569 CueVLR.at(j).at(k).at(i).at(i) += VuRd(j,p) * (-((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[j])/sqrt(2))) * VuL(r,k);
570 CueVLR.at(j).at(k).at(i).at(i) += VuLd(j,p) * (-((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[k])/sqrt(2))) * VuR(r,k);
571 CudV1LR.at(j).at(k).at(i).at(i) += VuRd(j,p) * (-0.3333333333333333*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[j])/sqrt(2)) * VuL(r,k);
572 CudV1LR.at(j).at(k).at(i).at(i) += VuLd(j,p) * (-0.3333333333333333*(gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[k])/sqrt(2)) * VuR(r,k);
573 CduV1LR.at(i).at(i).at(j).at(k) += VuRd(j,p) * (-0.16666666666666666*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[k])/sqrt(2)) * VuL(r,k);
574 CduV1LR.at(i).at(i).at(j).at(k) += VuLd(j,p) * (-0.16666666666666666*(gZbar2oMZ3*(-3 + 2*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[j])/sqrt(2)) * VuR(r,k);
575 CudduV1LR.at(j).at(i).at(i).at(k) += VuLd(j,p) * (-0.041666666666666664*(gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[i]*Mu[k])) * VuL(r,k);
576 CudduV1LR.at(j).at(i).at(i).at(k) += VuRd(j,p) * ((gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))*Md[i]*Mu[j])/24.) * VuR(r,k);
577 CudduV8LR.at(j).at(i).at(i).at(k) += VuLd(j,p) * (-0.25*(gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[i]*Mu[k])) * VuL(r,k);
578 CudduV8LR.at(j).at(i).at(i).at(k) += VuRd(j,p) * ((gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))*Md[i]*Mu[j])/4.) * VuR(r,k);
579 CeuSRL.at(i).at(i).at(j).at(k) += VuLd(j,p) * ((gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Me[i]*Mu[j])/4.) * VuL(r,k);
580 CeuSRL.at(i).at(i).at(j).at(k) += VuRd(j,p) * (-0.25*(gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))*Me[i]*Mu[k])) * VuR(r,k);
581 CeuSRR.at(i).at(i).at(j).at(k) += VuRd(j,p) * ((gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))*Me[i]*Mu[j])/4.) * VuR(r,k);
582 CeuSRR.at(i).at(i).at(j).at(k) += VuLd(j,p) * (-0.25*(gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Me[i]*Mu[k])) * VuL(r,k);
583 CudS1RR.at(j).at(k).at(i).at(i) += VuLd(j,p) * (-0.25*(gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[i]*Mu[k])) * VuL(r,k);
584 CudS1RR.at(j).at(k).at(i).at(i) += VuRd(j,p) * ((gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))*Md[i]*Mu[j])/4.) * VuR(r,k);
585 }
586 }
587 }
588
589 for (int i = 0; i < 2; i++)
590 for (int j = 0; j < 3; j++)
591 {
592 CudV1LL.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (4 * delta_sbar * sbar2 * (-9 + 8 * sbar2) + delta_gZ2oMZ2 * (9 - 18 * sbar2 + 8 * sbar2 * sbar2))) / 36.;
593 CudV1RR.at(i).at(i).at(j).at(j) += (2 * (delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2) / 9.;
594 CudV1LR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * sbar2 * (delta_gZ2oMZ2 * (-3 + 4 * sbar2) + 2 * delta_sbar * (-3 + 8 * sbar2))) / 18.;
595 CueVLR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * sbar2 * (delta_gZ2oMZ2 * (-3 + 4 * sbar2) + 2 * delta_sbar * (-3 + 8 * sbar2))) / 6.;
596 if (mySMEFT.FlagNewTerms) {
597 CudduV1LR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*(9 - 18*(1 + 2*delta_sbar)*sbar2 + 8*(1 + 4*delta_sbar)*pow(sbar2,2) + deltagZbar2oMZ4*(9 - 18*sbar2 + 8*pow(sbar2,2)))*Md[j]*Mu[i])/216.;
598 CudduV1LR.at(i).at(j).at(j).at(i) += -0.009259259259259259*(gZbar2oMZ4*sbar2*(-3 + 4*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2) + 2*delta_sbar*(-3 + 8*sbar2))*Md[j]*Mu[i]);
599 CudduV1LR.at(i).at(j).at(j).at(i) += -0.018518518518518517*(gZbar2oMZ4*sbar2*(-3 + 2*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2) + delta_sbar*(-6 + 8*sbar2))*Md[j]*Mu[i]);
600 CudduV1LR.at(i).at(j).at(j).at(i) += ((1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Md[j]*Mu[i])/27.;
601 CudduV8LR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*(9 - 18*(1 + 2*delta_sbar)*sbar2 + 8*(1 + 4*delta_sbar)*pow(sbar2,2) + deltagZbar2oMZ4*(9 - 18*sbar2 + 8*pow(sbar2,2)))*Md[j]*Mu[i])/36.;
602 CudduV8LR.at(i).at(j).at(j).at(i) += -0.05555555555555555*(gZbar2oMZ4*sbar2*(-3 + 4*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2) + 2*delta_sbar*(-3 + 8*sbar2))*Md[j]*Mu[i]);
603 CudduV8LR.at(i).at(j).at(j).at(i) += -0.1111111111111111*(gZbar2oMZ4*sbar2*(-3 + 2*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2) + delta_sbar*(-6 + 8*sbar2))*Md[j]*Mu[i]);
604 CudduV8LR.at(i).at(j).at(j).at(i) += (2*(1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Md[j]*Mu[i])/9.;
605 CudS1RR.at(i).at(i).at(j).at(j) += -0.05555555555555555*(gZbar2oMZ4*sbar2*(-3 + 4*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2) + 2*delta_sbar*(-3 + 8*sbar2))*Md[j]*Mu[i]);
606 CudS1RR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*(9 - 18*(1 + 2*delta_sbar)*sbar2 + 8*(1 + 4*delta_sbar)*pow(sbar2,2) + deltagZbar2oMZ4*(9 - 18*sbar2 + 8*pow(sbar2,2)))*Md[j]*Mu[i])/36.;
607 CudS1RR.at(i).at(i).at(j).at(j) += (2*(1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Md[j]*Mu[i])/9.;
608 CudS1RR.at(i).at(i).at(j).at(j) += -0.1111111111111111*(gZbar2oMZ4*sbar2*(-3 + 2*sbar2 + deltagZbar2oMZ4*(-3 + 2*sbar2) + delta_sbar*(-6 + 8*sbar2))*Md[j]*Mu[i]);
609 }
610 for (int k = 0; k < 3; k++)
611 {
612 CeuVLL.at(j).at(k).at(i).at(i) += -0.08333333333333333 * (gZ2oMZ2 * (-3 + 4 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k))));
613 CnuuVLL.at(j).at(k).at(i).at(i) += -0.08333333333333333 * (gZ2oMZ2 * (-3 + 4 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) - (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k))));
614 CeuVRR.at(j).at(k).at(i).at(i) += -0.3333333333333333 * (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k)));
615 CnuuVLR.at(j).at(k).at(i).at(i) += (gZ2oMZ2 * sbar2 * v2 * (-(mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))) / 3.;
616 CeuVLR.at(j).at(k).at(i).at(i) += -0.3333333333333333 * (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k))));
617 CueVLR.at(i).at(i).at(j).at(k) += (gZ2oMZ2 * (3 - 4 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))) / 12.;
618 if (mySMEFT.FlagNewTerms) {
619 CeuVLL.at(j).at(k).at(i).at(i) += (gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[k]))/(6.*sqrt(2));
620 CeuVRR.at(j).at(k).at(i).at(i) += (sqrt(2)*gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j)))*Me[k]))/3.;
621 CeuVLR.at(j).at(k).at(i).at(i) += (sqrt(2)*gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k)))*Me[k]))/3.;
622 CueVLR.at(i).at(i).at(j).at(k) += (gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", j, k))*Me[j] + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", j, k))*Me[j] + (sbar*(mySMEFT.getSMEFTCoeffEW("CeBR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeBI", k, j)) + cbar*(mySMEFT.getSMEFTCoeffEW("CeWR", k, j) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CeWI", k, j)))*Me[k]))/(6.*sqrt(2));
623 CeuSRL.at(j).at(k).at(i).at(i) += (gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))*Me[j] - ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))*Me[k])*Mu[i])/4.;
624 CeuSRR.at(j).at(k).at(i).at(i) += (gZbar2oMZ4*v2*(-((mySMEFT.getSMEFTCoeffEW("CHeR", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHeI", j, k))*Me[j]) + ((mySMEFT.getSMEFTCoeffEW("CHl1R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl1I", j, k)) + (mySMEFT.getSMEFTCoeffEW("CHl3R", j, k) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHl3I", j, k)))*Me[k])*Mu[i])/4.;
625 }
626 for (int p = 0; p < 3; p++)
627 for (int r = 0; r < 3; r++)
628 {
629 CudV1LL.at(i).at(i).at(j).at(k) += VdLd(j, p) * (-0.08333333333333333 * (gZ2oMZ2 * (-3 + 4 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))))) * VdL(r, k);
630 CudV1RR.at(i).at(i).at(j).at(k) += VdRd(j, p) * (-0.3333333333333333 * (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r)))) * VdR(r, k);
631 CudV1LR.at(i).at(i).at(j).at(k) += VdRd(j, p) * ((gZ2oMZ2 * (3 - 4 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))) / 12.) * VdR(r, k);
632 CduV1LR.at(j).at(k).at(i).at(i) += VdLd(j, p) * (-0.3333333333333333 * (gZ2oMZ2 * sbar2 * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))))) * VdL(r, k);
633 if (mySMEFT.FlagNewTerms) {
634 CudV1LL.at(i).at(i).at(j).at(k) += VdRd(j,p) * ((gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[j])/(6.*sqrt(2))) * VdL(r,k);
635 CudV1LL.at(i).at(i).at(j).at(k) += VdLd(j,p) * ((gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[k])/(6.*sqrt(2))) * VdR(r,k);
636 CudV1RR.at(i).at(i).at(j).at(k) += VdRd(j,p) * ((sqrt(2)*gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[k])/3.) * VdL(r,k);
637 CudV1RR.at(i).at(i).at(j).at(k) += VdLd(j,p) * ((sqrt(2)*gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[j])/3.) * VdR(r,k);
638 CudV1LR.at(i).at(i).at(j).at(k) += VdRd(j,p) * ((gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[k])/(6.*sqrt(2))) * VdL(r,k);
639 CudV1LR.at(i).at(i).at(j).at(k) += VdLd(j,p) * ((gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[j])/(6.*sqrt(2))) * VdR(r,k);
640 CduV1LR.at(j).at(k).at(i).at(i) += VdRd(j,p) * ((sqrt(2)*gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p)))*Md[j])/3.) * VdL(r,k);
641 CduV1LR.at(j).at(k).at(i).at(i) += VdLd(j,p) * ((sqrt(2)*gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CdBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r)))*Md[k])/3.) * VdR(r,k);
642 CudduV1LR.at(i).at(j).at(k).at(i) += VdLd(k,p) * ((gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[k]*Mu[i])/24.) * VdL(r,j);
643 CudduV1LR.at(i).at(j).at(k).at(i) += VdRd(k,p) * (-0.041666666666666664*(gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))*Md[j]*Mu[i])) * VdR(r,j);
644 CudduV8LR.at(i).at(j).at(k).at(i) += VdLd(k,p) * ((gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[k]*Mu[i])/4.) * VdL(r,j);
645 CudduV8LR.at(i).at(j).at(k).at(i) += VdRd(k,p) * (-0.25*(gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))*Md[j]*Mu[i])) * VdR(r,j);
646 CudS1RR.at(i).at(i).at(j).at(k) += VdRd(j,p) * (-0.25*(gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHdR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHdI", p, r))*Md[j]*Mu[i])) * VdR(r,k);
647 CudS1RR.at(i).at(i).at(j).at(k) += VdLd(j,p) * ((gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Md[k]*Mu[i])/4.) * VdL(r,k);
648 }
649 }
650 for (int l = 0; l < 2; l++)
651 {
652 if (mySMEFT.FlagNewTerms) {
653 CudduS1RR.at(i).at(j).at(k).at(l) += VCKM(i,j) * VCKMd(k,l) * (-0.5*((1 + deltag2bar2oMW4)*g2bar2oMW4*Md[j]*Mu[l]));
654 }
655 for (int p = 0; p < 3; p++)
656 for (int r = 0; r < 3; r++)
657 {
658 CudduV1LR.at(i).at(j).at(k).at(l) += VCKM(i, j) * VdRd(k, p) * (-0.25 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHudR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", r, p)))) * VuR(r, l);
659 if (mySMEFT.FlagNewTerms) {
660 CudduV1LR.at(i).at(j).at(k).at(l) += VCKM(i,j) * VdRd(k,p) * (-((g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p))*Mu[l])/sqrt(2))) * VuL(r,l);
661 CudduV1LR.at(i).at(j).at(k).at(l) += VCKM(i,j) * VdLd(k,p) * (-((g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r))*Md[k])/sqrt(2))) * VuR(r,l);
662 CudduS1RR.at(i).at(j).at(k).at(l) += VCKM(i,j) * VdRd(k,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", r, p))*Md[j]*Md[k])/4.) * VuR(r,l);
663 CudduS1RR.at(i).at(j).at(k).at(l) += VCKM(i,j) * VdLd(k,p) * (-0.5*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p))*Md[j]*Mu[l])) * VuL(r,l);
664 CudduS1RR.at(i).at(j).at(k).at(l) += VCKMd(k,l) * VuLd(i,p) * (-0.5*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))*Md[j]*Mu[l])) * VdL(r,j);
665 CudduS1RR.at(i).at(j).at(k).at(l) += VCKMd(k,l) * VuRd(i,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", p, r))*Mu[i]*Mu[l])/4.) * VdR(r,j);
666 }
667 for (int s = 0; s < 3; s++)
668 for (int t = 0; t < 3; t++)
669 {
670 CudduS1RR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * (-(mySMEFT.getSMEFTCoeffEW("Cquqd1R", s, t, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cquqd1I", s, t, p, r))) * VdR(r, j) * VuR(t, l);
671 CudduS8RR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * (-(mySMEFT.getSMEFTCoeffEW("Cquqd8R", s, t, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cquqd8I", s, t, p, r))) * VdR(r, j) * VuR(t, l);
672 if (mySMEFT.FlagNewTerms) {
673 CudduV1LR.at(i).at(j).at(k).at(l) += VuLd(i,p) * VdRd(k,s) * ((oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CuHR", t, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuHI", t, p))*(mySMEFT.getSMEFTCoeffEW("YdR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", s, r)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", s, r) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", s, r)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YdR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", s, r)))*(mySMEFT.getSMEFTCoeffEW("YuR", t, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", t, p))))/12.) * VdL(r,j) * VuR(t,l);
674 CudduV8LR.at(i).at(j).at(k).at(l) += VuLd(i,p) * VdRd(k,s) * ((oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CuHR", t, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuHI", t, p))*(mySMEFT.getSMEFTCoeffEW("YdR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", s, r)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", s, r) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", s, r)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YdR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", s, r)))*(mySMEFT.getSMEFTCoeffEW("YuR", t, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", t, p))))/2.) * VdL(r,j) * VuR(t,l);
675 CudduS1RR.at(i).at(j).at(k).at(l) += VuLd(i,p) * VdLd(k,s) * (-0.25*(oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", t, s) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", t, s))*(mySMEFT.getSMEFTCoeffEW("YdR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", r, p)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", r, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", r, p)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YdR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", r, p)))*(mySMEFT.getSMEFTCoeffEW("YdR", t, s) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", t, s))))) * VdR(r,j) * VuR(t,l);
676 }
677 }
678 }
679 }
680 }
681 }
682
683 for (int i = 0; i < 2; i++)
684 for (int j = 0; j < 2; j++)
685 {
686 CuuVLL.at(i).at(i).at(j).at(j) += -0.013888888888888888 * (gZ2oMZ2 * (-3 + 4 * sbar2) * (16 * delta_sbar * sbar2 + delta_gZ2oMZ2 * (-3 + 4 * sbar2)));
687 CuuVRR.at(i).at(i).at(j).at(j) += (-2 * (delta_gZ2oMZ2 + 4 * delta_sbar) * gZ2oMZ2 * sbar2 * sbar2) / 9.;
688 CuuV1LR.at(i).at(i).at(j).at(j) += (gZ2oMZ2 * (2 * delta_sbar * (3 - 8 * sbar2) + delta_gZ2oMZ2 * (3 - 4 * sbar2)) * sbar2) / 9.;
689 if (mySMEFT.FlagNewTerms) {
690 CuuV1LR.at(i).at(j).at(j).at(i) += -0.004629629629629629*(gZbar2oMZ4*(-3 + 4*sbar2)*(-3 + 4*(1 + 4*delta_sbar)*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2))*Mu[i]*Mu[j]);
691 CuuV1LR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*sbar2*(-3 + 4*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2) + 2*delta_sbar*(-3 + 8*sbar2))*Mu[i]*Mu[j])/54.;
692 CuuV1LR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*sbar2*(-3 + 4*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2) + 2*delta_sbar*(-3 + 8*sbar2))*Mu[i]*Mu[j])/54.;
693 CuuV1LR.at(i).at(j).at(j).at(i) += (-2*(1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Mu[i]*Mu[j])/27.;
694 CuuV8LR.at(i).at(j).at(j).at(i) += -0.027777777777777776*(gZbar2oMZ4*(-3 + 4*sbar2)*(-3 + 4*(1 + 4*delta_sbar)*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2))*Mu[i]*Mu[j]);
695 CuuV8LR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*sbar2*(-3 + 4*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2) + 2*delta_sbar*(-3 + 8*sbar2))*Mu[i]*Mu[j])/9.;
696 CuuV8LR.at(i).at(j).at(j).at(i) += (gZbar2oMZ4*sbar2*(-3 + 4*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2) + 2*delta_sbar*(-3 + 8*sbar2))*Mu[i]*Mu[j])/9.;
697 CuuV8LR.at(i).at(j).at(j).at(i) += (-4*(1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Mu[i]*Mu[j])/9.;
698 CuuS1RR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(-3 + 4*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2) + 2*delta_sbar*(-3 + 8*sbar2))*Mu[i]*Mu[j])/18.;
699 CuuS1RR.at(i).at(i).at(j).at(j) += -0.013888888888888888*(gZbar2oMZ4*(-3 + 4*sbar2)*(-3 + 4*(1 + 4*delta_sbar)*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2))*Mu[i]*Mu[j]);
700 CuuS1RR.at(i).at(i).at(j).at(j) += (-2*(1 + deltagZbar2oMZ4 + 4*delta_sbar)*gZbar2oMZ4*pow(sbar2,2)*Mu[i]*Mu[j])/9.;
701 CuuS1RR.at(i).at(i).at(j).at(j) += (gZbar2oMZ4*sbar2*(-3 + 4*sbar2 + deltagZbar2oMZ4*(-3 + 4*sbar2) + 2*delta_sbar*(-3 + 8*sbar2))*Mu[i]*Mu[j])/18.;
702 }
703 for (int k = 0; k < 3; k++)
704 {
705 for (int l = 0; l < 3; l++)
706 {
707 CudV1LL.at(i).at(j).at(k).at(l) += VCKM(i, l) * VCKMd(k, j) * (-0.16666666666666666 * (delta_g22oMW2 * g22oMW2));
708 CudV8LL.at(i).at(j).at(k).at(l) += VCKM(i, l) * VCKMd(k, j) * (-(delta_g22oMW2 * g22oMW2));
709 if (mySMEFT.FlagNewTerms) {
710 CudV1LR.at(i).at(j).at(k).at(l) += VCKM(i,l) * VCKMd(k,j) * (-0.08333333333333333*((1 + deltag2bar2oMW4)*g2bar2oMW4*Md[k]*Md[l]));
711 CudV8LR.at(i).at(j).at(k).at(l) += VCKM(i,l) * VCKMd(k,j) * (-0.5*((1 + deltag2bar2oMW4)*g2bar2oMW4*Md[k]*Md[l]));
712 }
713 for (int p = 0; p < 3; p++)
714 for (int r = 0; r < 3; r++)
715 {
716 CudV1LL.at(i).at(j).at(k).at(l) += VCKMd(k, j) * VuLd(i, p) * (-0.16666666666666666 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) * VdL(r, l);
717 CudV1LL.at(i).at(j).at(k).at(l) += VCKM(i, l) * VdLd(k, p) * (-0.16666666666666666 * (g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p)))) * VuL(r, j);
718 CudV8LL.at(i).at(j).at(k).at(l) += VCKMd(k, j) * VuLd(i, p) * (-(g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) * VdL(r, l);
719 CudV8LL.at(i).at(j).at(k).at(l) += VCKM(i, l) * VdLd(k, p) * (-(g22oMW2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p)))) * VuL(r, j);
720 CueVLR.at(i).at(j).at(k).at(l) += VuLd(i, p) * ((mySMEFT.getSMEFTCoeffEW("CqeR", p, r, k, l) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CqeI", p, r, k, l))) * VuL(r, j);
721 if (mySMEFT.FlagNewTerms) {
722 CudV1LL.at(i).at(j).at(k).at(l) += VCKMd(k,j) * VuRd(i,p) * ((g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p))*Mu[i])/(3.*sqrt(2))) * VdL(r,l);
723 CudV1LL.at(i).at(j).at(k).at(l) += VCKMd(k,j) * VuLd(i,p) * ((g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r))*Md[l])/(3.*sqrt(2))) * VdR(r,l);
724 CudV1LL.at(i).at(j).at(k).at(l) += VCKM(i,l) * VdRd(k,p) * (-0.3333333333333333*(g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p))*Md[k])/sqrt(2)) * VuL(r,j);
725 CudV1LL.at(i).at(j).at(k).at(l) += VCKM(i,l) * VdLd(k,p) * (-0.3333333333333333*(g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r))*Mu[j])/sqrt(2)) * VuR(r,j);
726 CudV8LL.at(i).at(j).at(k).at(l) += VCKMd(k,j) * VuRd(i,p) * (sqrt(2)*g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p))*Mu[i]) * VdL(r,l);
727 CudV8LL.at(i).at(j).at(k).at(l) += VCKMd(k,j) * VuLd(i,p) * (sqrt(2)*g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CdWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", p, r))*Md[l]) * VdR(r,l);
728 CudV8LL.at(i).at(j).at(k).at(l) += VCKM(i,l) * VdRd(k,p) * (-(sqrt(2)*g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CdWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdWI", r, p))*Md[k])) * VuL(r,j);
729 CudV8LL.at(i).at(j).at(k).at(l) += VCKM(i,l) * VdLd(k,p) * (-(sqrt(2)*g2bar2oMW3*v2*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r))*Mu[j])) * VuR(r,j);
730 CudV1LR.at(i).at(j).at(k).at(l) += VCKM(i,l) * VdLd(k,p) * (-0.08333333333333333*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p))*Md[k]*Md[l])) * VuL(r,j);
731 CudV1LR.at(i).at(j).at(k).at(l) += VCKM(i,l) * VdRd(k,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", r, p))*Md[l]*Mu[j])/24.) * VuR(r,j);
732 CudV1LR.at(i).at(j).at(k).at(l) += VCKMd(k,j) * VuLd(i,p) * (-0.08333333333333333*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))*Md[k]*Md[l])) * VdL(r,l);
733 CudV1LR.at(i).at(j).at(k).at(l) += VCKMd(k,j) * VuRd(i,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", p, r))*Md[k]*Mu[i])/24.) * VdR(r,l);
734 CudV8LR.at(i).at(j).at(k).at(l) += VCKM(i,l) * VdLd(k,p) * (-0.5*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", r, p))*Md[k]*Md[l])) * VuL(r,j);
735 CudV8LR.at(i).at(j).at(k).at(l) += VCKM(i,l) * VdRd(k,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", r, p))*Md[l]*Mu[j])/4.) * VuR(r,j);
736 CudV8LR.at(i).at(j).at(k).at(l) += VCKMd(k,j) * VuLd(i,p) * (-0.5*(g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))*Md[k]*Md[l])) * VdL(r,l);
737 CudV8LR.at(i).at(j).at(k).at(l) += VCKMd(k,j) * VuRd(i,p) * ((g2bar2oMW4*v2*(mySMEFT.getSMEFTCoeffEW("CHudR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHudI", p, r))*Md[k]*Mu[i])/4.) * VdR(r,l);
738 }
739 for (int s = 0; s < 3; s++)
740 for (int t = 0; t < 3; t++)
741 {
742 CudV1LL.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqq1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq1I", p, r, s, t)) + (mySMEFT.getSMEFTCoeffEW("Cqq1R", s, t, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq1I", s, t, p, r)) - (mySMEFT.getSMEFTCoeffEW("Cqq3R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", p, r, s, t)) + (2 * (mySMEFT.getSMEFTCoeffEW("Cqq3R", p, t, s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", p, t, s, r))) / 3. + (2 * (mySMEFT.getSMEFTCoeffEW("Cqq3R", s, r, p, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", s, r, p, t))) / 3. - (mySMEFT.getSMEFTCoeffEW("Cqq3R", s, t, p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", s, t, p, r))) * VuL(r, j) * VdL(t, l);
743 CudV8LL.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * (4 * ((mySMEFT.getSMEFTCoeffEW("Cqq3R", p, t, s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", p, t, s, r)) + (mySMEFT.getSMEFTCoeffEW("Cqq3R", s, r, p, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", s, r, p, t)))) * VuL(r, j) * VdL(t, l);
744 CudV1RR.at(i).at(j).at(k).at(l) += VuRd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cud1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cud1I", p, r, s, t))) * VuR(r, j) * VdR(t, l);
745 CudV8RR.at(i).at(j).at(k).at(l) += VuRd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cud8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cud8I", p, r, s, t))) * VuR(r, j) * VdR(t, l);
746 CudV1LR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqd1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqd1I", p, r, s, t))) * VuL(r, j) * VdR(t, l);
747 CudV8LR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqd8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqd8I", p, r, s, t))) * VuL(r, j) * VdR(t, l);
748 CudS1RR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cquqd1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cquqd1I", p, r, s, t))) * VuR(r, j) * VdR(t, l);
749 CudS8RR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VdLd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cquqd8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cquqd8I", p, r, s, t))) * VuR(r, j) * VdR(t, l);
750 if (mySMEFT.FlagNewTerms) {
751 CudS1RR.at(i).at(j).at(k).at(l) += VuLd(i,p) * VdLd(k,s) * ((oneoMh2*(-3*v2*(mySMEFT.getSMEFTCoeffEW("CuHR", r, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuHI", r, p))*(mySMEFT.getSMEFTCoeffEW("YdR", t, s) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", t, s)) + (-3*v2*(mySMEFT.getSMEFTCoeffEW("CdHR", t, s) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CdHI", t, s)) + 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YdR", t, s) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YdI", t, s)))*(mySMEFT.getSMEFTCoeffEW("YuR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", r, p))))/2.) * VuR(r,j) * VdR(t,l);
752 }
753 }
754 }
755 }
756 }
757 for (int k = 0; k < 2; k++)
758 {
759 for (int p = 0; p < 3; p++)
760 for (int r = 0; r < 3; r++)
761 {
762 CuuVLL.at(i).at(i).at(j).at(k) += VuLd(j, p) * (-0.041666666666666664 * (gZ2oMZ2 * (-3 + 4 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))))) * VuL(r, k);
763 CuuVLL.at(j).at(k).at(i).at(i) += VuLd(j, p) * (-0.041666666666666664 * (gZ2oMZ2 * (-3 + 4 * sbar2) * v2 * ((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r))))) * VuL(r, k);
764 CuuVRR.at(i).at(i).at(j).at(k) += VuRd(j, p) * (-0.16666666666666666 * (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r)))) * VuR(r, k);
765 CuuVRR.at(j).at(k).at(i).at(i) += VuRd(j, p) * (-0.16666666666666666 * (gZ2oMZ2 * sbar2 * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r)))) * VuR(r, k);
766 CuuV1LR.at(i).at(i).at(j).at(k) += VuRd(j, p) * ((gZ2oMZ2 * (3 - 4 * sbar2) * v2 * (mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))) / 12.) * VuR(r, k);
767 CuuV1LR.at(j).at(k).at(i).at(i) += VuLd(j, p) * ((gZ2oMZ2 * sbar2 * v2 * (-(mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) + (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))) / 3.) * VuL(r, k);
768 if (mySMEFT.FlagNewTerms) {
769 CuuVLL.at(i).at(i).at(j).at(k) += VuRd(j,p) * ((gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[j])/(12.*sqrt(2))) * VuL(r,k);
770 CuuVLL.at(i).at(i).at(j).at(k) += VuLd(j,p) * ((gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[k])/(12.*sqrt(2))) * VuR(r,k);
771 CuuVLL.at(j).at(k).at(i).at(i) += VuRd(j,p) * ((gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[j])/(12.*sqrt(2))) * VuL(r,k);
772 CuuVLL.at(j).at(k).at(i).at(i) += VuLd(j,p) * ((gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[k])/(12.*sqrt(2))) * VuR(r,k);
773 CuuVRR.at(i).at(i).at(j).at(k) += VuRd(j,p) * ((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[k])/(3.*sqrt(2))) * VuL(r,k);
774 CuuVRR.at(i).at(i).at(j).at(k) += VuLd(j,p) * ((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[j])/(3.*sqrt(2))) * VuR(r,k);
775 CuuVRR.at(j).at(k).at(i).at(i) += VuRd(j,p) * ((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[k])/(3.*sqrt(2))) * VuL(r,k);
776 CuuVRR.at(j).at(k).at(i).at(i) += VuLd(j,p) * ((gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[j])/(3.*sqrt(2))) * VuR(r,k);
777 CuuV1LR.at(i).at(j).at(k).at(i) += VuLd(k,p) * ((gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Mu[i]*Mu[k])/24.) * VuL(r,j);
778 CuuV1LR.at(i).at(j).at(k).at(i) += VuRd(k,p) * (-0.041666666666666664*(gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))*Mu[i]*Mu[j])) * VuR(r,j);
779 CuuV1LR.at(j).at(i).at(i).at(k) += VuLd(j,p) * ((gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Mu[i]*Mu[k])/24.) * VuL(r,k);
780 CuuV1LR.at(j).at(i).at(i).at(k) += VuRd(j,p) * (-0.041666666666666664*(gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))*Mu[i]*Mu[j])) * VuR(r,k);
781 CuuV1LR.at(i).at(i).at(j).at(k) += VuRd(j,p) * ((gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[k])/(6.*sqrt(2))) * VuL(r,k);
782 CuuV1LR.at(i).at(i).at(j).at(k) += VuLd(j,p) * ((gZbar2oMZ3*(-3 + 4*sbar2)*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[j])/(6.*sqrt(2))) * VuR(r,k);
783 CuuV1LR.at(j).at(k).at(i).at(i) += VuRd(j,p) * ((sqrt(2)*gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", r, p)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", r, p)))*Mu[j])/3.) * VuL(r,k);
784 CuuV1LR.at(j).at(k).at(i).at(i) += VuLd(j,p) * ((sqrt(2)*gZbar2oMZ3*sbar2*v2*(sbar*(mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) + cbar*(mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)))*Mu[k])/3.) * VuR(r,k);
785 CuuV8LR.at(i).at(j).at(k).at(i) += VuLd(k,p) * ((gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Mu[i]*Mu[k])/4.) * VuL(r,j);
786 CuuV8LR.at(i).at(j).at(k).at(i) += VuRd(k,p) * (-0.25*(gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))*Mu[i]*Mu[j])) * VuR(r,j);
787 CuuV8LR.at(j).at(i).at(i).at(k) += VuLd(j,p) * ((gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Mu[i]*Mu[k])/4.) * VuL(r,k);
788 CuuV8LR.at(j).at(i).at(i).at(k) += VuRd(j,p) * (-0.25*(gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))*Mu[i]*Mu[j])) * VuR(r,k);
789 CuuS1RR.at(i).at(i).at(j).at(k) += VuRd(j,p) * (-0.125*(gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))*Mu[i]*Mu[j])) * VuR(r,k);
790 CuuS1RR.at(i).at(i).at(j).at(k) += VuLd(j,p) * ((gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Mu[i]*Mu[k])/8.) * VuL(r,k);
791 CuuS1RR.at(j).at(k).at(i).at(i) += VuLd(j,p) * ((gZbar2oMZ4*v2*((mySMEFT.getSMEFTCoeffEW("CHq1R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq1I", p, r)) - (mySMEFT.getSMEFTCoeffEW("CHq3R", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHq3I", p, r)))*Mu[i]*Mu[k])/8.) * VuL(r,k);
792 CuuS1RR.at(j).at(k).at(i).at(i) += VuRd(j,p) * (-0.125*(gZbar2oMZ4*v2*(mySMEFT.getSMEFTCoeffEW("CHuR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CHuI", p, r))*Mu[i]*Mu[j])) * VuR(r,k);
793 }
794 }
795 for (int l = 0; l < 2; l++)
796 for (int p = 0; p < 3; p++)
797 for (int r = 0; r < 3; r++)
798 for (int s = 0; s < 3; s++)
799 for (int t = 0; t < 3; t++)
800 {
801 CuuVLL.at(i).at(j).at(k).at(l) += VuLd(i, p) * VuLd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqq1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq1I", p, r, s, t)) + (mySMEFT.getSMEFTCoeffEW("Cqq3R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqq3I", p, r, s, t))) * VuL(r, j) * VuL(t, l);
802 CuuVRR.at(i).at(j).at(k).at(l) += VuRd(i, p) * VuRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("CuuR", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuuI", p, r, s, t))) * VuR(r, j) * VuR(t, l);
803 CuuV1LR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VuRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqu1R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqu1I", p, r, s, t))) * VuL(r, j) * VuR(t, l);
804 CuuV8LR.at(i).at(j).at(k).at(l) += VuLd(i, p) * VuRd(k, s) * ((mySMEFT.getSMEFTCoeffEW("Cqu8R", p, r, s, t) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("Cqu8I", p, r, s, t))) * VuL(r, j) * VuR(t, l);
805 if (mySMEFT.FlagNewTerms) {
806 CuuV1LR.at(i).at(j).at(k).at(l) += VuLd(i,p) * VuRd(k,s) * ((oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CuHR", t, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuHI", t, p))*(mySMEFT.getSMEFTCoeffEW("YuR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", s, r)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CuHR", s, r) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuHI", s, r)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YuR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", s, r)))*(mySMEFT.getSMEFTCoeffEW("YuR", t, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", t, p))))/12.) * VuL(r,j) * VuR(t,l);
807 CuuV8LR.at(i).at(j).at(k).at(l) += VuLd(i,p) * VuRd(k,s) * ((oneoMh2*(3*v2*(mySMEFT.getSMEFTCoeffEW("CuHR", t, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuHI", t, p))*(mySMEFT.getSMEFTCoeffEW("YuR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", s, r)) + (3*v2*(mySMEFT.getSMEFTCoeffEW("CuHR", s, r) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuHI", s, r)) - 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YuR", s, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", s, r)))*(mySMEFT.getSMEFTCoeffEW("YuR", t, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", t, p))))/2.) * VuL(r,j) * VuR(t,l);
808 CuuS1RR.at(i).at(j).at(k).at(l) += VuLd(i,p) * VuLd(k,s) * ((oneoMh2*(-3*v2*(mySMEFT.getSMEFTCoeffEW("CuHR", t, s) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuHI", t, s))*(mySMEFT.getSMEFTCoeffEW("YuR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", r, p)) + (-3*v2*(mySMEFT.getSMEFTCoeffEW("CuHR", r, p) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuHI", r, p)) + 2*(1 + 2*(mySMEFT.getSMEFTCoeffEW("CHbox") - 0.25 * mySMEFT.getSMEFTCoeffEW("CHD")) * v2 + deltaoneoMh2)*(mySMEFT.getSMEFTCoeffEW("YuR", r, p) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", r, p)))*(mySMEFT.getSMEFTCoeffEW("YuR", t, s) - gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("YuI", t, s))))/4.) * VuR(r,j) * VuR(t,l);
809 }
810 }
811 }
812
813 for (int p = 0; p < 3; p++)
814 for (int r = 0; r < 3; r++)
815 {
816 Cug.at(i).at(j) += vTosq2 * VuLd(i, p) * ((mySMEFT.getSMEFTCoeffEW("CuWR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuWI", p, r)) * sbar + (mySMEFT.getSMEFTCoeffEW("CuBR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuBI", p, r)) * cbar) * VuR(r, j);
817 CuG.at(i).at(j) += vTosq2 * VuLd(i, p) * (mySMEFT.getSMEFTCoeffEW("CuGR", p, r) + gslpp::complex::i() * mySMEFT.getSMEFTCoeffEW("CuGI", p, r)) * VuR(r, j);
818 }
819 }
820
821#endif
822
824}
const gslpp::matrix< gslpp::complex > getCKM() const
A member for returning the CKM matrix.
Definition: CKM.h:59
double getLambda_NP() const
Return Lambda_NP.
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 2 >, 2 > zero2222
std::array< std::array< gslpp::complex, 3 >, 3 > Ceg
The real part of the dimension-5 operator coefficient .
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 2 >, 3 >, 3 > zero3322
std::array< std::array< gslpp::complex, 2 >, 2 > Cug
The real part of the dimension-5 operator coefficient .
const std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 2 >, 2 > zero2233
std::array< std::array< gslpp::complex, 2 >, 2 > CuG
The real part of the dimension-5 operator coefficient .
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 3 > zero3332
const std::array< std::array< std::array< std::array< gslpp::complex, 3 >, 3 >, 3 >, 3 > zero3333
const std::array< std::array< gslpp::complex, 2 >, 2 > zero22
const std::array< std::array< gslpp::complex, 3 >, 3 > zero33
const std::array< std::array< std::array< std::array< gslpp::complex, 2 >, 3 >, 3 >, 2 > zero2332
const double getMz() const
A get method to access the mass of the boson .
const double getMw() const
A get method to access the input value of the mass of the boson .
const double v() const
The Higgs vacuum expectation value.
void updateSMParameters()
Updates to new Standard Model parameter sets.
A class for the CKM elements .
Definition: VCKM.h:21
Test Observable.
Test Observable.

Member Data Documentation

◆ CddS1RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddS1RR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 574 of file NPSMEFTd6GeneralMatching.h.

◆ CddS8RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddS8RR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 575 of file NPSMEFTd6GeneralMatching.h.

◆ CddV1LR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddV1LR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 556 of file NPSMEFTd6GeneralMatching.h.

◆ CddV8LR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddV8LR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 557 of file NPSMEFTd6GeneralMatching.h.

◆ CddVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddVLL = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 525 of file NPSMEFTd6GeneralMatching.h.

◆ CddVRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CddVRR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 535 of file NPSMEFTd6GeneralMatching.h.

◆ CdeVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CdeVLR = {}
protected

The dimension-6 operator coefficient \((C_{d e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 548 of file NPSMEFTd6GeneralMatching.h.

◆ Cdg

std::array<std::array<gslpp::complex, 3>, 3> NPSMEFTd6GeneralMatching::Cdg = {}
protected

The real part of the dimension-5 operator coefficient \((C_{d\gamma})_{ij}(\Lambda_{\rm{EW}})\).

Definition at line 505 of file NPSMEFTd6GeneralMatching.h.

◆ CdG

std::array<std::array<gslpp::complex, 3>, 3> NPSMEFTd6GeneralMatching::CdG = {}
protected

The real part of the dimension-5 operator coefficient \((C_{dG})_{ij}(\Lambda_{\rm{EW}})\).

Definition at line 507 of file NPSMEFTd6GeneralMatching.h.

◆ CduV1LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CduV1LR = {}
protected

The dimension-6 operator coefficient \((C_{du}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 554 of file NPSMEFTd6GeneralMatching.h.

◆ CduV8LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CduV8LR = {}
protected

The dimension-6 operator coefficient \((C_{du}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 555 of file NPSMEFTd6GeneralMatching.h.

◆ CedSRL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedSRL = {}
protected

The dimension-6 operator coefficient \((C_{ed}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 582 of file NPSMEFTd6GeneralMatching.h.

◆ CedSRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedSRR = {}
protected

The dimension-6 operator coefficient \((C_{ed}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 566 of file NPSMEFTd6GeneralMatching.h.

◆ CedTRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedTRR = {}
protected

The dimension-6 operator coefficient \((C_{ed}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 567 of file NPSMEFTd6GeneralMatching.h.

◆ CedVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedVLL = {}
protected

The dimension-6 operator coefficient \((C_{e d}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 522 of file NPSMEFTd6GeneralMatching.h.

◆ CedVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedVLR = {}
protected

The dimension-6 operator coefficient \((C_{e d}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 546 of file NPSMEFTd6GeneralMatching.h.

◆ CedVRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CedVRR = {}
protected

The dimension-6 operator coefficient \((C_{e d}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 533 of file NPSMEFTd6GeneralMatching.h.

◆ CeeSRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CeeSRR = {}
protected

The dimension-6 operator coefficient \((C_{ee}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 563 of file NPSMEFTd6GeneralMatching.h.

◆ CeeVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CeeVLL = {}
protected

The dimension-6 operator coefficient \((C_{ee}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 517 of file NPSMEFTd6GeneralMatching.h.

◆ CeeVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CeeVLR = {}
protected

The dimension-6 operator coefficient \((C_{ee}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 542 of file NPSMEFTd6GeneralMatching.h.

◆ CeeVRR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CeeVRR = {}
protected

The dimension-6 operator coefficient \((C_{ee}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 531 of file NPSMEFTd6GeneralMatching.h.

◆ Ceg

std::array<std::array<gslpp::complex, 3>, 3> NPSMEFTd6GeneralMatching::Ceg = {}
protected

The real part of the dimension-5 operator coefficient \((C_{e\gamma})_{ij}(\Lambda_{\rm{EW}})\).

Definition at line 503 of file NPSMEFTd6GeneralMatching.h.

◆ CeuSRL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuSRL = {}
protected

The dimension-6 operator coefficient \((C_{eu}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 581 of file NPSMEFTd6GeneralMatching.h.

◆ CeuSRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuSRR = {}
protected

The dimension-6 operator coefficient \((C_{eu}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 564 of file NPSMEFTd6GeneralMatching.h.

◆ CeuTRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuTRR = {}
protected

The dimension-6 operator coefficient \((C_{eu}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 565 of file NPSMEFTd6GeneralMatching.h.

◆ CeuVLL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuVLL = {}
protected

The dimension-6 operator coefficient \((C_{e u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 521 of file NPSMEFTd6GeneralMatching.h.

◆ CeuVLR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuVLR = {}
protected

The dimension-6 operator coefficient \((C_{e u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 545 of file NPSMEFTd6GeneralMatching.h.

◆ CeuVRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CeuVRR = {}
protected

The dimension-6 operator coefficient \((C_{e u}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 532 of file NPSMEFTd6GeneralMatching.h.

◆ CG

double NPSMEFTd6GeneralMatching::CG = 0.
protected

The dimension-6 operator coefficient \(C_{G}(\Lambda_{\rm{EW}})\).

Definition at line 511 of file NPSMEFTd6GeneralMatching.h.

◆ CGtilde

double NPSMEFTd6GeneralMatching::CGtilde = 0.
protected

The dimension-6 operator coefficient \(C_{\tilde{G}}(\Lambda_{\rm{EW}})\).

Definition at line 512 of file NPSMEFTd6GeneralMatching.h.

◆ CnudVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnudVLL = {}
protected

The dimension-6 operator coefficient \((C_{\nu d}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 520 of file NPSMEFTd6GeneralMatching.h.

◆ CnudVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnudVLR = {}
protected

The dimension-6 operator coefficient \((C_{\nu d}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 544 of file NPSMEFTd6GeneralMatching.h.

◆ CnueduSRL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueduSRL = {}
protected

The dimension-6 operator coefficient \((C_{nedu}^{S,RL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 583 of file NPSMEFTd6GeneralMatching.h.

◆ CnueduSRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueduSRR = {}
protected

The dimension-6 operator coefficient \((C_{nedu}^{S,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 568 of file NPSMEFTd6GeneralMatching.h.

◆ CnueduTRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueduTRR = {}
protected

The dimension-6 operator coefficient \((C_{nedu}^{T,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 569 of file NPSMEFTd6GeneralMatching.h.

◆ CnueduVLL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueduVLL = {}
protected

The dimension-6 operator coefficient \((C_{\nu e d u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 523 of file NPSMEFTd6GeneralMatching.h.

◆ CnueduVLR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueduVLR = {}
protected

The dimension-6 operator coefficient \((C_{\nu e d u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 549 of file NPSMEFTd6GeneralMatching.h.

◆ CnueVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueVLL = {}
protected

The dimension-6 operator coefficient \((C_{\nu e}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 518 of file NPSMEFTd6GeneralMatching.h.

◆ CnueVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnueVLR = {}
protected

The dimension-6 operator coefficient \((C_{\nu e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 541 of file NPSMEFTd6GeneralMatching.h.

◆ CnunuVLL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::CnunuVLL = {}
protected

The dimension-6 operator coefficient \((C_{\nu\nu}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 516 of file NPSMEFTd6GeneralMatching.h.

◆ CnuuVLL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CnuuVLL = {}
protected

The dimension-6 operator coefficient \((C_{\nu u}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 519 of file NPSMEFTd6GeneralMatching.h.

◆ CnuuVLR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::CnuuVLR = {}
protected

The dimension-6 operator coefficient \((C_{\nu u}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 543 of file NPSMEFTd6GeneralMatching.h.

◆ CudduS1RR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 2> NPSMEFTd6GeneralMatching::CudduS1RR = {}
protected

The dimension-6 operator coefficient \((C_{uddu}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 576 of file NPSMEFTd6GeneralMatching.h.

◆ CudduS8RR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 2> NPSMEFTd6GeneralMatching::CudduS8RR = {}
protected

The dimension-6 operator coefficient \((C_{uddu}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 577 of file NPSMEFTd6GeneralMatching.h.

◆ CudduV1LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 2> NPSMEFTd6GeneralMatching::CudduV1LR = {}
protected

The dimension-6 operator coefficient \((C_{uddu}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 558 of file NPSMEFTd6GeneralMatching.h.

◆ CudduV8LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 2> NPSMEFTd6GeneralMatching::CudduV8LR = {}
protected

The dimension-6 operator coefficient \((C_{uddu}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 559 of file NPSMEFTd6GeneralMatching.h.

◆ CudS1RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudS1RR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 572 of file NPSMEFTd6GeneralMatching.h.

◆ CudS8RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudS8RR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 573 of file NPSMEFTd6GeneralMatching.h.

◆ CudV1LL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV1LL = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V1,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 526 of file NPSMEFTd6GeneralMatching.h.

◆ CudV1LR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV1LR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 552 of file NPSMEFTd6GeneralMatching.h.

◆ CudV1RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV1RR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V1,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 536 of file NPSMEFTd6GeneralMatching.h.

◆ CudV8LL

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV8LL = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V8,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 527 of file NPSMEFTd6GeneralMatching.h.

◆ CudV8LR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV8LR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 553 of file NPSMEFTd6GeneralMatching.h.

◆ CudV8RR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CudV8RR = {}
protected

The dimension-6 operator coefficient \((C_{ud}^{V8,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 537 of file NPSMEFTd6GeneralMatching.h.

◆ CueVLR

std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::CueVLR = {}
protected

The dimension-6 operator coefficient \((C_{u e}^{V,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 547 of file NPSMEFTd6GeneralMatching.h.

◆ Cug

std::array<std::array<gslpp::complex, 2>, 2> NPSMEFTd6GeneralMatching::Cug = {}
protected

The real part of the dimension-5 operator coefficient \((C_{u\gamma})_{ij}(\Lambda_{\rm{EW}})\).

Definition at line 504 of file NPSMEFTd6GeneralMatching.h.

◆ CuG

std::array<std::array<gslpp::complex, 2>, 2> NPSMEFTd6GeneralMatching::CuG = {}
protected

The real part of the dimension-5 operator coefficient \((C_{uG})_{ij}(\Lambda_{\rm{EW}})\).

Definition at line 506 of file NPSMEFTd6GeneralMatching.h.

◆ CuuS1RR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuS1RR = {}
protected

The dimension-6 operator coefficient \((C_{uu}^{S1,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 570 of file NPSMEFTd6GeneralMatching.h.

◆ CuuS8RR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuS8RR = {}
protected

The dimension-6 operator coefficient \((C_{uu}^{S8,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 571 of file NPSMEFTd6GeneralMatching.h.

◆ CuuV1LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuV1LR = {}
protected

The dimension-6 operator coefficient \((C_{uu}^{V1,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 550 of file NPSMEFTd6GeneralMatching.h.

◆ CuuV8LR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuV8LR = {}
protected

The dimension-6 operator coefficient \((C_{dd}^{V8,LR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 551 of file NPSMEFTd6GeneralMatching.h.

◆ CuuVLL

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuVLL = {}
protected

The dimension-6 operator coefficient \((C_{uu}^{V,LL})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 524 of file NPSMEFTd6GeneralMatching.h.

◆ CuuVRR

std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::CuuVRR = {}
protected

The dimension-6 operator coefficient \((C_{uu}^{V,RR})_{ijkl}(\Lambda_{\rm{EW}})\).

Definition at line 534 of file NPSMEFTd6GeneralMatching.h.

◆ LambdaNP2

double NPSMEFTd6GeneralMatching::LambdaNP2
private

Definition at line 587 of file NPSMEFTd6GeneralMatching.h.

◆ mcbd

WilsonCoefficient NPSMEFTd6GeneralMatching::mcbd
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mcbs

WilsonCoefficient NPSMEFTd6GeneralMatching::mcbs
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mcbsg

WilsonCoefficient NPSMEFTd6GeneralMatching::mcbsg
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mcd1

WilsonCoefficient NPSMEFTd6GeneralMatching::mcd1
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mcd2

WilsonCoefficient NPSMEFTd6GeneralMatching::mcd2
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mck2

WilsonCoefficient NPSMEFTd6GeneralMatching::mck2
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mckpnn

WilsonCoefficient NPSMEFTd6GeneralMatching::mckpnn
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mcprimebsg

WilsonCoefficient NPSMEFTd6GeneralMatching::mcprimebsg
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ mculeptonnu

WilsonCoefficient NPSMEFTd6GeneralMatching::mculeptonnu
private

Definition at line 591 of file NPSMEFTd6GeneralMatching.h.

◆ MD

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::MD
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ MU

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::MU
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ mySMEFT

const NPSMEFTd6General& NPSMEFTd6GeneralMatching::mySMEFT
private

Definition at line 586 of file NPSMEFTd6GeneralMatching.h.

◆ v

double NPSMEFTd6GeneralMatching::v
private

Definition at line 589 of file NPSMEFTd6GeneralMatching.h.

◆ v2

double NPSMEFTd6GeneralMatching::v2
private

Definition at line 588 of file NPSMEFTd6GeneralMatching.h.

◆ VdL

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VdL
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VdLd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VdLd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VdR

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VdR
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VdRd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VdRd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VeL

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VeL
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VeLd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VeLd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VeR

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VeR
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VeRd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VeRd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VuL

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VuL
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VuLd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VuLd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VuR

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VuR
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ VuRd

gslpp::matrix<gslpp::complex> NPSMEFTd6GeneralMatching::VuRd
private

Definition at line 590 of file NPSMEFTd6GeneralMatching.h.

◆ zero22

const std::array<std::array<gslpp::complex, 2>, 2> NPSMEFTd6GeneralMatching::zero22 {}
protected

Definition at line 493 of file NPSMEFTd6GeneralMatching.h.

◆ zero2222

const std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 2>, 2> NPSMEFTd6GeneralMatching::zero2222 {}
protected

Definition at line 499 of file NPSMEFTd6GeneralMatching.h.

◆ zero2233

const std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 2>, 2> NPSMEFTd6GeneralMatching::zero2233 {}
protected

Definition at line 496 of file NPSMEFTd6GeneralMatching.h.

◆ zero2332

const std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 2> NPSMEFTd6GeneralMatching::zero2332 {}
protected

Definition at line 497 of file NPSMEFTd6GeneralMatching.h.

◆ zero33

const std::array<std::array<gslpp::complex, 3>, 3> NPSMEFTd6GeneralMatching::zero33 {}
protected

Definition at line 492 of file NPSMEFTd6GeneralMatching.h.

◆ zero3322

const std::array<std::array<std::array<std::array<gslpp::complex, 2>, 2>, 3>, 3> NPSMEFTd6GeneralMatching::zero3322 {}
protected

Definition at line 495 of file NPSMEFTd6GeneralMatching.h.

◆ zero3332

const std::array<std::array<std::array<std::array<gslpp::complex, 2>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::zero3332 {}
protected

Definition at line 498 of file NPSMEFTd6GeneralMatching.h.

◆ zero3333

const std::array<std::array<std::array<std::array<gslpp::complex, 3>, 3>, 3>, 3> NPSMEFTd6GeneralMatching::zero3333 {}
protected

Definition at line 494 of file NPSMEFTd6GeneralMatching.h.


The documentation for this class was generated from the following files: