a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models Logo
StandardModel/src/StandardModel.cpp
Go to the documentation of this file.
1/*
2 * Copyright (C) 2012 HEPfit Collaboration
3 *
4 *
5 * For the licensing terms see doc/COPYING.
6 */
7
8#include <iostream>
9#include <math.h>
10#include <stdlib.h>
11#include <stdexcept>
12#include <gsl/gsl_sf_zeta.h>
13#include <algorithm>
14#include "StandardModel.h"
15#include "EWSMcache.h"
16#include "EWSMOneLoopEW.h"
17#include "EWSMTwoLoopQCD.h"
18#include "EWSMThreeLoopQCD.h"
19#include "EWSMTwoLoopEW.h"
20#include "EWSMThreeLoopEW2QCD.h"
21#include "EWSMThreeLoopEW.h"
23#include "LeptonFlavour.h"
24#include "gslpp_function_adapter.h"
25/* BEGIN: REMOVE FROM THE PACKAGE */
26#include "EWSMTwoFermionsLEP2.h"
27#include <functional>
28#include <boost/bind/bind.hpp>
29using namespace boost::placeholders;
30/* END: REMOVE FROM THE PACKAGE */
31
32std::string StandardModel::SMvars[NSMvars] = {
33 "lambda", "A", "rhob", "etab", "Mz", "AlsMz", "GF", "ale", "dAle5Mz", "mHl",
34 "delMw", "delSin2th_l", "delSin2th_q", "delSin2th_b", "delGammaZ", "delsigma0H", "delR0l", "delR0c", "delR0b",
35 "mneutrino_1", "mneutrino_2", "mneutrino_3", "melectron", "mmu", "mtau", "muw"
36};
37
38const double StandardModel::GeVminus2_to_nb = 389379.338;
39const double StandardModel::Mw_error = 0.00001; /* 0.01 MeV */
40
42: QCD(), Yu(3, 3, 0.), Yd(3, 3, 0.), Yn(3, 3, 0.),
43SMM(*this), SMFlavour(*this), Ye(3, 3, 0.)
44{
45 setModelName("StandardModel");
46 requireCKM = false;
47 requireYe = false;
48 requireYn = false;
49
52 FlagMw = "APPROXIMATEFORMULA";
53 FlagRhoZ = "NORESUM";
54 FlagKappaZ = "APPROXIMATEFORMULA";
55 FlagWolfenstein = true;
56 FlagUseVud = false;
57 FlagFixMuwMut = false;
58
59 FlagMWinput = false;
60
61 FlagSMAux = false;
62
63 /* Internal flags for EWPO (for debugging) */
64 flag_order[EW1] = true;
65 flag_order[EW1QCD1] = true;
66 flag_order[EW1QCD2] = true;
67 flag_order[EW2] = true;
68 flag_order[EW2QCD1] = true;
69 flag_order[EW3] = true;
70
71 //Flags for LEP2 observables
72 flagLEP2[Weak] = true;
73 flagLEP2[WeakBox] = true;
74 flagLEP2[ISR] = true;
75 flagLEP2[QEDFSR] = true;
76 flagLEP2[QCDFSR] = true;
77
78 bSigmaForAFB = false;
79 bSigmaForR = false;
80
81 // Caches for EWPO
82 FlagCacheInStandardModel = true; // use caches in the current class
84 useDeltaAlpha_cache = false;
85 useMw_cache = false;
86 useGammaW_cache = false;
88 DeltaAlpha_cache = 0.0;
89 Mw_cache = 0.0;
90 GammaW_cache = 0.0;
91 for (int i = 0; i < 12; ++i) {
92 useRhoZ_f_cache[i] = false;
93 useKappaZ_f_cache[i] = false;
94 rhoZ_f_cache[i] = gslpp::complex(0.0, 0.0, false);
95 kappaZ_f_cache[i] = gslpp::complex(0.0, 0.0, false);
96 }
97
98 myEWSMcache = NULL;
99 myOneLoopEW = NULL;
100 myTwoLoopQCD = NULL;
101 myThreeLoopQCD = NULL;
102 myTwoLoopEW = NULL;
103 myThreeLoopEW2QCD = NULL;
104 myThreeLoopEW = NULL;
106 /* BEGIN: REMOVE FROM THE PACKAGE */
107 myTwoFermionsLEP2 = NULL;
108 /* END: REMOVE FROM THE PACKAGE */
109
110 // Particle(std::string name, double mass, double mass_scale = 0., double width = 0., double charge = 0.,double isospin = 0.);
111 leptons[NEUTRINO_1] = Particle("NEUTRINO_1", 0., 0., 0., 0., .5);
112 leptons[NEUTRINO_2] = Particle("NEUTRINO_2", 0., 0., 0., 0., .5);
113 leptons[NEUTRINO_3] = Particle("NEUTRINO_3", 0., 0., 0., 0., .5);
114 leptons[ELECTRON] = Particle("ELECTRON", 0., 0., 0., -1., -.5);
115 leptons[MU] = Particle("MU", 0., 0., 0., -1., -.5);
116 leptons[TAU] = Particle("TAU", 0., 0., 0., -1., -.5);
117
118 ModelParamMap.insert(std::make_pair("Mz", std::cref(Mz)));
119 ModelParamMap.insert(std::make_pair("AlsMz", std::cref(AlsMz)));
120 ModelParamMap.insert(std::make_pair("GF", std::cref(GF)));
121 ModelParamMap.insert(std::make_pair("ale", std::cref(ale)));
122 ModelParamMap.insert(std::make_pair("dAle5Mz", std::cref(dAle5Mz)));
123// ModelParamMap.insert(std::make_pair("Mw_inp", std::cref(Mw_inp)));
124 ModelParamMap.insert(std::make_pair("mHl", std::cref(mHl)));
125 ModelParamMap.insert(std::make_pair("delMw", std::cref(delMw)));
126 ModelParamMap.insert(std::make_pair("delSin2th_l", std::cref(delSin2th_l)));
127 ModelParamMap.insert(std::make_pair("delSin2th_q", std::cref(delSin2th_q)));
128 ModelParamMap.insert(std::make_pair("delSin2th_b", std::cref(delSin2th_b)));
129 ModelParamMap.insert(std::make_pair("delGammaZ", std::cref(delGammaZ)));
130 ModelParamMap.insert(std::make_pair("delsigma0H", std::cref(delsigma0H)));
131 ModelParamMap.insert(std::make_pair("delR0l", std::cref(delR0l)));
132 ModelParamMap.insert(std::make_pair("delR0c", std::cref(delR0c)));
133 ModelParamMap.insert(std::make_pair("delR0b", std::cref(delR0b)));
134 ModelParamMap.insert(std::make_pair("mneutrino_1", std::cref(leptons[NEUTRINO_1].getMass())));
135 ModelParamMap.insert(std::make_pair("mneutrino_2", std::cref(leptons[NEUTRINO_2].getMass())));
136 ModelParamMap.insert(std::make_pair("mneutrino_3", std::cref(leptons[NEUTRINO_3].getMass())));
137 ModelParamMap.insert(std::make_pair("melectron", std::cref(leptons[ELECTRON].getMass())));
138 ModelParamMap.insert(std::make_pair("mmu", std::cref(leptons[MU].getMass())));
139 ModelParamMap.insert(std::make_pair("mtau", std::cref(leptons[TAU].getMass())));
140 ModelParamMap.insert(std::make_pair("lambda", std::cref(lambda)));
141 ModelParamMap.insert(std::make_pair("A", std::cref(A)));
142 ModelParamMap.insert(std::make_pair("rhob", std::cref(rhob)));
143 ModelParamMap.insert(std::make_pair("etab", std::cref(etab)));
144 ModelParamMap.insert(std::make_pair("muw", std::cref(muw)));
145
146 iterationNo = 0;
147 realorder = LO;
148
149 w_GSL1 = gsl_integration_workspace_alloc (200);
150}
151
153{
154 if (IsModelInitialized()) {
155 if (myEWSMcache != NULL) delete(myEWSMcache);
156 if (myOneLoopEW != NULL) delete(myOneLoopEW);
157 if (myTwoLoopQCD != NULL) delete(myTwoLoopQCD);
158 if (myThreeLoopQCD != NULL) delete(myThreeLoopQCD);
159 if (myTwoLoopEW != NULL) delete(myTwoLoopEW);
160 if (myThreeLoopEW2QCD != NULL) delete(myThreeLoopEW2QCD);
161 if (myThreeLoopEW != NULL) delete(myThreeLoopEW);
162 if (myApproximateFormulae != NULL) delete(myApproximateFormulae);
163 if (myLeptonFlavour != NULL) delete(myLeptonFlavour);
164 /* BEGIN: REMOVE FROM THE PACKAGE */
165 if (myTwoFermionsLEP2 != NULL) delete(myTwoFermionsLEP2);
166 /* END: REMOVE FROM THE PACKAGE */
167 }
168}
169
170
172// Initialization
173
175{
176 myEWSMcache = new EWSMcache(*this);
184 myLeptonFlavour = new LeptonFlavour(*this);
185 /* BEGIN: REMOVE FROM THE PACKAGE */
187 /* END: REMOVE FROM THE PACKAGE */
189 return (true);
190}
191
192
194// Parameters
195
196bool StandardModel::Init(const std::map<std::string, double>& DPars)
197{
198 for (std::map<std::string, double>::const_iterator it = DPars.begin(); it != DPars.end(); it++)
199 if (it->first.compare("AlsM") == 0 || it->first.compare("MAls") == 0)
200 throw std::runtime_error("ERROR: inappropriate parameter " + it->first
201 + " in model initialization");
202 else if (FlagFixMuwMut && it->first.compare("mut") == 0)
203 throw std::runtime_error("ERROR: cannot use " + it->first
204 + " when FlagFixMuwMut is true: use only muw");
205
206 std::map<std::string, double> myDPars(DPars);
207 myDPars["AlsM"] = myDPars.at("AlsMz"); // do not change!
208 myDPars["MAls"] = myDPars.at("Mz");
209 if (FlagFixMuwMut)
210 myDPars["mut"] = myDPars.at("muw") * 163. / 80.4 ;
211 return (QCD::Init(myDPars));
212}
213
215{
216 requireCKM = false;
217 requireYe = false;
218 requireYn = false;
219
220 if (!QCD::PreUpdate()) return (false);
221
222 return (true);
223}
224
225bool StandardModel::Update(const std::map<std::string, double>& DPars)
226{
227 if (!PreUpdate()) return (false);
228
229 UpdateError = false;
230
231 for (std::map<std::string, double>::const_iterator it = DPars.begin(); it != DPars.end(); it++)
232 setParameter(it->first, it->second);
233
234 if (UpdateError) return (false);
235
236 if (!PostUpdate()) return (false);
237
238 return (true);
239}
240
242{
243 if (!QCD::PostUpdate()) return (false);
244
245 SMSuccess = true;
246 /* Set the CKM and PMNS matrices if not already set in the derived classes */
247 if(requireCKM)
248 computeCKM();
249
250 /* Compute the 5-quark contribution to the running of alpha*/
251 dAl5hMz = Dalpha5hMz();
252
253 /* Set the Yukawa matrices */
254 if (!isModelSUSY()) {
256 }
257
258 /* Check whether the parameters for the EWPO are updated or not */
259 if (!checkSMparamsForEWPO()) {
261 useDeltaAlpha_cache = false;
262 useMw_cache = false;
263 useGammaW_cache = false;
264 for (int i = 0; i < 12; ++i) {
265 useRhoZ_f_cache[i] = false;
266 useKappaZ_f_cache[i] = false;
267 }
268 }
270 /* Necessary for updating StandardModel parameters in StandardModelMatching */
271 if (!isModelSUSY()) SMM.getObj().updateSMParameters();
272
273 iterationNo++;
274
275 return (true);
276}
277
278void StandardModel::setParameter(const std::string name, const double& value)
279{
280 if (name.compare("Mz") == 0) {
281 Mz = value;
282 QCD::setParameter("MAls", value);
283 } else if (name.compare("AlsMz") == 0) {
284 AlsMz = value;
285 QCD::setParameter("AlsM", value);
286 } else if (name.compare("GF") == 0)
287 GF = value;
288 else if (name.compare("ale") == 0)
289 ale = value;
290 else if (name.compare("dAle5Mz") == 0 && !FlagMWinput)
291 dAle5Mz = value;
292 else if (name.compare("Mw_inp") == 0 && FlagMWinput)
293 Mw_inp = value;
294 else if (name.compare("mHl") == 0)
295 mHl = value;
296 else if (name.compare("delMw") == 0)
297 delMw = value;
298 else if (name.compare("delSin2th_l") == 0)
299 delSin2th_l = value;
300 else if (name.compare("delSin2th_q") == 0)
301 delSin2th_q = value;
302 else if (name.compare("delSin2th_b") == 0)
303 delSin2th_b = value;
304 else if (name.compare("delGammaZ") == 0)
305 delGammaZ = value;
306 else if (name.compare("delsigma0H") == 0)
307 delsigma0H = value;
308 else if (name.compare("delR0l") == 0)
309 delR0l = value;
310 else if (name.compare("delR0c") == 0)
311 delR0c = value;
312 else if (name.compare("delR0b") == 0)
313 delR0b = value;
314 else if (name.compare("mneutrino_1") == 0)
315 leptons[NEUTRINO_1].setMass(value);
316 else if (name.compare("mneutrino_2") == 0)
317 leptons[NEUTRINO_2].setMass(value);
318 else if (name.compare("mneutrino_3") == 0)
319 leptons[NEUTRINO_3].setMass(value);
320 else if (name.compare("melectron") == 0)
321 leptons[ELECTRON].setMass(value);
322 else if (name.compare("mmu") == 0)
323 leptons[MU].setMass(value);
324 else if (name.compare("mtau") == 0)
325 leptons[TAU].setMass(value);
326 else if (name.compare("lambda") == 0 && FlagWolfenstein) {
327 lambda = value;
328 requireCKM = true;
329 } else if (name.compare("A") == 0 && FlagWolfenstein) {
330 A = value;
331 requireCKM = true;
332 } else if (name.compare("rhob") == 0 && FlagWolfenstein) {
333 rhob = value;
334 requireCKM = true;
335 } else if (name.compare("etab") == 0 && FlagWolfenstein) {
336 etab = value;
337 requireCKM = true;
338 } else if (name.compare("V_us") == 0 && !FlagWolfenstein && !FlagUseVud) {
339 Vus = value;
340 requireCKM = true;
341 } else if (name.compare("V_ud") == 0 && !FlagWolfenstein && FlagUseVud) {
342 Vud = value;
343 requireCKM = true;
344 } else if (name.compare("V_cb") == 0 && !FlagWolfenstein) {
345 Vcb = value;
346 requireCKM = true;
347 } else if (name.compare("V_ub") == 0 && !FlagWolfenstein) {
348 Vub = value;
349 requireCKM = true;
350 } else if (name.compare("gamma") == 0 && !FlagWolfenstein) {
351 gamma = value;
352 requireCKM = true;
353 } else if (name.compare("muw") == 0) {
354 /* Update mut if FlagFixMuwMut is activated */
355 muw = value;
356 if (FlagFixMuwMut) {
357 mut = muw / 80.4 * 163.;
358 }
359 }
360 else
361 QCD::setParameter(name, value);
362}
363
364bool StandardModel::CheckParameters(const std::map<std::string, double>& DPars)
365{
366 for (int i = 0; i < NSMvars; i++) {
367 if (DPars.find(SMvars[i]) == DPars.end()) {
368 std::cout << "ERROR: missing mandatory SM parameter " << SMvars[i] << std::endl;
371 }
372 }
373 return (QCD::CheckParameters(DPars));
374}
375
377{
378 if (requireCKM) {
379 if (FlagWolfenstein) {
381 Vus = myCKM.getV_us().abs();
382 Vcb = myCKM.getV_cb().abs();
383 Vub = myCKM.getV_ub().abs();
385 } else if (FlagUseVud) {
388 A = myCKM.getA();
389 rhob = myCKM.getRhoBar();
390 etab = myCKM.getEtaBar();
391 Vus = myCKM.getV_us().abs();
392 } else {
395 A = myCKM.getA();
396 rhob = myCKM.getRhoBar();
397 etab = myCKM.getEtaBar();
398 Vud = myCKM.getV_ud().abs();
399 }
400 }
401 myPMNS.computePMNS(s12, s13, s23, delta, alpha21, alpha31); // WARNING: This does not do anything since the input values are not set.
402}
403
405
406
407
408
409
411{
412 if (requireYu || requireCKM) {
413 Yu.reset();
414 for (int i = 0; i < 3; i++) {
415 Yu.assign(i, i, this->getmq(quark(UP + 2 * i), v()/ sqrt(2.))/ v() * sqrt(2.));
416// std::cout << quarks[UP + 2 * i].getName() << " mass at EW scale is " << this->getmq(quark(UP + 2 * i), v() / sqrt(2.)) << std::endl;
417 }
418// std::cout << "(top MSbar mass is " << this->Mp2Mbar(this->getMtpole()) << ")" << std::endl;
419 Yu = Yu * myCKM.getCKM();
420 }
421 if (requireYd) {
422 Yd.reset();
423 for (int i = 0; i < 3; i++) {
424 Yd.assign(i, i, this->getmq(quark(DOWN + 2 * i), v() / sqrt(2.)) / v() * sqrt(2.));
425// std::cout << quarks[DOWN + 2 * i].getName() << " mass at " << v() / sqrt(2) << " is " << this->getmq(quark(DOWN + 2 * i), v() / sqrt(2.)) << std::endl;
426 }
427 }
428 if (requireYe) {
429 Ye = gslpp::matrix<gslpp::complex>::Id(3);
430 for (int i = 0; i < 3; i++)
431 Ye.assign(i, i, this->leptons[ELECTRON + 2 * i].getMass() / v() * sqrt(2.));
432 }
433 if (requireYn) {
434 Yn = gslpp::matrix<gslpp::complex>::Id(3);
435 for (int i = 0; i < 3; i++)
436 Yn.assign(i, i, this->leptons[NEUTRINO_1 + 2 * i].getMass() / v() * sqrt(2.));
437 Yn = Yn * myPMNS.getPMNS().hconjugate();
438 }
439}
440
441
442
443bool StandardModel::setFlag(const std::string name, const bool value)
444{
445 bool res = false;
446 if (name.compare("CacheInStandardModel") == 0) {
448 res = true;
449 } else if (name.compare("CacheInEWSMcache") == 0) {
451 res = true;
452 } else if (name.compare("Wolfenstein") == 0) {
453 FlagWolfenstein = value;
454 if(!FlagWolfenstein) {
455 SMvars[std::distance(SMvars,std::find(SMvars,SMvars+NSMvars,"lambda"))] = "V_us";
456 SMvars[std::distance(SMvars,std::find(SMvars,SMvars+NSMvars,"A"))] = "V_cb";
457 SMvars[std::distance(SMvars,std::find(SMvars,SMvars+NSMvars,"rhob"))] = "V_ub";
458 SMvars[std::distance(SMvars,std::find(SMvars,SMvars+NSMvars,"etab"))] = "gamma";
459
460 ModelParamMap.insert(std::make_pair("V_us", std::cref(Vus)));
461 ModelParamMap.insert(std::make_pair("V_cb", std::cref(Vcb)));
462 ModelParamMap.insert(std::make_pair("V_ub", std::cref(Vub)));
463 ModelParamMap.insert(std::make_pair("gamma", std::cref(gamma)));
464 }
465 res = true;
466 } else if (name.compare("WithoutNonUniversalVC") == 0) {
468 res = true;
469 } else if (name.compare("NoApproximateGammaZ") == 0) {
471 res = true;
472 } else if (name.compare("MWinput") == 0) {
473 FlagMWinput = value;
474 if (FlagMWinput) {
475 SMvars[std::distance(SMvars,std::find(SMvars,SMvars+NSMvars,"dAle5Mz"))] = "Mw_inp";
476 ModelParamMap.insert(std::make_pair("Mw_inp", std::cref(Mw_inp)));
477 // Point the different flags towards the approximate formulae, when available
479 FlagMw = "APPROXIMATEFORMULA";
480 FlagRhoZ = "NORESUM";
481 FlagKappaZ = "APPROXIMATEFORMULA";
482 }
483 res = true;
484 } else if (name.compare("SMAux") == 0) {
485 FlagSMAux = value;
486 res = true;
487 } else if (name.compare("FixMuwMut") == 0) {
488 FlagFixMuwMut = value;
489 res = true;
490 } else if (name.compare("UseVud") == 0) {
491 FlagUseVud = value;
493 throw std::runtime_error("UseVud can only be used when Wolfenstein is false");
494 else if(FlagUseVud) {
495 SMvars[std::distance(SMvars,std::find(SMvars,SMvars+NSMvars,"V_us"))] = "V_ud";
496 ModelParamMap.erase("V_us");
497 ModelParamMap.insert(std::make_pair("V_ud", std::cref(Vud)));
498 }
499 res = true;
500 } else
501 res = QCD::setFlag(name, value);
502
503 if (!res) res = SMFlavour.setFlag(name, value);
504
505 return (res);
506}
507
508bool StandardModel::setFlagStr(const std::string name, const std::string value)
509{
510 bool res = false;
511 if (name.compare("Mw") == 0) {
512 if (checkEWPOscheme(value)) {
513 FlagMw = value;
514 res = true;
515 } else
516 throw std::runtime_error("StandardModel::setFlagStr(): Invalid flag "
517 + name + "=" + value);
518
519 } else if (name.compare("RhoZ") == 0) {
520 if (checkEWPOscheme(value)) {
521 FlagRhoZ = value;
522 res = true;
523 } else
524 throw std::runtime_error("StandardModel::setFlagStr(): Invalid flag "
525 + name + "=" + value);
526 } else if (name.compare("KappaZ") == 0) {
527 if (checkEWPOscheme(value)) {
528 FlagKappaZ = value;
529 res = true;
530 } else
531 throw std::runtime_error("StandardModel::setFlagStr(): Invalid flag "
532 + name + "=" + value);
533 } else
534 res = QCD::setFlagStr(name, value);
535
536 if (FlagMWinput) {
537 // Point the different flags towards the approximate formulae, when available
539 FlagMw = "APPROXIMATEFORMULA";
540 FlagRhoZ = "NORESUM";
541 FlagKappaZ = "APPROXIMATEFORMULA";
542 }
543
544 return (res);
545}
546
548{
549 return (QCD::CheckFlags());
550}
551
552
554// For EWPO caches
555
557{
558 // 11 parameters in QCD:
559 // AlsMz, Mz, mup, mdown, mcharm, mstrange, mtop, mbottom,
560 // mut, mub, muc
561 // 19 parameters in StandardModel
562 // GF, ale, dAle5Mz, mHl,
563 // mneutrino_1, mneutrino_2, mneutrino_3, melectron, mmu, mtau,
564 // delMw, delSin2th_l, delSin2th_q, delSin2th_b, delGammaZ, delsigma0H, delR0l, delR0c, delR0b,
565 // 3 flags in StandardModel
566 // FlagMw_cache, FlagRhoZ_cache, FlagKappaZ_cache
567
568 // Note: When modifying the array below, the constant NumSMParams has to
569 // be modified accordingly.
570 double SMparams[NumSMParamsForEWPO] = {
572 mHl, mtpole,
577 leptons[MU].getMass(),
579 quarks[UP].getMass(),
584 mut, mub, muc,
589 };
590
591 // check updated parameters
592 bool bNotUpdated = true;
593 for (int i = 0; i < NumSMParamsForEWPO; ++i) {
594 if (SMparamsForEWPO_cache[i] != SMparams[i]) {
595 SMparamsForEWPO_cache[i] = SMparams[i];
596 bNotUpdated &= false;
597 }
598 }
599
600 return bNotUpdated;
601}
602
604
605const double StandardModel::ale_OS(const double mu, orders order) const
606{
607 if (mu < 50.0)
608 throw std::runtime_error("out of range in StandardModel::ale_OS()");
609
610 double N = 20.0 / 3.0;
611 double beta1 = N / 3.0;
612 double beta2 = N / 4.0;
613 double alpha_ini = alphaMz();
614 double v = 1.0 + 2.0 * beta1 * alpha_ini / M_PI * log(Mz / mu);
615
616 switch (order) {
617 case LO:
618 return ( alpha_ini / v);
619 case FULLNLO:
620 return ( alpha_ini / v * (1.0 - beta2 / beta1 * alpha_ini / M_PI * log(v) / v));
621 default:
622 throw std::runtime_error("Error in StandardModel::ale_OS()");
623 }
624}
625
626const double StandardModel::Beta_s(int nm, unsigned int nf) const
627{
628 unsigned int nu = nf % 2 == 0 ? nf / 2 : nf / 2;
629 unsigned int nd = nf % 2 == 0 ? nf / 2 : 1 + nf / 2;
630 double Qu = 2. / 3., Qd = -1. / 3., Qbar2 = nu * Qu * Qu + nd * Qd * Qd,
631 Qbar4 = nu * Qu * Qu * Qu * Qu + nd * Qd * Qd * Qd * Qd;
632
633 switch(nm)
634 {
635 case 00:
636 return(Beta0((double) nf));
637 case 10:
638 return(Beta1((double) nf));
639 case 20:
640 return(Beta2((double) nf));
641 case 30:
642 return(Beta3((double) nf));
643 case 01:
644 return(-4. * TF * Qbar2 );
645 case 11:
646 return((4. * CF - 8. * CA) * TF * Qbar2 );
647 case 02:
648 return(11./3. * TF * Qbar2 * Beta_e(00, nf) + 2. * TF * Qbar4);
649 default:
650 throw std::runtime_error("StandardModel::Beta_s(): case not implemented");
651 }
652}
653
654const double StandardModel::Beta_e(int nm, unsigned int nf) const
655{
656 unsigned int nu = nf % 2 == 0 ? nf / 2 : nf / 2;
657 unsigned int nd = nf % 2 == 0 ? nf / 2 : 1 + nf / 2;
658 double Qu = 2. / 3., Qd = -1. / 3., Qbar2 = nu * Qu * Qu + nd * Qd * Qd,
659 Qbar4 = nu * Qu * Qu * Qu * Qu + nd * Qd * Qd * Qd * Qd;
660
661 switch(nm)
662 {
663 case 00:
664 return(4./3. * (Qbar2 * Nc + 3.)); // QL^2 = 1
665 case 10:
666 return(4. * (Qbar4 * Nc + 3.));
667 case 01:
668 return(4. * CF * Nc * Qbar2);
669 default:
670 throw std::runtime_error("StandardModel::Beta_e(): case not implemented");
671 }
672}
673
674const double StandardModel::AlsE(double mu, orders order, bool Nf_thr) const
675{
676 switch (order)
677 {
678 case FULLNNNLO:
679 realorder = order;
680 return (AlsByOrder(mu, LO, Nf_thr) + AlsByOrder(mu, NLO, Nf_thr) + AlsByOrder(mu, NNLO, Nf_thr) + AlsEByOrder(mu, NNNLO, Nf_thr));
681 default:
682 throw std::runtime_error("StandardModel::AlsE(): " + orderToString(order) + " is not implemented.");
683 }
684}
685
686const double StandardModel::AlsEByOrder(double mu, orders order, bool Nf_thr) const
687{
688 int i, nfAls = (int) Nf(Mz), nfmu = Nf_thr ? (int) Nf(mu) : nfAls;
689 double als, alstmp, mutmp;
690 orders fullord;
691
692 for (i = 0; i < CacheSize; ++i)
693 if ((mu == als_cache[0][i]) && ((double) order == als_cache[1][i]) &&
694 (AlsMz == als_cache[2][i]) && (Mz == als_cache[3][i]) &&
695 (mut == als_cache[4][i]) && (mub == als_cache[5][i]) &&
696 (muc == als_cache[6][i]) && (double) true == als_cache[7][i]
697 && (double) Nf_thr == als_cache[8][i] && alphaMz() == als_cache[9][i])
698 return als_cache[10][i];
699
700 switch (order)
701 {
702 case NNNLO:
703 if (nfAls == nfmu)
704 als = AlsEWithInit(mu, AlsMz, Mz, nfAls, order);
705 fullord = FullOrder(order);
706 if (nfAls > nfmu) {
707 mutmp = BelowTh(Mz);
708 alstmp = AlsEWithInit(mutmp, AlsMz, Mz, nfAls, realorder);
709 alstmp *= (1. - NfThresholdCorrections(mutmp, MassOfNf(nfAls), alstmp, nfAls, fullord)); // WARNING: QED threshold corrections not implemented yet
710 for (i = nfAls - 1; i > nfmu; i--) {
711 mutmp = BelowTh(mutmp - MEPS);
712 alstmp = AlsEWithInit(mutmp, alstmp, AboveTh(mutmp) - MEPS, i, realorder);
713 alstmp *= (1. - NfThresholdCorrections(mutmp, MassOfNf(i), alstmp, i, fullord)); // WARNING: QED threshold corrections not implemented yet
714 }
715 als = AlsEWithInit(mu, alstmp, AboveTh(mu) - MEPS, nfmu, order);
716 }
717
718 if (nfAls < nfmu) {
719 mutmp = AboveTh(Mz) - MEPS;
720 alstmp = AlsEWithInit(mutmp, AlsMz, Mz, nfAls, realorder);
721 alstmp *= (1. + NfThresholdCorrections(mutmp, MassOfNf(nfAls + 1), alstmp, nfAls + 1, fullord)); // WARNING: QED threshold corrections not implemented yet
722 for (i = nfAls + 1; i < nfmu; i++) {
723 mutmp = AboveTh(mutmp) - MEPS;
724 alstmp = AlsEWithInit(mutmp, alstmp, BelowTh(mutmp) + MEPS, i, realorder);
725 alstmp *= (1. + NfThresholdCorrections(mutmp, MassOfNf(i + 1), alstmp, i + 1, fullord)); // WARNING: QED threshold corrections not implemented yet
726 }
727 als = AlsEWithInit(mu, alstmp, BelowTh(mu) + MEPS, nfmu, order);
728 }
729
731 als_cache[0][0] = mu;
732 als_cache[1][0] = (double) order;
733 als_cache[2][0] = AlsMz;
734 als_cache[3][0] = Mz;
735 als_cache[4][0] = mut;
736 als_cache[5][0] = mub;
737 als_cache[6][0] = muc;
738 als_cache[7][0] = (double) true;
739 als_cache[8][0] = (double) Nf_thr;
740 als_cache[9][0] = alphaMz();
741 als_cache[10][0] = als;
742
743 return als;
744 default:
745 throw std::runtime_error("StandardModel::AlsEByOrder(): " + orderToString(order) + " is not implemented.");
746 }
747}
748
749const double StandardModel::AlsEWithInit(double mu, double alsi, double mu_i, const int nf_i, orders order) const
750{
751 double nf = (double) nf_i, alei = Ale(mu_i, FULLNLO); // CHANGE ME!
752 double b00s = Beta_s(00, nf), b00e = Beta_e(00, nf);
753 double v = 1. + b00s * alsi / 2. / M_PI * log(mu / mu_i);
754 double ve = 1. - b00e * alei / 2. / M_PI * log(mu / mu_i);
755 double logv = log(v), logve = log(ve);
756 double rho = 1. / (1. + b00e * alei / b00s / alsi);
757 double als = AlsWithInit(mu, alsi, mu_i, nf, order);
758 double b01s = Beta_s(01,nf), b01s00e = b01s / b00e;
759
760 switch (order)
761 {
762 case NNNLO:
763 als += alsi * alsi * alei / 4. / 4. / M_PI / M_PI / v / v / ve * (Beta_s(02, nf) / b00e *
764 (ve - 1.) + Beta_s(11, nf) / b00s * rho * ve * (logve - logv) + b01s00e * Beta_e(10, nf) /
765 b00e * (logve - ve + 1.) + b01s * Beta_s(10, nf) / b00s / b00s * rho * logv +
766 b01s00e * Beta_e(01, nf) / b00s * (rho * ve * (logv - logve) - logv));
767 break;
768 case FULLNNNLO:
769 return (AlsWithInit(mu, alsi, mu_i, nf_i, LO) + AlsWithInit(mu, alsi, mu_i, nf_i, NLO)+ AlsWithInit(mu, alsi, mu_i, nf_i, NNLO) + AlsEWithInit(mu, alsi, mu_i, nf_i, NNNLO));
770 default:
771 throw std::runtime_error("StandardModel::AlsEWithInit(): " + orderToString(order) + " is not implemented.");
772 }
773
774 return (als);
775}
776
777const double StandardModel::Ale(const double mu, orders order, bool Nf_thr) const
778{
779 int i, nfAle = (int) Nf(Mz), nfmu = Nf_thr ? (int) Nf(mu) : nfAle;
780 double ale, aletmp, mutmp, aleMz = alphaMz();
781 orders fullord;
782
783 for (i = 0; i < CacheSize; ++i)
784 if ((mu == ale_cache[0][i]) && ((double) order == ale_cache[1][i]) &&
785 (AlsMz == ale_cache[2][i]) && (Mz == ale_cache[3][i]) &&
786 (mut == ale_cache[4][i]) && (mub == ale_cache[5][i]) &&
787 (muc == ale_cache[6][i])
788 && (double) Nf_thr == ale_cache[7][i] && aleMz == ale_cache[8][i])
789 return ale_cache[9][i];
790
791 switch (order)
792 {
793 case FULLNLO:
794 return (Ale(mu, LO, Nf_thr) + Ale(mu, NLO, Nf_thr));
795 case FULLNNLO:
796 return (Ale(mu, LO, Nf_thr) + Ale(mu, NLO, Nf_thr) + Ale(mu, NNLO, Nf_thr));
797 case FULLNNNLO:
798 return (Ale(mu, LO, Nf_thr) + Ale(mu, NLO, Nf_thr) + Ale(mu, NNLO, Nf_thr) + Ale(mu, NNNLO, Nf_thr));
799 case LO:
800 if (nfAle == nfmu)
801 return(AleWithInit(mu, aleMz, Mz, order));
802 case NLO:
803 case NNLO:
804 case NNNLO:
805 if (nfAle == nfmu)
806 return(0.);
807 fullord = FullOrder(order);
808 if (nfAle > nfmu) {
809 mutmp = BelowTh(Mz);
810 aletmp = AleWithInit(mutmp, aleMz, Mz, fullord);
811// aletmp *= (1. - NfThresholdCorrections(mutmp, MassOfNf(nfAle), alstmp, nfAls, fullord)); // WARNING: QED threshold corrections not implemented yet
812 for (i = nfAle - 1; i > nfmu; i--) {
813 mutmp = BelowTh(mutmp - MEPS);
814 aletmp = AleWithInit(mutmp, aletmp, AboveTh(mutmp) - MEPS, fullord);
815// aletmp *= (1. - NfThresholdCorrections(mutmp, MassOfNf(i), aletmp, i, fullord)); // WARNING: QED threshold corrections not implemented yet
816 }
817 ale = AleWithInit(mu, aletmp, AboveTh(mu) - MEPS, order);
818 }
819
820 if (nfAle < nfmu) {
821 mutmp = AboveTh(Mz) - MEPS;
822 aletmp = AleWithInit(mutmp, aleMz, Mz, fullord);
823// alstmp *= (1. + NfThresholdCorrections(mutmp, MassOfNf(nfAls + 1), alstmp, nfAls + 1, fullord)); // WARNING: QED threshold corrections not implemented yet
824 for (i = nfAle + 1; i < nfmu; i++) {
825 mutmp = AboveTh(mutmp) - MEPS;
826 aletmp = AleWithInit(mutmp, aletmp, BelowTh(mutmp) + MEPS, fullord);
827// alstmp *= (1. + NfThresholdCorrections(mutmp, MassOfNf(i + 1), alstmp, i + 1, fullord)); // WARNING: QED threshold corrections not implemented yet
828 }
829 ale = AleWithInit(mu, aletmp, BelowTh(mu) + MEPS, order);
830 }
831
833 ale_cache[0][0] = mu;
834 ale_cache[1][0] = (double) order;
835 ale_cache[2][0] = AlsMz;
836 ale_cache[3][0] = Mz;
837 ale_cache[4][0] = mut;
838 ale_cache[5][0] = mub;
839 ale_cache[6][0] = muc;
840 ale_cache[7][0] = (double) Nf_thr;
841 ale_cache[8][0] = aleMz;
842 ale_cache[9][0] = ale;
843
844 return ale;
845 default:
846 throw std::runtime_error("StandardModel::Ale(): " + orderToString(order) + " is not implemented.");
847 }
848}
849
850const double StandardModel::AleWithInit(double mu, double alei, double mu_i, orders order) const
851{
852 if (fabs(mu - mu_i) < MEPS) return(alei);
853
854 double nf = Nf(mu), alsi = (mu_i == Mz ? AlsMz : Als(mu_i, FULLNNNLO, true, true));
855 double b00e = Beta_e(00, nf), b00s = Beta_s(00, nf);
856 double ve = 1. - b00e * alei / 2. / M_PI * log(mu / mu_i);
857 double logv = log(1. + b00s * alsi / 2. / M_PI * log(mu / mu_i)), logve = log(ve);
858
859 switch (order)
860 {
861 case LO:
862 return (alei / ve);
863 case NLO:
864 return (- alei * alei / 4. / M_PI / ve / ve * (Beta_e(10, nf) / b00e * logve - Beta_e(01, nf) / b00s * logv) );
865 // Higher order terms ? Need to understand eq. (35)
866 case FULLNLO:
867 return (AleWithInit(mu, alei, mu_i, LO) + AleWithInit(mu, alei, mu_i, NLO));
868 default:
869 throw std::runtime_error("StandardModel::AleWithInit(): " + orderToString(order) + " is not implemented.");
870 }
871}
872
873const double StandardModel::DeltaAlphaLepton(const double s) const
874{
875 if (s == Mz * Mz)
879
880 double DeltaAlphaL = 0.0;
881 if (flag_order[EW1])
882 DeltaAlphaL += myOneLoopEW->DeltaAlpha_l(s);
883 if (flag_order[EW1QCD1])
884 DeltaAlphaL += myTwoLoopQCD->DeltaAlpha_l(s);
885 if (flag_order[EW1QCD2])
886 DeltaAlphaL += myThreeLoopQCD->DeltaAlpha_l(s);
887 if (flag_order[EW2])
888 DeltaAlphaL += myTwoLoopEW->DeltaAlpha_l(s);
889 if (flag_order[EW2QCD1])
890 DeltaAlphaL += myThreeLoopEW2QCD->DeltaAlpha_l(s);
891 if (flag_order[EW3])
892 DeltaAlphaL += myThreeLoopEW->DeltaAlpha_l(s);
893
894 if (s == Mz * Mz) {
895 DeltaAlphaLepton_cache = DeltaAlphaL;
897 }
898 return DeltaAlphaL;
899}
900
902{
903 double Mz2 = Mz*Mz;
904 return (DeltaAlphaLepton(Mz2) + dAl5hMz);
905}
906
907const double StandardModel::DeltaAlphaTop(const double s) const
908{
909 double DeltaAlpha = 0.0;
910 if (flag_order[EW1])
912 if (flag_order[EW1QCD1])
914 if (flag_order[EW1QCD2])
916 if (flag_order[EW2])
918 if (flag_order[EW2QCD1])
920 if (flag_order[EW3])
922
923 return DeltaAlpha;
924}
925
926const double StandardModel::DeltaAlpha() const
927{
930 return DeltaAlpha_cache;
931
932 double Mz2 = Mz*Mz;
934 useDeltaAlpha_cache = true;
935 return DeltaAlpha_cache;
936}
937
938const double StandardModel::alphaMz() const
939{
940 return (ale / (1.0 - DeltaAlpha()));
941// return(1./127.918); // FOR HEFFDF1 TEST: VALUE IN hep-ph/0512066
942// return(1./127.955); // FOR HEFFDF1 TEST: VALUE IN 2007.04191
943}
944
945const double StandardModel::Alstilde5(const double mu) const
946{
947 double mu_0 = Mz;
948 double alphatilde_e = alphaMz()/4./M_PI;
949 double alphatilde_s = AlsMz/4./M_PI;
950 unsigned int nf = 5;
951
952 double B00S = Beta0(nf), B10S = Beta1(nf), B20S = Beta2(nf), B30S = gsl_sf_zeta_int(3) * 352864./81. - 598391./1458,
953 B01S = -22./9., B11S = -308./27., B02S = 4945./243.;
954
955 double B00E = 80./9., B01E = 176./9., B10E = 464./27.;
956
957 double B10soB00s = B10S / B00S;
958 double B01soB00e = B01S/B00E;
959
960 double vs= 1. + 2. * B00S * alphatilde_s * log(mu/ mu_0);
961 double ve= 1. - 2. * B00E * alphatilde_e * log(mu/ mu_0);
962 double ps= B00S * alphatilde_s /(B00S * alphatilde_s + B00E * alphatilde_e);
963
964 double logve = log(ve);
965 double logvs = log(vs);
966 double logeos = log(ve/vs);
967 double logsoe = log(vs/ve);
968 double asovs = alphatilde_s/vs;
969 double aeove = alphatilde_e/ve;
970
971 double result = 0;
972
973 result = asovs - pow(asovs, 2) * (logvs * B10soB00s - logve * B01soB00e)
974 + pow(asovs, 3) * ((1. - vs) * B20S / B00S + B10soB00s * B10soB00s * (logvs * logvs - logvs
975 + vs - 1.) + B01soB00e * B01soB00e * logve * logve + (-2. * logvs * logve
976 + ps * ve * logve) * B01S * B10S/(B00E * B00S))
977 + pow(asovs, 4) * (0.5 * B30S *(1. - vs * vs)/ B00S + ((2. * vs - 3.) * logvs + vs * vs
978 - vs) * B20S * B10soB00s /(B00S) + B10soB00s * B10soB00s * B10soB00s * (- pow(logvs,3)
979 + 5. * pow(logvs,2) / 2. + 2. * (1. - vs) * logvs - (vs - 1.) * (vs - 1.)* 0.5))
980 + pow(asovs, 2) * (aeove) * ((ve - 1.) * B02S / B00E
981 + ps * ve * logeos * B11S /B00S +(logve - ve + 1.) * B01soB00e * B10E/(B00E)
982 + logvs * ps * B01S * B10soB00s/(B00S) +(logsoe * ve * ps - logvs) * B01soB00e * B01E/( B00S));
983 return (result);
984}
985
986
988
989const double StandardModel::v() const
990{
991 return ( 1. / sqrt(sqrt(2.) * GF));
992}
993
994
996
997const double StandardModel::Mw_tree() const
998{
999 if (FlagMWinput){
1000 return Mw_inp;
1001 } else
1002 return ( Mz / sqrt(2.0) * sqrt(1.0 + sqrt(1.0 - 4.0 * M_PI * ale / sqrt(2.0) / GF / Mz / Mz)));
1003}
1004
1005const double StandardModel::s02() const
1006{
1007 double tmp = 1.0 - 4.0 * M_PI * alphaMz() / sqrt(2.0) / GF / Mz / Mz;
1008 if (tmp < 0.0)
1009 throw std::runtime_error("Error in s02()");
1010
1011 return ( (1.0 - sqrt(tmp)) / 2.0);
1012}
1013
1014const double StandardModel::c02() const
1015{
1016 return ( 1.0 - s02());
1017}
1018
1019const double StandardModel::Mw() const
1020{
1021 /* Debug */
1022 //std::cout << std::boolalpha
1023 // << checkScheme(schemeMw_cache,schemeMw,false)
1024 // << " [cache:" << schemeMw_cache
1025 // << " current:" << schemeMw << "]" << std::endl;
1026
1027 if (FlagMWinput)
1028 return Mw_inp;
1029
1031 if (useMw_cache)
1032 return Mw_cache;
1033
1034 double Mw;
1035 if (FlagMw.compare("APPROXIMATEFORMULA") == 0)
1037 else {
1038 //std::cout << std::setprecision(12)
1039 // << "TEST: Mw_tree = " << Mw_tree() << std::endl;
1040
1041 double DeltaRho[orders_EW_size], DeltaR_rem[orders_EW_size];
1042 ComputeDeltaRho(Mw_tree(), DeltaRho);
1043 ComputeDeltaR_rem(Mw_tree(), DeltaR_rem);
1044 Mw = resumMw(Mw_tree(), DeltaRho, DeltaR_rem);
1045
1046 /* Mw from iterations */
1047 double Mw_org = Mw_tree();
1048 while (fabs(Mw - Mw_org) > Mw_error) {
1049 Mw_org = Mw;
1050 ComputeDeltaRho(Mw, DeltaRho);
1051 ComputeDeltaR_rem(Mw, DeltaR_rem);
1052 Mw = resumMw(Mw, DeltaRho, DeltaR_rem);
1053 /* TEST */
1054 //int prec_def = std::cout.precision();
1055 //std::cout << std::setprecision(12) << "TEST: Mw_org = " << Mw_org
1056 // << " Mw_new = " << Mw << std::endl;
1057 //std::cout.precision(prec_def);
1058 }
1059 }
1060
1061// Mw = 80.426; // FOR HEFFDF1 TEST: VALUE IN hep-ph/0512066
1062// Mw = 80.379; // FOR HEFFDF1 TEST: VALUE IN 2007.04191
1063 Mw_cache = Mw;
1064 useMw_cache = true;
1065 return Mw;
1066}
1067
1068const double StandardModel::Dalpha5hMz() const
1069{
1070 if (FlagMWinput){
1072 } else
1073 return dAle5Mz;
1074}
1075
1076const double StandardModel::cW2(double Mw_i) const
1077{
1078 return ( Mw_i * Mw_i / Mz / Mz);
1079}
1080
1081const double StandardModel::cW2() const
1082{
1083 return ( cW2(Mw()));
1084// return (1.0 - 0.2312); // FOR HEFFDF1 TEST
1085}
1086
1087const double StandardModel::sW2(double Mw_i) const
1088{
1089 return ( 1.0 - cW2(Mw_i));
1090}
1091
1092const double StandardModel::sW2() const
1093{
1094 return ( 1.0 - cW2());
1095}
1096
1098{
1099 //double rho_t= 3. * getGF() * getMtpole() * getMtpole() / (8. * sqrt(2.) * M_PI * M_PI );
1100 return ( sW2()*1.0351 ); //PDG 22 electroweak review eq. (10.19)
1101}
1102
1103const double StandardModel::sW2_ND() const
1104{
1105 double d = 1. / 3. * (1. / sW2_MSbar_Approx() - 8. / 3.) *
1106 ( (1 + getAlsMz()/M_PI)*log(getMtpole()/getMz()) - 15.*getAlsMz()/(8.*M_PI) );
1107
1108 return sW2_MSbar_Approx()*(1. + Ale(getMz(),FULLNLO)*d/M_PI);
1109
1110}
1111
1112const double StandardModel::DeltaR() const
1113{
1114 /* in the experimental/running-width scheme */
1115 double myMw = Mw();
1116 double sW2 = 1.0 - myMw * myMw / Mz / Mz;
1117 double tmp = sqrt(2.0) * GF * sW2 * myMw * myMw / M_PI / ale;
1118 if (FlagMw.compare("NORESUM") == 0
1119 || FlagMw.compare("APPROXIMATEFORMULA") == 0) {
1120 return (tmp - 1.0);
1121 } else {
1122 return (1.0 - 1.0 / tmp);
1123 }
1124}
1125
1127 double DeltaRho[orders_EW_size]) const
1128{
1129 if (flag_order[EW1])
1130 DeltaRho[EW1] = myOneLoopEW->DeltaRho(Mw_i);
1131 else
1132 DeltaRho[EW1] = 0.0;
1133 if (flag_order[EW1QCD1])
1134 DeltaRho[EW1QCD1] = myTwoLoopQCD->DeltaRho(Mw_i);
1135 else
1136 DeltaRho[EW1QCD1] = 0.0;
1137 if (flag_order[EW1QCD2])
1138 DeltaRho[EW1QCD2] = myThreeLoopQCD->DeltaRho(Mw_i);
1139 else
1140 DeltaRho[EW1QCD2] = 0.0;
1141 if (flag_order[EW2])
1142 DeltaRho[EW2] = myTwoLoopEW->DeltaRho(Mw_i);
1143 else
1144 DeltaRho[EW2] = 0.0;
1145 if (flag_order[EW2QCD1])
1146 DeltaRho[EW2QCD1] = myThreeLoopEW2QCD->DeltaRho(Mw_i);
1147 else
1148 DeltaRho[EW2QCD1] = 0.0;
1149 if (flag_order[EW3])
1150 DeltaRho[EW3] = myThreeLoopEW->DeltaRho(Mw_i);
1151 else
1152 DeltaRho[EW3] = 0.0;
1153}
1154
1156 double DeltaR_rem[orders_EW_size]) const
1157{
1158 if (flag_order[EW1])
1159 DeltaR_rem[EW1] = myOneLoopEW->DeltaR_rem(Mw_i);
1160 else
1161 DeltaR_rem[EW1] = 0.0;
1162 if (flag_order[EW1QCD1])
1163 DeltaR_rem[EW1QCD1] = myTwoLoopQCD->DeltaR_rem(Mw_i);
1164 else
1165 DeltaR_rem[EW1QCD1] = 0.0;
1166 if (flag_order[EW1QCD2])
1167 DeltaR_rem[EW1QCD2] = myThreeLoopQCD->DeltaR_rem(Mw_i);
1168 else
1169 DeltaR_rem[EW1QCD2] = 0.0;
1170 if (flag_order[EW2])
1171 DeltaR_rem[EW2] = myTwoLoopEW->DeltaR_rem(Mw_i);
1172 else
1173 DeltaR_rem[EW2] = 0.0;
1174 if (flag_order[EW2QCD1])
1175 DeltaR_rem[EW2QCD1] = myThreeLoopEW2QCD->DeltaR_rem(Mw_i);
1176 else
1177 DeltaR_rem[EW2QCD1] = 0.0;
1178 if (flag_order[EW3])
1179 DeltaR_rem[EW3] = myThreeLoopEW->DeltaR_rem(Mw_i);
1180 else
1181 DeltaR_rem[EW3] = 0.0;
1182}
1183
1184
1186
1188{
1189 double G0 = GF * pow(Mz, 3.0) / 24.0 / sqrt(2.0) / M_PI;
1190 double sW2tree = 1.0 - Mw_tree() * Mw_tree() / Mz / Mz;
1191 double Gz = 6.0 * G0; // neutrinos
1192 Gz += 3.0 * G0 * (pow(1.0 - 4.0 * sW2tree, 2.0) + 1.0); // e, mu and tau
1193 Gz += 6.0 * G0 * (pow(1.0 - 8.0 / 3.0 * sW2tree, 2.0) + 1.0)
1194 * (1.0 + AlsMz / M_PI); // u and c
1195 Gz += 9.0 * G0 * (pow(1.0 - 4.0 / 3.0 * sW2tree, 2.0) + 1.0)
1196 * (1.0 + AlsMz / M_PI); // d, s and b
1197
1198 //Gz = 2.4952; // experimental data
1199 //std::cout << "Gz=" << Gz << std::endl; // for test
1200
1201 return ( Mz - Gz * Gz / 2.0 / Mz);
1202}
1203
1204const double StandardModel::MwbarFromMw(const double Mw) const
1205{
1206 double AlsMw = Als(Mw, FULLNLO);
1207 double Gw_SM = 3.0 * GF * pow(Mw, 3.0) / 2.0 / sqrt(2.0) / M_PI
1208 * (1.0 + 2.0 * AlsMw / 3.0 / M_PI);
1209
1210 return ( Mw - Gw_SM * Gw_SM / 2.0 / Mw);
1211}
1212
1213const double StandardModel::MwFromMwbar(const double Mwbar) const
1214{
1215 double AlsMw = Als(Mwbar, FULLNNLO);
1216 double Gw_SM = 3.0 * GF * pow(Mwbar, 3.0) / 2.0 / sqrt(2.0) / M_PI
1217 * (1.0 + 2.0 * AlsMw / 3.0 / M_PI);
1218
1219 return (Mwbar + Gw_SM * Gw_SM / 2.0 / Mwbar);
1220}
1221
1222const double StandardModel::DeltaRbar() const
1223{
1224 double Mwbar_SM = MwbarFromMw(Mw());
1225 double sW2bar = 1.0 - Mwbar_SM * Mwbar_SM / Mzbar() / Mzbar();
1226 double tmp = sqrt(2.0) * GF * sW2bar * Mwbar_SM * Mwbar_SM / M_PI / ale;
1227
1228 return (tmp - 1.0);
1229}
1230
1231
1233
1234const double StandardModel::rho_GammaW(const Particle fi, const Particle fj) const
1235{
1236 double rhoW = 0.0;
1237 if (flag_order[EW1])
1238 rhoW = myOneLoopEW->rho_GammaW(fi, fj, Mw());
1239 return rhoW;
1240}
1241
1242const double StandardModel::GammaW(const Particle fi, const Particle fj) const
1243{
1244 if ((fi.getIndex()) % 2 || (fj.getIndex() + 1) % 2)
1245 throw std::runtime_error("Error in StandardModel::GammaW()");
1246
1247 double G0 = GF * pow(Mw(), 3.0) / 6.0 / sqrt(2.0) / M_PI;
1248 gslpp::complex V(0.0, 0.0, false);
1249
1250 if (fi.is("TOP"))
1251 return (0.0);
1252
1253 if (fj.getIndex() - fi.getIndex() == 1)
1254 V = gslpp::complex(1.0, 0.0, false);
1255 else
1256 V = gslpp::complex(0.0, 0.0, false);
1257
1258 if (fi.is("LEPTON"))
1259 return ( V.abs2() * G0 * rho_GammaW(fi, fj));
1260 else {
1261 double AlsMw = AlsWithInit(Mw(), AlsMz, Mz, 5, FULLNLO);
1262 return ( 3.0 * V.abs2() * G0 * rho_GammaW(fi, fj)*(1.0 + AlsMw / M_PI));
1263 }
1264}
1265
1266const double StandardModel::GammaW() const
1267{
1269 if (useGammaW_cache)
1270 return GammaW_cache;
1271
1272 double GammaWtmp = 0.;
1273
1274 for (int i = 0; i < 6; i += 2)
1275 GammaWtmp += GammaW(leptons[i], leptons[i + 1]) + GammaW(quarks[i], quarks[i + 1]);
1276
1277 GammaW_cache = GammaWtmp;
1278 useGammaW_cache = true;
1279 return GammaWtmp;
1280}
1281
1282
1283const double StandardModel::BrW(const Particle fi, const Particle fj) const
1284{
1285 double GammW = GammaW();
1286 double GammWij = GammaW(fi, fj);
1287
1288 return GammWij/GammW;
1289}
1290
1291
1292const double StandardModel::RWlilj(const Particle li, const Particle lj) const
1293{
1294 double GammWli, GammWlj;
1295
1296 if (li.is("ELECTRON"))
1297 GammWli = GammaW(leptons[NEUTRINO_1],li);
1298 else if (li.is("MU"))
1299 GammWli = GammaW(leptons[NEUTRINO_2],li);
1300 else if (li.is("TAU"))
1301 GammWli = GammaW(leptons[NEUTRINO_3],li);
1302 else
1303 throw std::runtime_error("Error in StandardModel::RWlilj. li must be a charged lepton");
1304
1305 if (lj.is("ELECTRON"))
1306 GammWlj = GammaW(leptons[NEUTRINO_1],lj);
1307 else if (lj.is("MU"))
1308 GammWlj = GammaW(leptons[NEUTRINO_2],lj);
1309 else if (lj.is("TAU"))
1310 GammWlj = GammaW(leptons[NEUTRINO_3],lj);
1311 else
1312 throw std::runtime_error("Error in StandardModel::RWlilj. lj must be a charged lepton");
1313
1314 return GammWli/GammWlj;
1315}
1316
1317const double StandardModel::Ruc() const //AG:added
1318{
1319 return 0.5 * ( R0_f(quarks[UP]) + R0_f(quarks[CHARM]) );
1320}
1321
1322const double StandardModel::RWc() const
1323{
1324 double GammWcX, GammWhad;
1325
1326// Add all the W-> cX decays
1327// In GammaW fermion masses are ignored and CKM=1 but uses that SM CKM is unitary => I only need W->cs
1328 GammWcX = GammaW(quarks[CHARM], quarks[STRANGE]);
1329
1330// For the same reasons, I only need to add the W-> ud decays into the hadronic part
1331 GammWhad = GammWcX
1332 + GammaW(quarks[UP], quarks[DOWN]);
1333
1334 return GammWcX/GammWhad;
1335}
1336
1338
1339const double StandardModel::A_f(const Particle f) const
1340{
1341 double Re_kappa = kappaZ_f(f).real();
1342 double Re_gV_over_gA = 1.0 - 4.0 * fabs(f.getCharge()) * Re_kappa * sW2();
1343 return ( 2.0 * Re_gV_over_gA / (1.0 + pow(Re_gV_over_gA, 2.0)));
1344}
1345
1346const double StandardModel::AFB(const Particle f) const
1347{
1348 return (3.0 / 4.0 * A_f(leptons[ELECTRON]) * A_f(f));
1349}
1350
1351const double StandardModel::sin2thetaEff(const Particle f) const
1352{
1353 double Re_kappa = kappaZ_f(f).real();
1354 return ( Re_kappa * sW2());
1355}
1356
1357const double StandardModel::GammaZ(const Particle f) const
1358{
1359 if (f.is("TOP"))
1360 return 0.0;
1361 double Gamma;
1363
1364 /* SM contribution with the approximate formula */
1365 if (f.is("NEUTRINO_1") || f.is("NEUTRINO_2") || f.is("NEUTRINO_3"))
1366 Gamma = myApproximateFormulae->X_full("Gamma_nu");
1367 else if (f.is("ELECTRON") || f.is("MU"))
1368 Gamma = myApproximateFormulae->X_full("Gamma_e_mu");
1369 else if (f.is("TAU"))
1370 Gamma = myApproximateFormulae->X_full("Gamma_tau");
1371 else if (f.is("UP"))
1372 Gamma = myApproximateFormulae->X_full("Gamma_u");
1373 else if (f.is("CHARM"))
1374 Gamma = myApproximateFormulae->X_full("Gamma_c");
1375 else if (f.is("DOWN") || f.is("STRANGE"))
1376 Gamma = myApproximateFormulae->X_full("Gamma_d_s");
1377 else if (f.is("BOTTOM"))
1378 Gamma = myApproximateFormulae->X_full("Gamma_b");
1379 else
1380 throw std::runtime_error("Error in StandardModel::GammaZ()");
1381
1382 } else {
1383 gslpp::complex myrhoZ_f = rhoZ_f(f);
1384 gslpp::complex gV_over_gA = gV_f(f) / gA_f(f);
1385 double G0 = GF * pow(Mz, 3.0) / 24.0 / sqrt(2.0) / M_PI;
1386 if (f.is("LEPTON")) {
1387 double myalphaMz = alphaMz();
1388 double Q = f.getCharge();
1389 double xl = pow(f.getMass() / Mz, 2.0);
1390 Gamma = G0 * myrhoZ_f.abs() * sqrt(1.0 - 4.0 * xl)
1391 * ((1.0 + 2.0 * xl)*(gV_over_gA.abs2() + 1.0) - 6.0 * xl)
1392 * (1.0 + 3.0 / 4.0 * myalphaMz / M_PI * pow(Q, 2.0));
1393 } else if (f.is("QUARK")) {
1394 Gamma = 3.0 * G0 * myrhoZ_f.abs()*(gV_over_gA.abs2() * RVq((QCD::quark) (f.getIndex() - 6)) + RAq((QCD::quark) (f.getIndex() - 6)));
1395
1396 /* Nonfactorizable EW-QCD corrections */
1397 Gamma += Delta_EWQCD((QCD::quark) (f.getIndex() - 6));
1398 } else
1399 throw std::runtime_error("Error in StandardModel::GammaZ()");
1400 }
1401
1402 return Gamma;
1403}
1404
1405const double StandardModel::Gamma_inv() const
1406{
1409}
1410
1411const double StandardModel::Gamma_had() const
1412{
1413 double Gamma_had_tmp = 0.0;
1414
1416
1417 /* SM contribution with the approximate formula */
1418 return myApproximateFormulae->X_full("Gamma_had");
1419
1420 } else {
1421
1422 Gamma_had_tmp = GammaZ(quarks[UP]) + GammaZ(quarks[DOWN]) + GammaZ(quarks[CHARM])
1424
1425 /* Singlet vector contribution (not included in the approximate formula) */
1426 double G0 = GF * pow(Mz, 3.0) / 24.0 / sqrt(2.0) / M_PI;
1427 Gamma_had_tmp += 4.0 * 3.0 * G0 * RVh();
1428
1429 return Gamma_had_tmp;
1430 }
1431}
1432
1433const double StandardModel::Gamma_Z() const
1434{
1436
1437 /* SM contribution with the approximate formula */
1438 return myApproximateFormulae->X_full("GammaZ");
1439
1440 } else {
1442 + Gamma_inv() + Gamma_had());
1443 }
1444}
1445
1446
1447const double StandardModel::RZlilj(const Particle li, const Particle lj) const
1448{
1449 double GammZli, GammZlj;
1450
1451 if ( li.is("ELECTRON") || li.is("MU") || li.is("TAU") )
1452 GammZli = GammaZ(li);
1453 else
1454 throw std::runtime_error("Error in StandardModel::RZlilj. li must be a charged lepton");
1455
1456 if ( lj.is("ELECTRON") || lj.is("MU") || lj.is("TAU") )
1457 GammZlj = GammaZ(lj);
1458 else
1459 throw std::runtime_error("Error in StandardModel::RZlilj. lj must be a charged lepton");
1460
1461 return GammZli/GammZlj;
1462}
1463
1464
1465const double StandardModel::sigma0_had() const
1466{
1468
1469 /* SM contribution with the approximate formula */
1470 return (myApproximateFormulae->X_full("sigmaHadron")
1471 / GeVminus2_to_nb);
1472
1473 } else {
1474 return (12.0 * M_PI * GammaZ(leptons[ELECTRON]) * Gamma_had()
1475 / Mz / Mz / Gamma_Z() / Gamma_Z());
1476 }
1477}
1478
1479const double StandardModel::R0_f(const Particle f) const
1480{
1481
1482 if (f.is("ELECTRON")) {
1484 /* SM contribution with the approximate formula */
1485 return (myApproximateFormulae->X_full("R0_electron"));
1486 else
1487 return (Gamma_had() / GammaZ(leptons[ELECTRON]));
1488 } else if (f.is("MU")) {
1490 /* SM contribution with the approximate formula */
1491 return (myApproximateFormulae->X_full("R0_muon"));
1492 else
1493 return (Gamma_had() / GammaZ(leptons[MU]));
1494 } else if (f.is("TAU")) {
1496 /* SM contribution with the approximate formula */
1497 return (myApproximateFormulae->X_full("R0_tau"));
1498 else
1499 return (Gamma_had() / GammaZ(leptons[TAU]));
1500 } else if (f.is("NEUTRINO_1")) {
1502 /* SM contribution with the approximate formula */
1503 return (myApproximateFormulae->X_full("R0_neutrino"));
1504 else
1505 return (GammaZ(leptons[NEUTRINO_1]) / Gamma_had());
1506 } else if (f.is("NEUTRINO_2")) {
1508 /* SM contribution with the approximate formula */
1509 return (myApproximateFormulae->X_full("R0_neutrino"));
1510 else
1511 return (GammaZ(leptons[NEUTRINO_2]) / Gamma_had());
1512 } else if (f.is("NEUTRINO_3")) {
1514 /* SM contribution with the approximate formula */
1515 return (myApproximateFormulae->X_full("R0_neutrino"));
1516 else
1517 return (GammaZ(leptons[NEUTRINO_3]) / Gamma_had());
1518 } else if (f.is("UP")) {
1520 /* SM contribution with the approximate formula */
1521 return (myApproximateFormulae->X_full("R0_up"));
1522 else
1523 return (GammaZ(quarks[UP]) / Gamma_had());
1524
1525 } else if (f.is("STRANGE")) {
1527 /* SM contribution with the approximate formula */
1528 return (myApproximateFormulae->X_full("R0_strange"));
1529 else
1530 return (GammaZ(quarks[STRANGE]) / Gamma_had());
1531
1532 } else if (f.is("CHARM")) {
1534 /* SM contribution with the approximate formula */
1535 return (myApproximateFormulae->X_full("R0_charm"));
1536 else
1537 return (GammaZ(quarks[CHARM]) / Gamma_had());
1538
1539 } else if (f.is("BOTTOM")) {
1541 /* SM contribution with the approximate formula */
1542 return (myApproximateFormulae->X_full("R0_bottom"));
1543 else
1544 return (GammaZ(quarks[BOTTOM]) / Gamma_had());
1545
1546 } else throw std::runtime_error("StandardModel::R0_f called with wrong argument");
1547
1548}
1549
1550const double StandardModel::R_inv() const
1551{
1552 return (Gamma_inv() / GammaZ(leptons[ELECTRON]));
1553
1554}
1555
1556const double StandardModel::N_nu() const
1557{
1558 double Nnu = 0.0;
1559 double Gl = 0.0;
1560 double Rl = 0.0;
1561
1562 // Don't assume lepton universality: average over lepton flavours
1564 Rl = (1.0/3.0) * ( R0_f(leptons[ELECTRON]) + R0_f(leptons[MU]) + R0_f(leptons[TAU]) );
1565
1566 Nnu = sqrt( 12.0 * M_PI * Rl / Mz / Mz / sigma0_had() ) - Rl -3.0;
1567
1568 Nnu = (Gl/Gamma_inv()) * Nnu;
1569
1570 return Nnu;
1571
1572}
1573
1574
1576
1577const gslpp::complex StandardModel::gV_f(const Particle f) const
1578{
1579 return ( gA_f(f)
1580 *(1.0 - 4.0 * fabs(f.getCharge())*(kappaZ_f(f)) * sW2()));
1581}
1582
1583const gslpp::complex StandardModel::gA_f(const Particle f) const
1584{
1585 return ( sqrt(rhoZ_f(f)) * f.getIsospin());
1586}
1587
1588const gslpp::complex StandardModel::rhoZ_f(const Particle f) const
1589{
1590 if (f.getName().compare("TOP") == 0) return (gslpp::complex(0.0, 0.0, false));
1591 if (FlagRhoZ.compare("APPROXIMATEFORMULA") == 0)
1592 throw std::runtime_error("No approximate formula is available for rhoZ^f");
1593 else {
1594
1596 if (useRhoZ_f_cache[f.getIndex()])
1597 return rhoZ_f_cache[f.getIndex()];
1598
1599 double myMw = Mw();
1600
1601 /* compute Delta rho */
1602 double DeltaRho[orders_EW_size];
1603 ComputeDeltaRho(myMw, DeltaRho);
1604
1605 /* compute delta rho_rem^f */
1606 gslpp::complex deltaRho_remf[orders_EW_size];
1607 deltaRho_remf[EW1] = gslpp::complex(0.0, 0.0, false);
1608 deltaRho_remf[EW1QCD1] = gslpp::complex(0.0, 0.0, false);
1609 deltaRho_remf[EW1QCD2] = gslpp::complex(0.0, 0.0, false);
1610 deltaRho_remf[EW2] = gslpp::complex(0.0, 0.0, false);
1611 deltaRho_remf[EW2QCD1] = gslpp::complex(0.0, 0.0, false);
1612 deltaRho_remf[EW3] = gslpp::complex(0.0, 0.0, false);
1613 if (flag_order[EW1])
1614 deltaRho_remf[EW1] = myOneLoopEW->deltaRho_rem_f(f, myMw);
1615 if (flag_order[EW1QCD1])
1616#ifdef WITHIMTWOLOOPQCD
1617 deltaRho_remf[EW1QCD1] = gslpp::complex(myTwoLoopQCD->deltaRho_rem_f(f, myMw).real(),
1618 myTwoLoopQCD->deltaRho_rem_f(f, myMw).imag(), false);
1619#else
1620 deltaRho_remf[EW1QCD1] = gslpp::complex(myTwoLoopQCD->deltaRho_rem_f(f, myMw).real(), 0.0, false);
1621#endif
1622 if (flag_order[EW1QCD2])
1623 deltaRho_remf[EW1QCD2] = gslpp::complex(myThreeLoopQCD->deltaRho_rem_f(f, myMw).real(), 0.0, false);
1624 if (flag_order[EW2])
1625 deltaRho_remf[EW2] = gslpp::complex(myTwoLoopEW->deltaRho_rem_f(f, myMw).real(), 0.0, false);
1626 if (flag_order[EW2QCD1])
1627 deltaRho_remf[EW2QCD1] = gslpp::complex(myThreeLoopEW2QCD->deltaRho_rem_f(f, myMw).real(), 0.0, false);
1628 if (flag_order[EW3])
1629 deltaRho_remf[EW3] = gslpp::complex(myThreeLoopEW->deltaRho_rem_f(f, myMw).real(), 0.0, false);
1630
1631 /* compute Delta rbar_rem */
1632 double DeltaRbar_rem = 0.0;
1633 if (flag_order[EW1])
1634 DeltaRbar_rem = myOneLoopEW->DeltaRbar_rem(myMw);
1635
1636 /* Re[rho_Z^f] with or without resummation */
1637 double deltaRho_rem_f_real[orders_EW_size];
1638 for (int j = 0; j < orders_EW_size; ++j)
1639 deltaRho_rem_f_real[j] = deltaRho_remf[j].real();
1640 double ReRhoZf = resumRhoZ(DeltaRho, deltaRho_rem_f_real, DeltaRbar_rem, f.is("BOTTOM"));
1641
1642 /* Im[rho_Z^f] without resummation */
1643 double ImRhoZf = 0.0;
1644 for (int j = 0; j < orders_EW_size; ++j)
1645 ImRhoZf += deltaRho_remf[j].imag();
1646
1647 rhoZ_f_cache[f.getIndex()] = gslpp::complex(ReRhoZf, ImRhoZf, false);
1648 useRhoZ_f_cache[f.getIndex()] = true;
1649 return (gslpp::complex(ReRhoZf, ImRhoZf, false));
1650 }
1651}
1652
1653const gslpp::complex StandardModel::kappaZ_f(const Particle f) const
1654{
1655 if (f.is("TOP")) return (gslpp::complex(0.0, 0.0, false));
1656
1658 if (useKappaZ_f_cache[f.getIndex()])
1659 return kappaZ_f_cache[f.getIndex()];
1660
1661 double myMw = Mw();
1662
1663 double ReKappaZf = 0.0, ImKappaZf = 0.0;
1664 if (FlagKappaZ.compare("APPROXIMATEFORMULA") == 0) {
1665
1666// Choose the correct formulae for the effective angle
1667 if ( f.is("BOTTOM") ){
1668 ReKappaZf = myApproximateFormulae->sin2thetaEff_b_full() / sW2();
1669 } else if ( f.is("ELECTRON") || f.is("MU") || f.is("TAU") ) {
1670 ReKappaZf = myApproximateFormulae->sin2thetaEff_l_full() / sW2();
1671 } else {
1672 ReKappaZf = myApproximateFormulae->sin2thetaEff(f) / sW2();
1673 }
1674
1675 ImKappaZf = myOneLoopEW->deltaKappa_rem_f(f, myMw).imag();
1676#ifdef WITHIMTWOLOOPQCD
1677 ImKappaZf += myTwoLoopQCD->deltaKappa_rem_f(f, myMw).imag();
1678
1679 /* TEST */
1680 //ImKappaZf -= myCache->ale()*myCache->alsMz()/24.0/M_PI*(cW2() - sW2())/sW2()/sW2();
1681#endif
1682 } else {
1683 /* compute Delta rho */
1684 double DeltaRho[orders_EW_size];
1685 ComputeDeltaRho(myMw, DeltaRho);
1686
1687 /* compute delta kappa_rem^f */
1688 gslpp::complex deltaKappa_remf[orders_EW_size];
1689 deltaKappa_remf[EW1] = gslpp::complex(0.0, 0.0, false);
1690 deltaKappa_remf[EW1QCD1] = gslpp::complex(0.0, 0.0, false);
1691 deltaKappa_remf[EW1QCD2] = gslpp::complex(0.0, 0.0, false);
1692 deltaKappa_remf[EW2] = gslpp::complex(0.0, 0.0, false);
1693 deltaKappa_remf[EW2QCD1] = gslpp::complex(0.0, 0.0, false);
1694 deltaKappa_remf[EW3] = gslpp::complex(0.0, 0.0, false);
1695 if (flag_order[EW1])
1696 deltaKappa_remf[EW1] = myOneLoopEW->deltaKappa_rem_f(f, myMw);
1697 if (flag_order[EW1QCD1])
1698#ifdef WITHIMTWOLOOPQCD
1699 deltaKappa_remf[EW1QCD1] = gslpp::complex(myTwoLoopQCD->deltaKappa_rem_f(f, myMw).real(),
1700 myTwoLoopQCD->deltaKappa_rem_f(f, myMw).imag(), false);
1701#else
1702 deltaKappa_remf[EW1QCD1] = gslpp::complex(myTwoLoopQCD->deltaKappa_rem_f(f, myMw).real(), 0.0, false);
1703#endif
1704 if (flag_order[EW1QCD2])
1705 deltaKappa_remf[EW1QCD2] = gslpp::complex(myThreeLoopQCD->deltaKappa_rem_f(f, myMw).real(), 0.0, false);
1706 if (flag_order[EW2])
1707 deltaKappa_remf[EW2] = gslpp::complex(myTwoLoopEW->deltaKappa_rem_f(f, myMw).real(), 0.0, false);
1708 if (flag_order[EW2QCD1])
1709 deltaKappa_remf[EW2QCD1] = gslpp::complex(myThreeLoopEW2QCD->deltaKappa_rem_f(f, myMw).real(), 0.0, false);
1710 if (flag_order[EW3])
1711 deltaKappa_remf[EW3] = gslpp::complex(myThreeLoopEW->deltaKappa_rem_f(f, myMw).real(), 0.0, false);
1712
1713 /* compute Delta rbar_rem */
1714 double DeltaRbar_rem = 0.0;
1715 if (flag_order[EW1])
1716 DeltaRbar_rem = myOneLoopEW->DeltaRbar_rem(myMw);
1717
1718 /* Re[kappa_Z^f] with or without resummation */
1719 double deltaKappa_rem_f_real[orders_EW_size];
1720 for (int j = 0; j < orders_EW_size; ++j)
1721 deltaKappa_rem_f_real[j] = deltaKappa_remf[j].real();
1722
1723 ReKappaZf = resumKappaZ(DeltaRho, deltaKappa_rem_f_real, DeltaRbar_rem, f.is("BOTTOM"));
1724
1725 /* O(alpha^2) correction to Re[kappa_Z^f] from the Z-gamma mixing */
1726 ReKappaZf += 35.0 * alphaMz() * alphaMz() / 18.0 / sW2()
1727 *(1.0 - 8.0 / 3.0 * ReKappaZf * sW2());
1728
1729 /* Im[kappa_Z^f] without resummation */
1730 for (int j = 0; j < orders_EW_size; ++j)
1731 ImKappaZf += deltaKappa_remf[j].imag();
1732 }
1733
1734 kappaZ_f_cache[f.getIndex()] = gslpp::complex(ReKappaZf, ImKappaZf, false);
1735 useKappaZ_f_cache[f.getIndex()] = true;
1736 return (gslpp::complex(ReKappaZf, ImKappaZf, false));
1737}
1738
1739const gslpp::complex StandardModel::deltaRhoZ_f(const Particle f) const
1740{
1741 Particle p1 = f, pe = leptons[ELECTRON];
1742
1743 if (f.is("TOP") || f.is("ELECTRON")) return (gslpp::complex(0.0, 0.0, false));
1744
1745 /* In the case of BOTTOM, the top contribution has to be subtracted.
1746 * The remaining contribution is the same as that for DOWN and STRANGE. */
1747 if (f.is("BOTTOM")) p1 = quarks[DOWN];
1748
1749 double myMw = Mw();
1750 double cW2 = myMw * myMw / Mz / Mz, sW2 = 1.0 - cW2;
1751
1752 gslpp::complex ul = (3.0 * myEWSMcache->v_f(pe, myMw) * myEWSMcache->v_f(pe, myMw)
1753 + myEWSMcache->a_f(pe) * myEWSMcache->a_f(pe)) / 4.0 / cW2 * myOneLoopEW->FZ(Mz*Mz, myMw)
1754 + myOneLoopEW->FW(Mz*Mz, pe, myMw);
1755 gslpp::complex uf = (3.0 * myEWSMcache->v_f(p1, myMw) * myEWSMcache->v_f(p1, myMw)
1756 + myEWSMcache->a_f(p1) * myEWSMcache->a_f(p1)) / 4.0 / cW2 * myOneLoopEW->FZ(Mz*Mz, myMw)
1757 + myOneLoopEW->FW(Mz*Mz, p1, myMw);
1758
1759 gslpp::complex dRho = 2.0 * (uf - ul);
1760 dRho *= ale / 4.0 / M_PI / sW2;
1761 return dRho;
1762}
1763
1764const gslpp::complex StandardModel::deltaKappaZ_f(const Particle f) const
1765{
1766 Particle p1 = f, pe = leptons[ELECTRON];
1767
1768 if (f.is("TOP") || f.is("ELECTRON")) return (gslpp::complex(0.0, 0.0, false));
1769
1770 /* In the case of BOTTOM, the top contribution has to be subtracted.
1771 * The remaining contribution is the same as that for DOWN and STRANGE. */
1772 if (f.is("BOTTOM")) p1 = quarks[DOWN];
1773
1774 double myMw = Mw();
1775 double cW2 = myMw * myMw / Mz / Mz, sW2 = 1.0 - cW2;
1776 gslpp::complex ul = (3.0 * myEWSMcache->v_f(pe, myMw) * myEWSMcache->v_f(pe, myMw)
1777 + myEWSMcache->a_f(pe) * myEWSMcache->a_f(pe)) / 4.0 / cW2 * myOneLoopEW->FZ(Mz*Mz, myMw)
1778 + myOneLoopEW->FW(Mz*Mz, pe, myMw);
1779 double deltal = myEWSMcache->delta_f(pe, myMw);
1780 gslpp::complex uf = (3.0 * myEWSMcache->v_f(p1, myMw) * myEWSMcache->v_f(p1, myMw)
1781 + myEWSMcache->a_f(p1) * myEWSMcache->a_f(p1)) / 4.0 / cW2 * myOneLoopEW->FZ(Mz*Mz, myMw)
1782 + myOneLoopEW->FW(Mz*Mz, p1, myMw);
1783 double deltaf = myEWSMcache->delta_f(p1, myMw);
1784
1785 gslpp::complex dKappa = (deltaf * deltaf - deltal * deltal) / 4.0 / cW2 * myOneLoopEW->FZ(Mz*Mz, myMw)
1786 - uf + ul;
1787 dKappa *= ale / 4.0 / M_PI / sW2;
1788 return dKappa;
1789}
1790
1791
1793
1794const double StandardModel::epsilon1() const
1795{
1796 double rhoZe = rhoZ_f(leptons[ELECTRON]).real();
1797 double DeltaRhoPrime = 2.0 * (sqrt(rhoZe) - 1.0);
1798
1799 return DeltaRhoPrime;
1800}
1801
1802const double StandardModel::epsilon2() const
1803{
1804 double rhoZe = rhoZ_f(leptons[ELECTRON]).real();
1805 double sin2thetaEff = kappaZ_f(leptons[ELECTRON]).real() * sW2();
1806 double DeltaRhoPrime = 2.0 * (sqrt(rhoZe) - 1.0);
1807 double DeltaKappaPrime = sin2thetaEff / s02() - 1.0;
1808 double DeltaRW = 1.0 - M_PI * alphaMz() / (sqrt(2.0) * GF * Mz * Mz * sW2() * cW2());
1809
1810 return ( c02() * DeltaRhoPrime + s02() * DeltaRW / (c02() - s02())
1811 - 2.0 * s02() * DeltaKappaPrime);
1812}
1813
1814const double StandardModel::epsilon3() const
1815{
1816 double rhoZe = rhoZ_f(leptons[ELECTRON]).real();
1817 double sin2thetaEff = kappaZ_f(leptons[ELECTRON]).real() * sW2();
1818 double DeltaRhoPrime = 2.0 * (sqrt(rhoZe) - 1.0);
1819 double DeltaKappaPrime = sin2thetaEff / s02() - 1.0;
1820
1821 return ( c02() * DeltaRhoPrime + (c02() - s02()) * DeltaKappaPrime);
1822}
1823
1824const double StandardModel::epsilonb() const
1825{
1826 /* epsilon_b from g_A^b
1827 * see Eq.(13) of IJMP A7, 1031 (1998) by Altarelli et al. */
1828 //double rhoZe = rhoZ_l_SM(StandardModel::ELECTRON).real();
1829 //double rhoZb = rhoZ_q_SM(QCD::BOTTOM).real();
1830 //double DeltaRhoPrime = 2.0*( sqrt(rhoZe) - 1.0 );
1831 //double eps1 = DeltaRhoPrime;
1832 //return ( - 1.0 + sqrt(rhoZb)/(1.0 + eps1/2.0) );
1833
1834 /* epsilon_b from Re(g_V^b/g_A^b), i.e. Re(kappaZ_b)
1835 * see Eq.(13) of IJMP A7, 1031 (1998) by Altarelli et al. */
1836 gslpp::complex kappaZe = kappaZ_f(leptons[ELECTRON]);
1837 gslpp::complex kappaZb = kappaZ_f(quarks[BOTTOM]);
1839 return ( kappaZe.real() / kappaZb.real() - 1.0);
1840 else
1841 return ( (kappaZe.real() + deltaKappaZ_f(quarks[BOTTOM]).real())
1842 / kappaZb.real() - 1.0);
1843
1844 /* epsilon_b from Gamma_b via Eqs.(11), (12) and (16) of IJMP A7,
1845 * 1031 (1998) by Altarelli et al.
1846 * Note: mb has to be mb=4.7, since Eq.(16) were derived with this value.
1847 */
1848 //double als_Mz = Als(myCache->Mz(), FULLNNLO);
1849 //double delta_als = (als_Mz - 0.119)/M_PI;
1850 //double delta_alpha = (alphaMz() - 1.0/128.90)/myCache->ale();
1851 //double Gamma_b_Born = 0.3798*( 1.0 + delta_als - 0.42*delta_alpha);
1852 //double a = als_Mz/M_PI;
1853 //double RQCD = 1.0 + 1.2*a - 1.1*a*a - 13.0*a*a*a;
1854 //double mb = Mrun(myCache->Mz(), quarks[QCD::BOTTOM].getMass(), FULLNNLO);// This is wrong!
1855 //double mb = 4.7;
1856 //std::cout << "mb = " << mb << std::endl;
1857 //double beta = sqrt(1.0 - 4.0*mb*mb/myCache->Mz()/myCache->Mz());
1858 //double Nc = 3.0;
1859 //double factor = myCache->GF()*myCache->Mz()*myCache->Mz()*myCache->Mz()/6.0/M_PI/sqrt(2.0);
1860 //double Gamma_b = factor*beta*((3.0 - beta*beta)/2.0*gVq_SM(QCD::BOTTOM).abs2()
1861 // + beta*beta*gAq_SM(QCD::BOTTOM).abs2())
1862 // *Nc*RQCD*(1.0 + alphaMz()/12.0/M_PI);
1863 //return ( (Gamma_b/Gamma_b_Born - 1.0 - 1.42*epsilon1_SM()
1864 // + 0.54*epsilon3_SM() )/2.29 );
1865}
1866
1867
1869
1870double StandardModel::resumMw(const double Mw_i, const double DeltaRho[orders_EW_size],
1871 const double DeltaR_rem[orders_EW_size]) const
1872{
1873 if ((FlagMw.compare("APPROXIMATEFORMULA") == 0)
1874 || (DeltaR_rem[EW2QCD1] != 0.0)
1875 || (DeltaR_rem[EW3] != 0.0))
1876 throw std::runtime_error("Error in StandardModel::resumMw()");
1877
1878 if (!flag_order[EW2] && FlagMw.compare("NORESUM") != 0)
1879 throw std::runtime_error("Error in StandardModel::resumMw()");
1880
1881 double cW2_TMP = Mw_i * Mw_i / Mz / Mz;
1882 double sW2_TMP = 1.0 - cW2_TMP;
1883
1884 double f_AlphaToGF, DeltaRho_sum = 0.0, DeltaRho_G = 0.0;
1885 if (FlagMw.compare("NORESUM") == 0) {
1886 for (int j = 0; j < orders_EW_size; ++j) {
1887 DeltaRho_sum += DeltaRho[(orders_EW) j];
1888 }
1889 } else {
1890 // conversion: alpha(0) --> G_F
1891 f_AlphaToGF = sqrt(2.0) * GF * pow(Mz, 2.0) * sW2_TMP * cW2_TMP / M_PI / ale;
1892 DeltaRho_sum = f_AlphaToGF * DeltaRho[EW1]
1893 + f_AlphaToGF * DeltaRho[EW1QCD1]
1894 + f_AlphaToGF * DeltaRho[EW1QCD2]
1895 + pow(f_AlphaToGF, 2.0) * DeltaRho[EW2]
1896 + pow(f_AlphaToGF, 2.0) * DeltaRho[EW2QCD1]
1897 + pow(f_AlphaToGF, 3.0) * DeltaRho[EW3];
1898 DeltaRho_G = f_AlphaToGF * DeltaRho[EW1];
1899 }
1900
1901 double R;
1902 double DeltaR_rem_sum = 0.0;
1903 double DeltaR_EW1 = 0.0, DeltaR_EW2_rem = 0.0;
1904 if (FlagMw.compare("NORESUM") == 0) {
1905 for (int j = 0; j < orders_EW_size; ++j)
1906 DeltaR_rem_sum += DeltaR_rem[(orders_EW) j];
1907
1908 // Full EW one-loop contribution (without the full DeltaAlphaL5q)
1909 DeltaR_EW1 = -cW2_TMP / sW2_TMP * DeltaRho[EW1] + DeltaR_rem[EW1];
1910
1911 // Full EW two-loop contribution without reducible corrections
1912 DeltaR_EW2_rem = myApproximateFormulae->DeltaR_TwoLoopEW_rem(Mw_i);
1913
1914 // subtract the EW two-loop contributions from DeltaRho_sum and DeltaR_rem_sum
1915 DeltaRho_sum -= DeltaRho[EW2];
1916 DeltaR_rem_sum -= DeltaR_rem[EW2];
1917
1918 // R = 1 + Delta r, including the full EW two-loop contribution
1919 R = 1.0 + DeltaAlphaL5q() - cW2_TMP / sW2_TMP * DeltaRho_sum
1920 + DeltaR_rem_sum;
1921 R += DeltaAlphaL5q() * DeltaAlphaL5q() + 2.0 * DeltaAlphaL5q() * DeltaR_EW1
1922 + DeltaR_EW2_rem;
1923 } else if (FlagMw.compare("OMSI") == 0) {
1924 // R = 1/(1 - Delta r)
1925 R = 1.0 / (1.0 + cW2_TMP / sW2_TMP * DeltaRho_sum)
1926 / (1.0 - DeltaAlphaL5q()
1927 - DeltaR_rem[EW1] - DeltaR_rem[EW1QCD1] - DeltaR_rem[EW2]);
1928 } else if (FlagMw.compare("INTERMEDIATE") == 0) {
1929 // R = 1/(1 - Delta r)
1930 R = 1.0 / ((1.0 + cW2_TMP / sW2_TMP * DeltaRho_sum)
1931 *(1.0 - DeltaAlphaL5q() - DeltaR_rem[EW1])
1932 - DeltaR_rem[EW1QCD1] - DeltaR_rem[EW2]);
1933 } else if (FlagMw.compare("OMSII") == 0) {
1934 // R = 1/(1 - Delta r)
1935 R = 1.0 / ((1.0 + cW2_TMP / sW2_TMP * DeltaRho_sum)*(1.0 - DeltaAlphaL5q())
1936 - (1.0 + cW2_TMP / sW2_TMP * DeltaRho_G) * DeltaR_rem[EW1]
1937 - DeltaR_rem[EW1QCD1] - DeltaR_rem[EW2]);
1938 } else
1939 throw std::runtime_error("Error in StandardModel::resumMw()");
1940
1941 if (FlagMw.compare("NORESUM") == 0) {
1942 /* Mzbar and Mwbar are defined in the complex-pole scheme. */
1943
1944 double tmp = 4.0 * M_PI * ale / sqrt(2.0) / GF / Mzbar() / Mzbar();
1945 if (tmp * R > 1.0) throw std::runtime_error("StandardModel::resumMw(): Negative (1-tmp*R)");
1946 double Mwbar = Mzbar() / sqrt(2.0) * sqrt(1.0 + sqrt(1.0 - tmp * R));
1947
1948 return MwFromMwbar(Mwbar);
1949 } else {
1950 double tmp = 4.0 * M_PI * ale / sqrt(2.0) / GF / Mz / Mz;
1951 if (tmp * R > 1.0) throw std::runtime_error("StandardModel::resumMw(): Negative (1-tmp*R)");
1952
1953 return (Mz / sqrt(2.0) * sqrt(1.0 + sqrt(1.0 - tmp * R)));
1954 }
1955}
1956
1957double StandardModel::resumRhoZ(const double DeltaRho[orders_EW_size],
1958 const double deltaRho_rem[orders_EW_size],
1959 const double DeltaRbar_rem, bool bool_Zbb) const
1960{
1961 if ((FlagRhoZ.compare("APPROXIMATEFORMULA") == 0)
1962 || (deltaRho_rem[EW1QCD2] != 0.0)
1963 || (deltaRho_rem[EW2QCD1] != 0.0)
1964 || (deltaRho_rem[EW3] != 0.0))
1965 throw std::runtime_error("Error in StandardModel::resumRhoZ()");
1966
1967 if (!flag_order[EW2] && FlagRhoZ.compare("NORESUM") != 0)
1968 throw std::runtime_error("Error in StandardModel::resumRhoZ()");
1969
1970 double Mw_TMP = Mw();
1971 double cW2_TMP = cW2();
1972 double sW2_TMP = sW2();
1973
1974 double f_AlphaToGF, DeltaRho_sum = 0.0, DeltaRho_G;
1975 double DeltaRbar_rem_G, deltaRho_rem_G, deltaRho_rem_G2;
1976 // conversion: alpha(0) --> G_F
1977 f_AlphaToGF = sqrt(2.0) * GF * pow(Mz, 2.0)
1978 * sW2_TMP * cW2_TMP / M_PI / ale;
1979 DeltaRho_sum = f_AlphaToGF * DeltaRho[EW1]
1980 + f_AlphaToGF * DeltaRho[EW1QCD1]
1981 + f_AlphaToGF * DeltaRho[EW1QCD2]
1982 + pow(f_AlphaToGF, 2.0) * DeltaRho[EW2]
1983 + pow(f_AlphaToGF, 2.0) * DeltaRho[EW2QCD1]
1984 + pow(f_AlphaToGF, 3.0) * DeltaRho[EW3];
1985 DeltaRho_G = f_AlphaToGF * DeltaRho[EW1];
1986 DeltaRbar_rem_G = f_AlphaToGF*DeltaRbar_rem;
1987 deltaRho_rem_G = f_AlphaToGF * (deltaRho_rem[EW1]
1988 + deltaRho_rem[EW1QCD1]);
1989 deltaRho_rem_G2 = pow(f_AlphaToGF, 2.0) * deltaRho_rem[EW2];
1990
1991 /* Real parts */
1992 double rhoZ;
1993 if (!bool_Zbb) {
1994 if (FlagRhoZ.compare("OMSI") == 0) {
1995 rhoZ = (1.0 + deltaRho_rem_G + deltaRho_rem_G2)
1996 / (1.0 - DeltaRho_sum * (1.0 - DeltaRbar_rem_G));
1997 } else if (FlagRhoZ.compare("INTERMEDIATE") == 0) {
1998 rhoZ = (1.0 + deltaRho_rem_G)
1999 / (1.0 - DeltaRho_sum * (1.0 - DeltaRbar_rem_G))
2000 + deltaRho_rem_G2;
2001 } else if (FlagRhoZ.compare("NORESUM") == 0
2002 || FlagRhoZ.compare("OMSII") == 0) {
2003 rhoZ = 1.0 + DeltaRho_sum - DeltaRho_G * DeltaRbar_rem_G
2004 + DeltaRho_G * DeltaRho_G
2005 + deltaRho_rem_G * (1.0 + DeltaRho_G) + deltaRho_rem_G2;
2006 } else
2007 throw std::runtime_error("Error in StandardModel::resumRhoZ()");
2008 } else {
2009 /* Z to bb */
2010 double OnePlusTaub = 1.0 + taub();
2011 double OnePlusTaub2 = OnePlusTaub*OnePlusTaub;
2012 double rhoZbL;
2013 deltaRho_rem_G += f_AlphaToGF * ale / 4.0 / M_PI / sW2_TMP
2014 * pow(mtpole / Mw_TMP, 2.0);
2015 if (FlagRhoZ.compare("NORESUM") == 0) {
2016 rhoZ = (1.0 + DeltaRho_sum - DeltaRho_G * DeltaRbar_rem_G
2017 + DeltaRho_G * DeltaRho_G
2018 + deltaRho_rem_G * (1.0 + DeltaRho_G) + deltaRho_rem_G2)
2019 * OnePlusTaub2;
2020 } else if (FlagRhoZ.compare("OMSI") == 0) {
2021 rhoZbL = OnePlusTaub2 / (1.0 - DeltaRho_sum);
2022 rhoZ = rhoZbL / (1.0 - rhoZbL * deltaRho_rem_G);
2023 } else if (FlagRhoZ.compare("INTERMEDIATE") == 0) {
2024 rhoZbL = OnePlusTaub2 / (1.0 - DeltaRho_sum);
2025 rhoZ = rhoZbL * (1.0 + rhoZbL * deltaRho_rem_G);
2026 } else if (FlagRhoZ.compare("OMSII") == 0) {
2027 rhoZbL = OnePlusTaub2 / (1.0 - DeltaRho_sum);
2028 rhoZ = rhoZbL * (1.0 + deltaRho_rem_G);
2029 } else
2030 throw std::runtime_error("Error in StandardModel::resumRhoZ()");
2031 }
2032
2033 return rhoZ;
2034}
2035
2036double StandardModel::resumKappaZ(const double DeltaRho[orders_EW_size],
2037 const double deltaKappa_rem[orders_EW_size],
2038 const double DeltaRbar_rem, const bool bool_Zbb) const
2039{
2040 if ((FlagKappaZ.compare("APPROXIMATEFORMULA") == 0)
2041 || (deltaKappa_rem[EW2QCD1] != 0.0)
2042 || (deltaKappa_rem[EW3] != 0.0))
2043 throw std::runtime_error("Error in StandardModel::resumKappaZ()");
2044
2045 if (!flag_order[EW2] && FlagKappaZ.compare("NORESUM") != 0)
2046 throw std::runtime_error("Error in StandardModel::resumKappaZ()");
2047
2048 double Mw_TMP = Mw();
2049 double cW2_TMP = cW2();
2050 double sW2_TMP = sW2();
2051
2052 double f_AlphaToGF, DeltaRho_sum = 0.0, DeltaRho_G;
2053 double DeltaRbar_rem_G, deltaKappa_rem_G, deltaKappa_rem_G2;
2054 // conversion: alpha(0) --> G_F
2055 f_AlphaToGF = sqrt(2.0) * GF * pow(Mz, 2.0)
2056 * sW2_TMP * cW2_TMP / M_PI / ale;
2057 DeltaRho_sum = f_AlphaToGF * DeltaRho[EW1]
2058 + f_AlphaToGF * DeltaRho[EW1QCD1]
2059 + f_AlphaToGF * DeltaRho[EW1QCD2]
2060 + pow(f_AlphaToGF, 2.0) * DeltaRho[EW2]
2061 + pow(f_AlphaToGF, 2.0) * DeltaRho[EW2QCD1]
2062 + pow(f_AlphaToGF, 3.0) * DeltaRho[EW3];
2063 DeltaRho_G = f_AlphaToGF * DeltaRho[EW1];
2064 DeltaRbar_rem_G = f_AlphaToGF*DeltaRbar_rem;
2065 deltaKappa_rem_G = f_AlphaToGF * (deltaKappa_rem[EW1]
2066 + deltaKappa_rem[EW1QCD1]
2067 + deltaKappa_rem[EW1QCD2]);
2068 deltaKappa_rem_G2 = pow(f_AlphaToGF, 2.0) * deltaKappa_rem[EW2];
2069
2070 /* Real parts */
2071 double kappaZ;
2072 if (!bool_Zbb) {
2073 if (FlagKappaZ.compare("OMSI") == 0) {
2074 kappaZ = (1.0 + deltaKappa_rem_G + deltaKappa_rem_G2)
2075 *(1.0 + cW2_TMP / sW2_TMP * DeltaRho_sum * (1.0 - DeltaRbar_rem_G));
2076 } else if (FlagKappaZ.compare("INTERMEDIATE") == 0) {
2077 kappaZ = (1.0 + deltaKappa_rem_G)
2078 *(1.0 + cW2_TMP / sW2_TMP * DeltaRho_sum * (1.0 - DeltaRbar_rem_G))
2079 + deltaKappa_rem_G2;
2080 } else if (FlagKappaZ.compare("NORESUM") == 0
2081 || FlagKappaZ.compare("OMSII") == 0) {
2082 kappaZ = 1.0 + cW2_TMP / sW2_TMP * DeltaRho_sum
2083 - cW2_TMP / sW2_TMP * DeltaRho_G * DeltaRbar_rem_G
2084 + deltaKappa_rem_G * (1.0 + cW2_TMP / sW2_TMP * DeltaRho_G)
2085 + deltaKappa_rem_G2;
2086 } else
2087 throw std::runtime_error("Error in StandardModel::resumKappaZ()");
2088 } else {
2089 /* Z to bb */
2090 double OnePlusTaub = 1.0 + taub();
2091 double kappaZbL;
2092 deltaKappa_rem_G -= f_AlphaToGF * ale / 8.0 / M_PI / sW2_TMP
2093 * pow(mtpole / Mw_TMP, 2.0);
2094 if (FlagKappaZ.compare("NORESUM") == 0) {
2095 kappaZ = (1.0 + cW2_TMP / sW2_TMP * DeltaRho_sum
2096 - cW2_TMP / sW2_TMP * DeltaRho_G * DeltaRbar_rem_G
2097 + deltaKappa_rem_G * (1.0 + cW2_TMP / sW2_TMP * DeltaRho_G)
2098 + deltaKappa_rem_G2) / OnePlusTaub;
2099 } else if (FlagKappaZ.compare("OMSI") == 0) {
2100 kappaZbL = (1.0 + cW2_TMP / sW2_TMP * DeltaRho_sum) / OnePlusTaub;
2101 kappaZ = kappaZbL * (1.0 + deltaKappa_rem_G);
2102 } else if (FlagKappaZ.compare("INTERMEDIATE") == 0
2103 || FlagKappaZ.compare("OMSII") == 0) {
2104 kappaZbL = (1.0 + cW2_TMP / sW2_TMP * DeltaRho_sum) / OnePlusTaub;
2105 kappaZ = kappaZbL + deltaKappa_rem_G;
2106 } else
2107 throw std::runtime_error("Error in StandardModel::resumKappaZ()");
2108 }
2109
2110 return kappaZ;
2111}
2112
2114{
2115 double taub_tmp = 0.0;
2116 double Xt = myEWSMcache->Xt_GF();
2117 if (flag_order[EW1])
2118 taub_tmp += -2.0 * Xt;
2119 if (flag_order[EW1QCD1])
2120 taub_tmp += 2.0 / 3.0 * M_PI * Xt * myEWSMcache->alsMt();
2121 if (flag_order[EW1QCD2])
2122 taub_tmp += 0.0;
2123 if (flag_order[EW2])
2124 taub_tmp += -2.0 * Xt * Xt * myTwoLoopEW->tau_2();
2125 if (flag_order[EW2QCD1])
2126 taub_tmp += 0.0;
2127 if (flag_order[EW3])
2128 taub_tmp += 0.0;
2129
2130 return taub_tmp;
2131}
2132
2134{
2135 switch (q) {
2136 case QCD::UP:
2137 case QCD::CHARM:
2138 return ( -0.000113);
2139 case QCD::TOP:
2140 return ( 0.0);
2141 case QCD::DOWN:
2142 case QCD::STRANGE:
2143 return ( -0.000160);
2144 case QCD::BOTTOM:
2145 return ( -0.000040);
2146 default:
2147 throw std::runtime_error("Error in StandardModel::Delta_EWQCD");
2148 }
2149}
2150
2151double StandardModel::RVq(const QCD::quark q) const
2152{
2153 if (q == QCD::TOP) return 0.0;
2154
2155 double mcMz, mbMz;
2158 //mcMz = 0.56381685; /* for debug */
2159 //mbMz = 2.8194352; /* for debug */
2160
2161 double MtPole = mtpole;
2162
2163 /* electric charge squared */
2164 double Qf2 = pow(quarks[q].getCharge(), 2.0);
2165
2166 /* s = Mz^2 */
2167 double s = Mz * Mz;
2168
2169 /* products of the charm and bottom masses at Mz */
2170 double mcMz2 = mcMz*mcMz;
2171 double mbMz2 = mbMz*mbMz;
2172 double mqMz2, mqdash4;
2173 switch (q) {
2174 case QCD::CHARM:
2175 mqMz2 = mcMz*mcMz;
2176 mqdash4 = mbMz2*mbMz2;
2177 break;
2178 case QCD::BOTTOM:
2179 mqMz2 = mbMz*mbMz;
2180 mqdash4 = mcMz2*mcMz2;
2181 break;
2182 default:
2183 mqMz2 = 0.0;
2184 mqdash4 = 0.0;
2185 break;
2186 }
2187
2188 /* Logarithms */
2189 //double log_t = log(pow(quarks[TOP].getMass(),2.0)/s);
2190 double log_t = log(MtPole * MtPole / s); // the pole mass
2191 double log_c = log(mcMz2 / s);
2192 double log_b = log(mbMz2 / s);
2193 double log_q;
2194 switch (q) {
2195 case QCD::CHARM:
2196 case QCD::BOTTOM:
2197 log_q = log(mqMz2 / s);
2198 break;
2199 default:
2200 log_q = 0.0;
2201 break;
2202 }
2203
2204 /* the active number of flavour */
2205 double nf = 5.0;
2206
2207 /* zeta functions */
2208 double zeta2 = getMyEWSMcache()->getZeta2();
2209 double zeta3 = getMyEWSMcache()->getZeta3();
2210 //double zeta4 = getMyCache()->GetZeta4();
2211 double zeta5 = getMyEWSMcache()->getZeta5();
2212
2213 /* massless non-singlet corrections */
2214 double C02 = 365.0 / 24.0 - 11.0 * zeta3 + (-11.0 / 12.0 + 2.0 / 3.0 * zeta3) * nf;
2215 double C03 = 87029.0 / 288.0 - 121.0 / 8.0 * zeta2 - 1103.0 / 4.0 * zeta3
2216 + 275.0 / 6.0 * zeta5
2217 + (-7847.0 / 216.0 + 11.0 / 6.0 * zeta2 + 262.0 / 9.0 * zeta3
2218 - 25.0 / 9.0 * zeta5) * nf
2219 + (151.0 / 162.0 - zeta2 / 18.0 - 19.0 / 27.0 * zeta3) * nf*nf;
2220 double C04 = -156.61 + 18.77 * nf - 0.7974 * nf * nf + 0.0215 * nf * nf*nf;
2221 //std::cout << "TEST: C02 = " << C02 << std::endl;// TEST (should be 1.40923)
2222 //std::cout << "TEST: C03 = " << C03 << std::endl;// TEST (should be -12.7671)
2223 //std::cout << "TEST: C04 = " << C04 << std::endl;// TEST (should be -80.0075)
2224
2225 /* quadratic massive corrections */
2226 double C23 = -80.0 + 60.0 * zeta3 + (32.0 / 9.0 - 8.0 / 3.0 * zeta3) * nf;
2227 double C21V = 12.0;
2228 double C22V = 253.0 / 2.0 - 13.0 / 3.0 * nf;
2229 double C23V = 2522.0 - 855.0 / 2.0 * zeta2 + 310.0 / 3.0 * zeta3 - 5225.0 / 6.0 * zeta5
2230 + (-4942.0 / 27.0 + 34.0 * zeta2 - 394.0 / 27.0 * zeta3
2231 + 1045.0 / 27.0 * zeta5) * nf
2232 + (125.0 / 54.0 - 2.0 / 3.0 * zeta2) * nf*nf;
2233
2234 /* quartic massive corrections */
2235 double C42 = 13.0 / 3.0 - 4.0 * zeta3;
2236 double C40V = -6.0;
2237 double C41V = -22.0;
2238 double C42V = -3029.0 / 12.0 + 162.0 * zeta2 + 112.0 * zeta3
2239 + (143.0 / 18.0 - 4.0 * zeta2 - 8.0 / 3.0 * zeta3) * nf;
2240 double C42VL = -11.0 / 2.0 + nf / 3.0;
2241
2242 /* power suppressed top-mass correction */
2243 //double xt = s/pow(quarks[TOP].getMass(),2.0);
2244 double xt = s / MtPole / MtPole; // the pole mass
2245 double C2t = xt * (44.0 / 675.0 - 2.0 / 135.0 * (-log_t));
2246
2247 /* rescaled strong coupling constant */
2248 double AlsMzPi = AlsMz / M_PI;
2249 double AlsMzPi2 = AlsMzPi*AlsMzPi;
2250 double AlsMzPi3 = AlsMzPi2*AlsMzPi;
2251 double AlsMzPi4 = AlsMzPi3*AlsMzPi;
2252
2253 /* electromagnetic coupling at Mz */
2254 double alpMz = alphaMz();
2255
2256 /* radiator function to the vector current */
2257 double RVf;
2258 RVf = 1.0 + 3.0 / 4.0 * Qf2 * alpMz / M_PI + AlsMzPi - Qf2 / 4.0 * alpMz / M_PI * AlsMzPi
2259 + (C02 + C2t) * AlsMzPi2 + C03 * AlsMzPi3 + C04 * AlsMzPi4
2260 + (mcMz2 + mbMz2) / s * C23 * AlsMzPi3
2261 + mqMz2 / s * (C21V * AlsMzPi + C22V * AlsMzPi2 + C23V * AlsMzPi3)
2262 + mcMz2 * mcMz2 / s / s * (C42 - log_c) * AlsMzPi2
2263 + mbMz2 * mbMz2 / s / s * (C42 - log_b) * AlsMzPi2
2264 + mqMz2 * mqMz2 / s / s * (C40V + C41V * AlsMzPi + (C42V + C42VL * log_q) * AlsMzPi2)
2265 + 12.0 * mqdash4 / s / s * AlsMzPi2
2266 - mqMz2 * mqMz2 * mqMz2 / s / s / s
2267 * (8.0 + 16.0 / 27.0 * (155.0 + 6.0 * log_q) * AlsMzPi);
2268 return RVf;
2269}
2270
2271double StandardModel::RAq(const QCD::quark q) const
2272{
2273 if (q == QCD::TOP) return 0.0;
2274
2275 double mcMz, mbMz;
2278 //mcMz = 0.56381685; /* for debug */
2279 //mbMz = 2.8194352; /* for debug */
2280
2281 double MtPole = mtpole;
2282
2283 /* z-component of isospin */
2284 double I3q = quarks[q].getIsospin();
2285 /* electric charge squared */
2286 double Qf2 = pow(quarks[q].getCharge(), 2.0);
2287
2288 /* s = Mz^2 */
2289 double s = Mz * Mz;
2290
2291 /* products of the charm and bottom masses at Mz */
2292 double mcMz2 = mcMz*mcMz;
2293 double mbMz2 = mbMz*mbMz;
2294 double mqMz2, mqdash4;
2295 switch (q) {
2296 case QCD::CHARM:
2297 mqMz2 = mcMz*mcMz;
2298 mqdash4 = mbMz2*mbMz2;
2299 break;
2300 case QCD::BOTTOM:
2301 mqMz2 = mbMz*mbMz;
2302 mqdash4 = mcMz2*mcMz2;
2303 break;
2304 default:
2305 mqMz2 = 0.0;
2306 mqdash4 = 0.0;
2307 break;
2308 }
2309
2310 /* Logarithms */
2311 //double log_t = log(pow(quarks[TOP].getMass(),2.0)/s);
2312 double log_t = log(MtPole * MtPole / s); // the pole mass
2313 double log_c = log(mcMz2 / s);
2314 double log_b = log(mbMz2 / s);
2315 double log_q;
2316 switch (q) {
2317 case QCD::CHARM:
2318 case QCD::BOTTOM:
2319 log_q = log(mqMz2 / s);
2320 break;
2321 default:
2322 log_q = 0.0;
2323 break;
2324 }
2325
2326 /* the active number of flavour */
2327 double nf = 5.0;
2328
2329 /* zeta functions */
2330 double zeta2 = getMyEWSMcache()->getZeta2();
2331 double zeta3 = getMyEWSMcache()->getZeta3();
2332 double zeta4 = getMyEWSMcache()->getZeta4();
2333 double zeta5 = getMyEWSMcache()->getZeta5();
2334
2335 /* massless non-singlet corrections */
2336 double C02 = 365.0 / 24.0 - 11.0 * zeta3 + (-11.0 / 12.0 + 2.0 / 3.0 * zeta3) * nf;
2337 double C03 = 87029.0 / 288.0 - 121.0 / 8.0 * zeta2 - 1103.0 / 4.0 * zeta3
2338 + 275.0 / 6.0 * zeta5
2339 + (-7847.0 / 216.0 + 11.0 / 6.0 * zeta2 + 262.0 / 9.0 * zeta3
2340 - 25.0 / 9.0 * zeta5) * nf
2341 + (151.0 / 162.0 - zeta2 / 18.0 - 19.0 / 27.0 * zeta3) * nf*nf;
2342 double C04 = -156.61 + 18.77 * nf - 0.7974 * nf * nf + 0.0215 * nf * nf*nf;
2343 //std::cout << "TEST: C02 = " << C02 << std::endl;// TEST (should be 1.40923)
2344 //std::cout << "TEST: C03 = " << C03 << std::endl;// TEST (should be -12.7671)
2345 //std::cout << "TEST: C04 = " << C04 << std::endl;// TEST (should be -80.0075)
2346
2347 /* quadratic massive corrections */
2348 double C23 = -80.0 + 60.0 * zeta3 + (32.0 / 9.0 - 8.0 / 3.0 * zeta3) * nf;
2349 double C20A = -6.0;
2350 double C21A = -22.0;
2351 double C22A = -8221.0 / 24.0 + 57.0 * zeta2 + 117.0 * zeta3
2352 + (151.0 / 12.0 - 2.0 * zeta2 - 4.0 * zeta3) * nf;
2353 double C23A = -4544045.0 / 864.0 + 1340.0 * zeta2 + 118915.0 / 36.0 * zeta3
2354 - 127.0 * zeta5
2355 + (71621.0 / 162.0 - 209.0 / 2.0 * zeta2 - 216.0 * zeta3
2356 + 5.0 * zeta4 + 55.0 * zeta5) * nf
2357 + (-13171.0 / 1944.0 + 16.0 / 9.0 * zeta2 + 26.0 / 9.0 * zeta3) * nf*nf;
2358
2359 /* quartic massive corrections */
2360 double C42 = 13.0 / 3.0 - 4.0 * zeta3;
2361 double C40A = 6.0;
2362 double C41A = 10.0;
2363 double C42A = 3389.0 / 12.0 - 162.0 * zeta2 - 220.0 * zeta3
2364 + (-41.0 / 6.0 + 4.0 * zeta2 + 16.0 / 3.0 * zeta3) * nf;
2365 double C42AL = 77.0 / 2.0 - 7.0 / 3.0 * nf;
2366
2367 /* power suppressed top-mass correction */
2368 //double xt = s/pow(quarks[TOP].getMass(),2.0);
2369 double xt = s / MtPole / MtPole; // the pole mass
2370 double C2t = xt * (44.0 / 675.0 - 2.0 / 135.0 * (-log_t));
2371
2372 /* singlet axial-vector corrections */
2373 double I2 = -37.0 / 12.0 + (-log_t) + 7.0 / 81.0 * xt + 0.0132 * xt*xt;
2374 double I3 = -5075.0 / 216.0 + 23.0 / 6.0 * zeta2 + zeta3 + 67.0 / 18.0 * (-log_t)
2375 + 23.0 / 12.0 * log_t*log_t;
2376 double I4 = 49.0309 - 17.6637 * (-log_t) + 14.6597 * log_t * log_t
2377 + 3.6736 * (-log_t * log_t * log_t);
2378
2379 /* rescaled strong coupling constant */
2380 double AlsMzPi = AlsMz / M_PI;
2381 double AlsMzPi2 = AlsMzPi*AlsMzPi;
2382 double AlsMzPi3 = AlsMzPi2*AlsMzPi;
2383 double AlsMzPi4 = AlsMzPi3*AlsMzPi;
2384
2385 /* electromagnetic coupling at Mz */
2386 double alpMz = alphaMz();
2387
2388 /* radiator function to the axial-vector current */
2389 double RAf;
2390 RAf = 1.0 + 3.0 / 4.0 * Qf2 * alpMz / M_PI + AlsMzPi - Qf2 / 4.0 * alpMz / M_PI * AlsMzPi
2391 + (C02 + C2t - 2.0 * I3q * I2) * AlsMzPi2
2392 + (C03 - 2.0 * I3q * I3) * AlsMzPi3
2393 + (C04 - 2.0 * I3q * I4) * AlsMzPi4
2394 + (mcMz2 + mbMz2) / s * C23 * AlsMzPi3
2395 + mqMz2 / s * (C20A + C21A * AlsMzPi + C22A * AlsMzPi2
2396 + 6.0 * (3.0 + log_t) * AlsMzPi2 + C23A * AlsMzPi3)
2397 //- 10.0*mqMz2/pow(quarks[TOP].getMass(),2.0)
2398 - 10.0 * mqMz2 / MtPole / MtPole // the pole mass
2399 * (8.0 / 81.0 + log_t / 54.0) * AlsMzPi2
2400 + mcMz2 * mcMz2 / s / s * (C42 - log_c) * AlsMzPi2
2401 + mbMz2 * mbMz2 / s / s * (C42 - log_b) * AlsMzPi2
2402 + mqMz2 * mqMz2 / s / s * (C40A + C41A * AlsMzPi
2403 + (C42A + C42AL * log_q) * AlsMzPi2)
2404 - 12.0 * mqdash4 / s / s*AlsMzPi2;
2405 return RAf;
2406}
2407
2409{
2410 /* rescaled strong coupling constant */
2411 double AlsMzPi = AlsMz / M_PI;
2412 double AlsMzPi2 = AlsMzPi*AlsMzPi;
2413 double AlsMzPi3 = AlsMzPi2*AlsMzPi;
2414 double AlsMzPi4 = AlsMzPi3*AlsMzPi;
2415
2416 gslpp::complex gV_sum(0.0, 0.0);
2417 gslpp::complex gV_q;
2418 for (int q = 0; q < 6; q++) {
2419 gV_q = gV_f(QCD::quarks[(QCD::quark)q]);
2420 if (q == (int) (QCD::TOP))
2421 gV_q = 0.0;
2422 gV_sum += gV_q;
2423 }
2424
2425 // singlet vector corrections
2426 return ( gV_sum.abs2()*(-0.4132 * AlsMzPi3 - 4.9841 * AlsMzPi4));
2427}
2428
2430// EW low-energy observables: Parity violation
2431
2432
2433// The anomalous magnetic moment of the muon a_mu=(g_mu-2)/2
2434
2435const double StandardModel::amuon() const
2436{
2437
2438// output
2439 double amu;
2440
2441// -----------------------------------------------------------------
2442// qed contributions
2443 double amuqed,alfa0pi;
2444
2445// ew contributions
2446 double amuew,amuew1,amuew2b,amuew2f,amuew2,amuew3,cft,cf,corr1amuew2, corr2amuew2,corrwaamuew2,al,aq,b1; //,b2;
2447
2448// qcd contributions
2449 double amuhad,amuhhovp,amuhholbl,amuhho,amuhlo;
2450
2451// -----------------------------------------------------------------
2452// numerical constants
2453 const double sn2=0.2604341;
2454
2455// -----------------------------------------------------------------
2456// SM parameters
2457
2458// light quark masses. constituent masses
2459 const double umass=0.3;
2460 const double dmass=0.3;
2461 const double smass=0.5;
2462
2463 const double mum=leptons[MU].getMass(),taum=leptons[TAU].getMass();
2464 const double cqm=quarks[CHARM].getMass(),bqm=quarks[BOTTOM].getMass();
2465
2466// all fermion masses (constituent masses for u,d,s. for the other from model)
2467 double fermmass[9]={leptons[ELECTRON].getMass(),mum,taum,
2468 dmass,umass,
2469 smass,cqm,
2470 bqm,mtpole};
2471
2472// w mass and on-shell weak angle
2473 double MwSM, s2;
2474
2475// running of alfa_qed and dummy variable
2476 double aqed;
2477
2478// for the 2-loop bosonic corrections
2479 double a2l[4]={0.,0.,0.,0.},b2l[4]={0.,0.,0.,0.},sw2l[4]={0.,0.,0.,0.};
2480
2481// for the 2-loop corrections from the renormalization of weak angle
2482 double c2lren[6]={0.,0.,0.,0.,0.,0.};
2483
2484// w mass
2485 MwSM=Mw();
2486
2487 s2=1.0 - MwSM*MwSM/Mz/Mz;
2488
2489//------------------------------------------------------------------
2490// qed contribution to amu (arxiv: hep-ph/0606174)
2491 alfa0pi=ale/M_PI;
2492
2493 amuqed=alfa0pi*(0.5+alfa0pi*(0.765857410+alfa0pi*(24.05050964+
2494 + alfa0pi*(130.8055+663.0*alfa0pi))));
2495
2496//-----------------------------------------------------------------
2497// one-loop ew correction(phys.rev.lett. 76,3267 (1996))
2498
2499 amuew1=5.0*GF*mum*mum/(24.0*sqrt(2.0)*M_PI*M_PI)*(1.0+
2500 + 0.2*(1.0-4.0*s2)*(1.0-4.0*s2));
2501
2502//-----------------------------------------------------------------
2503// two-loop computation
2504
2505// these depend on aqed and since we are going to include also three-loop
2506// effects we need to include in the two-loop results the running of aqed at
2507// 1-loop up to the scale mum
2508//-----------------------------------------------------------------
2509// running of alpha em down to mu mass (1-loop)
2510
2511 aqed = 1.0/ale + 2.0 * log(fermmass[0]/mum)/3.0/M_PI;
2512
2513 aqed = 1.0/aqed;
2514
2515//-----------------------------------------------------------------
2516// two-loop ew bosonic correction(phys.rev.lett. 76,3267 (1996))
2517
2518// previous definitions
2519 a2l[0]=19.0/36.0-99.0*sn2/8.0-1.0*2.0*log(mHl/MwSM)/24.0;
2520
2521 b2l[0]=155.0/192.0+3.0*M_PI*M_PI/8.0-9.0*sn2/8.0+3.0*2.0*pow(log(mHl/MwSM),2)/2.0-21.0*2.0*log(mHl/MwSM)/16.0;
2522
2523 sw2l[0]=1.0/s2;
2524
2525 a2l[1]=-859.0/18.0+11.0*M_PI/sqrt(3.0)+20.0*M_PI*M_PI/9.0+ 393.0*sn2/8.0-65.0*2.0*log(MwSM/mum)/9.0+ 31.0*2.0*log(mHl/MwSM)/72.0;
2526
2527 b2l[1]=433.0/36.0+5.0*M_PI*M_PI/24.0-51.0*sn2/8.0+ 3.0*4.0*pow(log(mHl/MwSM),2)/8.0+9.0*2.0*log(mHl/MwSM)/4.0;
2528
2529 sw2l[1]=1.0;
2530
2531 a2l[2]=165169.0/1080.0-385.0*M_PI/(6.0*sqrt(3.0))-29.0*M_PI*M_PI/6.0+ 33.0*sn2/8.0+92.0*2.0*log(MwSM/mum)/9.0- 133.0*2.0*log(mHl/MwSM)/72.0;
2532
2533 b2l[2]=-431.0/144.0+3.0*M_PI*M_PI/8.0+315.0*sn2/8.0+ 3.0*4.0*pow(log(mHl/MwSM),2)/2.0-11.0*2.0*log(mHl/MwSM)/8.0;
2534
2535 sw2l[2]=s2;
2536
2537 a2l[3]=-195965.0/864.0+265.0*M_PI/(3.0*sqrt(3.0))+163.0*M_PI*M_PI/18.0+ 223.0*sn2/12.0-184.0*2.0*log(MwSM/mum)/9.0- 5.0*2.0*log(mHl/MwSM)/8.0;
2538
2539 b2l[3]=433.0/216.0+13.0*M_PI*M_PI/24.0+349.0*sn2/24.0+ 21.0*4.0*pow(log(mHl/MwSM),2)/8.0-49.0*2.0*log(mHl/MwSM)/12.0;
2540
2541 sw2l[3]=s2*s2;
2542
2543// computation
2544
2545 amuew2b=0.0;
2546
2547 for (int i = 0; i < 4; ++i) {
2548 amuew2b=amuew2b+a2l[i]*sw2l[i]+(MwSM*MwSM/mHl/mHl)*b2l[i]*sw2l[i];
2549 }
2550
2551// the contribution with the running of aqed up to the mu scale
2552 amuew2b=mum*mum*aqed*GF*amuew2b/(8.0*sqrt(2.0)*M_PI*M_PI*M_PI);
2553
2554//-----------------------------------------------------------------
2555// two-loop ew fermionic correction(phys.rev.d 52,r2619(1995)
2556
2557// contribution from higgs boson diagram
2558 if (mHl < (mtpole-10.0)) {
2559 cft=-104.0/45.0-16.0*2.0*log(mtpole/mHl)/15.0;
2560 } else if (mHl > (mtpole+10)) {
2561 cft=-(mtpole*mtpole/mHl/mHl)*(24.0/5.0+8.0*M_PI*M_PI/15.0+
2562 + 8.0/5.0*pow(2.0*log(mHl/mtpole)-1.0,2));
2563 } else {
2564 cft=-(32.0/5.0)*(1.0-9.0*sn2/4.0);
2565 }
2566
2567 cf=pow((umass*cqm*Mz),(4.0/3.0));
2568
2569 cf=cf/(pow((dmass*smass*bqm),(1.0/3.0))*mum*mum*taum);
2570
2571 cf=-18.0*log(cf)/5.0-3.0*mtpole*mtpole/(16.0*s2*MwSM*MwSM)- 3.0*2.0*log(mtpole/MwSM)/(10.0*s2)- 8.0*2.0*log(mtpole/Mz)/5.0-41.0/5.0-7.0/(10.0*s2)+ 8.0*M_PI*M_PI/15.0+cft;
2572
2573// the contribution with the running of aqed up to the mu scale
2574 amuew2f=5.0*GF*mum*mum*cf*aqed/(24.0*sqrt(2.0)*M_PI*M_PI*M_PI);
2575
2576//-----------------------------------------------------------------
2577// corrections from hadronic loops (phys.rev.d 67,073006(2003))
2578// i also include the running here even though in the previous reference seems that it is not included
2579// first family (eqs. (60) and (61))
2580 corr1amuew2=-aqed*GF*mum*mum/(8.0*M_PI*M_PI*M_PI*sqrt(2.0))*(8.41- log(pow(umass,8)/(pow(mum,6)*pow(dmass,2)))-17.0/2.0);
2581// second family (eqs. (65) and (66))
2582 corr2amuew2=-aqed*GF*mum*mum/(8.0*M_PI*M_PI*M_PI*sqrt(2.0))*(17.1- log(pow(cqm,8)/(pow(mum,6)*pow(smass,2)))-47.0/6.0+8.0*M_PI*M_PI/9.0);
2583
2584//-----------------------------------------------------------------
2585// corrections from the renormalization of the weak mixing
2586// terms prop. to (1-4s2) included in eq. (7) of phys.rev.d 67,073006(2003)
2587// and neglected in the previous references
2588
2589 corrwaamuew2=-43.0*31.0*(1.0-4.0*s2)*(1.0-4.0*s2)/(215.0*3.0)*log(Mz/mum);
2590
2591 c2lren[0]=(72.0/135.0)*(-1.0+2.0*s2)*(1.0-4.0*s2); //leptons
2592 c2lren[1]=(72.0/135.0)*(-1.0+2.0*s2/3.0)*(1.0-4.0*s2); //d-quark
2593 c2lren[2]=-(144.0/135.0)*(1.0-4.0*s2/3.0)*(1.0-4.0*s2); //u-quark
2594 c2lren[3]=c2lren[1];//d-quark
2595 c2lren[4]=c2lren[2]; //u-quark
2596 c2lren[5]=c2lren[1]; //d-quark
2597
2598 for (int i = 2; i < 8; ++i) {
2599 corrwaamuew2=corrwaamuew2+c2lren[i-2]*log(Mz/fermmass[i]);
2600 }
2601
2602 corrwaamuew2=5*GF*mum*mum*aqed/(24.0*sqrt(2.0)*M_PI*M_PI*M_PI)*corrwaamuew2;
2603
2604// finally i also add the small correction to the eq.8
2605 corrwaamuew2=corrwaamuew2-0.2e-11;
2606
2607//-----------------------------------------------------------------
2608// total 2-loop ew contribution
2609 amuew2=amuew2b+amuew2f+corr1amuew2+corr2amuew2+corrwaamuew2;
2610
2611//-----------------------------------------------------------------
2612// three-loop ew correction(phys.rev.d 67,073006(2003)
2613
2614 al=2789.0*log(Mz/mum)*log(Mz/mum)/90.0- 302.0*log(Mz/taum)*log(Mz/taum)/45.0+ 72.0*log(Mz/taum)*log(Mz/mum)/5.0;
2615
2616 aq=-2662.0*log(Mz/bqm)*log(Mz/bqm)/1215.0+11216.0*log(Mz/cqm)*log(Mz/cqm)/1215.0+1964.0*log(Mz/umass)*log(Mz/umass)/405.0+24.0*log(Mz/bqm)*log(Mz/mum)/5.0-96.0*log(Mz/cqm)*log(Mz/mum)/5.0-48.0*log(Mz/umass)*log(Mz/mum)/5.0+32.0*log(Mz/bqm)*log(Mz/cqm)/405.0+32.0*log(Mz/bqm)*log(Mz/umass)/135.0;
2617
2618 b1=-179.0/45.0*(log(Mz/bqm)*log(Mz/bqm)/3.0+log(Mz/taum)*log(Mz/taum)+4.0*log(Mz/cqm)*log(Mz/cqm)/3.0+2.0*log(Mz/umass)*log(Mz/umass)+2.0*log(Mz/mum)*log(Mz/mum))+2.0/5.0*(log(bqm/taum)*log(bqm/taum)+4.0/3.0*log(bqm/cqm)*log(bqm/cqm)+2.0*log(bqm/umass)*log(bqm/umass)+2.0*log(bqm/mum)*log(bqm/mum) )-8.0/5.0*(2.0*log(cqm/umass)*log(cqm/umass)+2.0*log(cqm/mum)*log(cqm/mum))+6.0/5.0*(4.0/3.0*log(taum/cqm)*log(taum/cqm)+2.0*log(taum/umass)*log(taum/umass)+2.0*log(taum/mum)*log(taum/mum))-8.0*log(umass/mum)*log(umass/mum)/5.0;
2619
2620 // b2 is not used, as it can be absorved in the two loop part if alpha(m_mu) is used instead of alpha(Mz), as done above
2621 // b2=2.0/5.0*(2.0*log(Mz/mum)+2.0*log(Mz/umass)+4.0*log(Mz/cqm)/3.0+log(Mz/taum)+log(Mz/bqm)/3.0)*(215.0*log(Mz/mum)/9.0-4.0*log(Mz/umass)-8.0*log(Mz/cqm)+6.0*log(Mz/taum)+2.0*log(Mz/bqm));
2622
2623// the final correction(it is implied aqed at mum for the 2-loop
2624// correction
2625
2626 amuew3=amuew1*(ale*ale/M_PI/M_PI)*(al+aq+b1);
2627
2628//-----------------------------------------------------------------
2629// total ew correction
2630
2631 amuew=amuew1+amuew2+amuew3;
2632
2633//-----------------------------------------------------------------
2634// hadronic contributions (arxiv: 0908.4300 & 1001.5401 [hep-ph])
2635
2636// leading order: vacuum polarization (arxiv: 0908.4300 [hep-ph])
2637 amuhlo=6955.e-11;
2638
2639// higher order: vacuum polarization
2640 amuhhovp=-97.9e-11;
2641
2642// higher order: light-by-light
2643 amuhholbl=105.e-11;
2644
2645 amuhho=amuhhovp+amuhholbl;
2646
2647// total hadronic contribution
2648
2649 amuhad=amuhlo+amuhho;
2650
2651//-----------------------------------------------------------------
2652// final value for the muon (g-2)/2
2653
2654 amu=amuqed+amuew+amuhad;
2655
2656//-----------------------------------------------------------------
2657
2658 return amu;
2659
2660}
2661
2662
2663// The electron's weak charge
2664
2665const double StandardModel::Qwemoller(const double q2, const double y) const
2666{
2667 // Weak charge
2668 double Qwe;
2669
2670 // definitions
2671 double MwSM,f1,fy,f2,af2;
2672 const double mpion=134.9766e-3;
2673
2674 // -----------------------------------------------------------------
2675
2676 double dalfos, dalfms, alfams;
2677 double rhoNC, kappa0, s2MSbar,c2MSbar;
2678 double xi;
2679 double leptk0,quarkk0;
2680 double elm=leptons[ELECTRON].getMass(), mum=leptons[MU].getMass(), taum=leptons[TAU].getMass();
2681
2682 // -----------------------------------------------------------------
2683
2684 // w mass
2685 MwSM=Mw();
2686
2687 // xi factor
2688 xi=mHl*mHl/Mz/Mz;
2689
2690 // -----------------------------------------------------------------
2691
2692 // universal corrections
2693 // ---------------------
2694
2695 // obtaining alfa(mz)_msbar from alfa(mz)_on-shell
2696 // -----------------------------------------------
2697
2698 // on-shell value of delta alpha(mz)
2699 dalfos=1.0-ale/alphaMz();
2700 // msbar value of delta alpha(mz) (formula from PDG, Erler & Langacker ew review)
2701 dalfms=dalfos+ale/M_PI*(100.0/27.0-1.0/6.0-7.0*2.0*log(Mz/MwSM)/4.0);
2702 // msbar value of alfa(mz)
2703 alfams=ale/(1.0-dalfms);
2704
2705 // ms bar weinberg's angle from the effective leptonic angle
2706 // (formula from PDG, Erler & Langacker ew review)
2707 // ---------------------------------------------------------
2708 s2MSbar=(myApproximateFormulae->sin2thetaEff_l_full())-0.00029;
2709 c2MSbar=1.0-s2MSbar;
2710
2711 // rho parameter (expansion in alfams)
2712 // -------------
2713
2714 rhoNC=1.0+alfams/(4.0*M_PI)*(3.0/(4.0*s2MSbar*s2MSbar)*log(c2MSbar)-7.0/(4.0*s2MSbar)+3.0*mtpole*mtpole/(4.0*s2MSbar*MwSM*MwSM) + 3.0*xi/(4.0*s2MSbar)*(log(c2MSbar/xi)/(c2MSbar-xi)+(1.0/c2MSbar)*log(xi)/(1.0-xi)));
2715
2716 // kappa at zero momentum (expansion in alfa)
2717 // ----------------------
2718
2719 // lepton contribution to kappa0
2720 leptk0=((-0.5)*(-1)-2.0*s2MSbar)*2.0*(log(elm/Mz)+log(mum/Mz)+log(taum/Mz))/3.0;
2721
2722 // quark contribution to kappa0 (updated from hep-ph/0302149)
2723 quarkk0=-6.802;
2724
2725 kappa0=1.0-ale/(2.0*M_PI*s2MSbar)*(leptk0+quarkk0-(7.0*c2MSbar/2.0+1.0/12.0)*log(c2MSbar)+(7.0/9.0-s2MSbar/3.0));
2726
2727 // -----------------------------------------------------------------
2728
2729 // f1(y,q2) (expansion in alfa)
2730 // --------
2731
2732 // f(y)
2733 fy=-2.0*log(y*(1.0-y))/3.0+1.0/pow((1.0-y+y*y),2)*(-2.0*(1.0-y)*(3.0-3.0*y+4.0*y*y*y- 3.0*y*y*y*y)*log(1.0-y)-2.0*y*(1.0+3.0*y-6.0*y*y+8.0*y*y*y-3.0*y*y*y*y)*log(y)+ (1.0-y)*(2.0-2.0*y-7.0*y*y+10.0*y*y*y-8.0*y*y*y*y+3.0*y*y*y*y*y)*log(1.0-y)*log(1.0-y)- y*(2.0-3.0*y-5.0*y*y+8.0*y*y*y-7.0*y*y*y*y+3.0*y*y*y*y*y)*log(y)*log(y)+ (2.0-4.0*y+11.0*y*y*y-13.0*y*y*y*y+9.0*y*y*y*y*y-3.0*y*y*y*y*y*y)*(M_PI*M_PI-2.0*log(1.0-y)*log(y)));
2734
2735 f1=-ale/(4.0*M_PI)*(1.0-4.0*kappa0*s2MSbar)*(22.0*log(y*Mz*Mz/q2)/3.0+85.0/9.0+fy);
2736
2737 // note that i have used 1-4*kappa*s2MSbar instead of 1-4*s2MSbar or an average as suggested in the
2738 // reference
2739
2740
2741 // f2(y,q2) (expansion in alfa)
2742 // --------
2743 // (y=1/2 approximattion using a pion loop calculation)
2744
2745 // af2
2746 af2=sqrt(1.0+4.0*mpion*mpion/q2);
2747 f2=ale/(4.0*M_PI)*(af2*af2*af2/3.0*log((af2+1.0)/(af2-1.0))-2.0/9.0-2.0*af2*af2/3.0);
2748
2749
2750 // electron's weak charge
2751 // ----------------------
2752 Qwe=-rhoNC*(1.0-4.0*kappa0*s2MSbar+alfams/(4.0*M_PI*s2MSbar)+f1+f2- 3.0*alfams*(1.0-4.0*kappa0*s2MSbar)*(1.0+(1.0-4.0*kappa0*s2MSbar)*(1.0-4.0*kappa0*s2MSbar))/(32.0*M_PI*s2MSbar*c2MSbar));
2753
2754 // again, i have used 1-4*kappa*s2MSbar even in the loop contributions
2755
2756 return Qwe;
2757}
2758
2759
2760
2761// The parity violating asymmetry in Moller scattering
2762
2763const double StandardModel::alrmoller(const double q2, const double y) const
2764{
2765 // functions and inputs
2766 double alrmoller;
2767
2768 // which alfa is this? => alpha(0). is this ale?
2769
2770 // parity violation asymmetry
2771 // --------------------------
2772 alrmoller=-GF*q2*(1.0-y)/(sqrt(2.0)*M_PI*ale*(1.0+pow(y,4)+pow(1.0-y,4)))*Qwemoller(q2,y);
2773
2774 return alrmoller;
2775}
2776
2777
2778
2779// The computation of the proton and neutron weak charge: Qwp,Qwn
2780
2781const double StandardModel::Qwp() const
2782{
2783 // Definitions
2784 double qwproton;
2785
2786 double MwSM,alfapi,asMw,dkappa5h,s2MSbar0,deltae,deltaep,boxpww,boxpzz,boxpaz;
2787 // I choose as lambda m_rho (pdg rho(770)) --> caz=3/2
2788 const double lambda=775.49e-3;
2789 const double caz=1.5;
2790
2791 // lepton masses
2792 double mlept[3]={leptons[ELECTRON].getMass(),leptons[MU].getMass(),leptons[TAU].getMass()};
2793
2794 // -----------------------------------------------------------------
2795 double dalfos, dalfms, alfams;
2796 double rhoNC, s2MSbar,c2MSbar;
2797 double xi;
2798 double elm=leptons[ELECTRON].getMass();
2799 // -----------------------------------------------------------------
2800
2801 // W mass
2802 MwSM=Mw();
2803
2804 // xi factor
2805 xi=mHl*mHl/Mz/Mz;
2806
2807 // alfa/pi
2808 alfapi=ale/M_PI;
2809
2810 // alfa_s(Mw)
2811 asMw = Als(MwSM, FULLNLO);
2812
2813 // -----------------------------------------------------------------
2814
2815 // Universal corrections
2816 // ---------------------
2817
2818 // Obtaining alfa(mz)_msbar from alfa(mz)_on-shell
2819 // -----------------------------------------------
2820
2821 // on-shell value of delta alpha(mz)
2822 dalfos=1.0-ale/alphaMz();
2823 // MSbar value of delta alpha(mz) (formula from PDG, Erler & Langacker ew review)
2824 dalfms=dalfos+ale/M_PI*(100.0/27.0-1.0/6.0-7.0*2.0*log(Mz/MwSM)/4.0);
2825 // MSbar value of alfa(mz)
2826 alfams=ale/(1.0-dalfms);
2827
2828 // MS bar weinberg's angle from the effective leptonic angle
2829 // (formula from PDG, Erler & Langacker ew review)
2830 // ---------------------------------------------------------
2831 s2MSbar=(myApproximateFormulae->sin2thetaEff_l_full())-0.00029;
2832 c2MSbar=1.0-s2MSbar;
2833
2834 // rho parameter (expansion in alfams)
2835 // -------------
2836
2837 rhoNC=1.0+alfams/(4.0*M_PI)*(3.0/(4.0*s2MSbar*s2MSbar)*log(c2MSbar)-7.0/(4.0*s2MSbar)+3.0*mtpole*mtpole/(4.0*s2MSbar*MwSM*MwSM) + 3.0*xi/(4.0*s2MSbar)*(log(c2MSbar/xi)/(c2MSbar-xi)+(1.0/c2MSbar)*log(xi)/(1.0-xi)));
2838
2839 // -----------------------------------------------------------------
2840
2841 // sin2w_ms(0) eq.14
2842 // -----------------
2843
2844 // hadronic contribution
2845 dkappa5h=7.9e-3;
2846
2847 s2MSbar0=0.0;
2848
2849 for (int i = 0; i < 3; ++i) {
2850 s2MSbar0=s2MSbar0+2.0*log(Mz/mlept[i]);
2851 }
2852
2853 s2MSbar0=s2MSbar+dkappa5h+alfapi*((s2MSbar0*(1.0+0.75*alfapi)+135.0*alfapi/32.0)*(1.0-4.0*s2MSbar)/12.0- (7.0*c2MSbar/4.0+1.0/24.0)*2.0*log(Mz/MwSM)+s2MSbar/6.0-7.0/18.0);
2854
2855 // -----------------------------------------------------------------
2856
2857 // external leg corrections
2858
2859 deltae=-0.5*alfapi;
2860
2861 deltaep=-alfapi/3.0*(1.0-4.0*s2MSbar)*(2.0*log(Mz/elm)+1.0/6.0);
2862
2863 // -----------------------------------------------------------------
2864
2865 // boxes
2866 // -----
2867
2868 boxpww=alfams*(2.0+5.0*(1.0-asMw/M_PI))/(4.0*M_PI*s2MSbar);
2869
2870 // pure zz and az boxes from prd 17 3055 app.a
2871
2872 boxpzz=alfams*(9.0/4.0-14.0*s2MSbar+38.0*s2MSbar*s2MSbar-40.0*s2MSbar*s2MSbar*s2MSbar)*(1.0-AlsMz/M_PI)/(4.0*M_PI*s2MSbar*c2MSbar);
2873
2874 boxpaz=5.0*alfams*(1.0-4.0*s2MSbar)*(2.0*log(Mz/lambda)+caz)/(2.0*M_PI);
2875
2876 // i assumme the same caz as in the proton enters for the neutron
2877 // -----------------------------------------------------------------
2878
2879 // weak charges
2880 // ------------
2881
2882 qwproton=(rhoNC+deltae)*(1.0-4.0*s2MSbar0+deltaep)+boxpww+boxpzz+boxpaz;
2883
2884 return qwproton;
2885
2886}
2887
2888
2889const double StandardModel::Qwn() const
2890{
2891 // Definitions
2892 double qwneutron;
2893
2894 double MwSM,alfapi,asMw,dkappa5h,s2MSbar0,deltae,deltaep,boxnww,boxnzz,boxnaz;
2895 // I choose as lambda m_rho (pdg rho(770)) --> caz=3/2
2896 const double lambda=775.49e-3;
2897 const double caz=1.5;
2898
2899 // lepton masses
2900 double mlept[3]={leptons[ELECTRON].getMass(),leptons[MU].getMass(),leptons[TAU].getMass()};
2901
2902 // -----------------------------------------------------------------
2903 double dalfos, dalfms, alfams;
2904 double rhoNC, s2MSbar,c2MSbar;
2905 double xi;
2906 double elm=leptons[ELECTRON].getMass();
2907 // -----------------------------------------------------------------
2908
2909 // W mass
2910 MwSM=Mw();
2911
2912 // xi factor
2913 xi=mHl*mHl/Mz/Mz;
2914
2915 // alfa/pi
2916 alfapi=ale/M_PI;
2917
2918 // alfa_s(Mw)
2919 asMw = Als(MwSM, FULLNLO);
2920
2921 // -----------------------------------------------------------------
2922
2923 // Universal corrections
2924 // ---------------------
2925
2926 // Obtaining alfa(mz)_msbar from alfa(mz)_on-shell
2927 // -----------------------------------------------
2928
2929 // on-shell value of delta alpha(mz)
2930 dalfos=1.0-ale/alphaMz();
2931 // MSbar value of delta alpha(mz) (formula from PDG, Erler & Langacker ew review)
2932 dalfms=dalfos+ale/M_PI*(100.0/27.0-1.0/6.0-7.0*2.0*log(Mz/MwSM)/4.0);
2933 // MSbar value of alfa(mz)
2934 alfams=ale/(1.0-dalfms);
2935
2936 // MS bar weinberg's angle from the effective leptonic angle
2937 // (formula from PDG, Erler & Langacker ew review)
2938 // ---------------------------------------------------------
2939 s2MSbar=(myApproximateFormulae->sin2thetaEff_l_full())-0.00029;
2940 c2MSbar=1.0-s2MSbar;
2941
2942 // rho parameter (expansion in alfams)
2943 // -------------
2944
2945 rhoNC=1.0+alfams/(4.0*M_PI)*(3.0/(4.0*s2MSbar*s2MSbar)*log(c2MSbar)-7.0/(4.0*s2MSbar)+3.0*mtpole*mtpole/(4.0*s2MSbar*MwSM*MwSM) + 3.0*xi/(4.0*s2MSbar)*(log(c2MSbar/xi)/(c2MSbar-xi)+(1.0/c2MSbar)*log(xi)/(1.0-xi)));
2946
2947 // -----------------------------------------------------------------
2948
2949 // sin2w_ms(0) eq.14
2950 // -----------------
2951
2952 // hadronic contribution
2953 dkappa5h=7.9e-3;
2954
2955 s2MSbar0=0.0;
2956
2957 for (int i = 0; i < 3; ++i) {
2958 s2MSbar0=s2MSbar0+2.0*log(Mz/mlept[i]);
2959 }
2960
2961 s2MSbar0=s2MSbar+dkappa5h+alfapi*((s2MSbar0*(1.0+0.75*alfapi)+135.0*alfapi/32.0)*(1.0-4.0*s2MSbar)/12.0- (7.0*c2MSbar/4.0+1.0/24.0)*2.0*log(Mz/MwSM)+s2MSbar/6.0-7.0/18.0);
2962
2963 // -----------------------------------------------------------------
2964
2965 // external leg corrections
2966
2967 deltae=-0.5*alfapi;
2968
2969 deltaep=-alfapi/3.0*(1.0-4.0*s2MSbar)*(2.0*log(Mz/elm)+1.0/6.0);
2970
2971 // -----------------------------------------------------------------
2972
2973 // boxes
2974 // -----
2975
2976 boxnww=alfams*(-2.0+4.0*(1.0-asMw/M_PI))/(4.0*M_PI*s2MSbar);
2977
2978 // pure zz and az boxes from prd 17 3055 app.a
2979
2980 boxnzz=alfams*(9.0/4.0-13.0*s2MSbar+34.0*s2MSbar*s2MSbar-32.0*s2MSbar*s2MSbar*s2MSbar)*(1.0-AlsMz/M_PI)/(4.0*M_PI*s2MSbar*c2MSbar);
2981
2982 // i assumme the same caz as in the proton enters for the neutron
2983 boxnaz=alfams*(4.0-16.0*s2MSbar)*(2.0*log(Mz/lambda)+caz)/(2.0*M_PI);
2984
2985 // -----------------------------------------------------------------
2986
2987 // weak charges
2988 // ------------
2989
2990 qwneutron=-(rhoNC+deltae)*(1.0+deltaep)+boxnww+boxnzz+boxnaz;
2991
2992 return qwneutron;
2993
2994}
2995
2996
2998 // EW low-energy observables: neutrino-scattering
2999
3000
3001const double StandardModel::gLnuN2() const
3002{
3003 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
3005
3006 /* SM contribution with the approximate formula */
3008
3009 } else {
3010 throw std::runtime_error("ERROR: StandardModel::gLnuN2, prediction implemented only via semianalytical approximate formula. Check flags!");
3011 }
3012}
3013
3014
3015const double StandardModel::gRnuN2() const
3016{
3017 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
3019
3020 /* SM contribution with the approximate formula */
3022
3023 } else {
3024 throw std::runtime_error("ERROR: StandardModel::gRnuN2, prediction implemented only via semianalytical approximate formula. Check flags!");
3025 }
3026}
3027
3028const double StandardModel::ThetaLnuN() const
3029{
3030 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
3032
3033 /* SM contribution with the approximate formula */
3035
3036 } else {
3037 throw std::runtime_error("ERROR: StandardModel::ThetaLnuN, prediction implemented only via semianalytical approximate formula. Check flags!");
3038 }
3039}
3040
3041
3042const double StandardModel::ThetaRnuN() const
3043{
3044 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
3046
3047 /* SM contribution with the approximate formula */
3049
3050 } else {
3051 throw std::runtime_error("ERROR: StandardModel::ThetaRnuN, prediction implemented only via semianalytical approximate formula. Check flags!");
3052 }
3053}
3054
3055const double StandardModel::gVnue() const
3056{
3057 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
3059
3060 /* SM contribution with the approximate formula */
3062
3063 } else {
3064 throw std::runtime_error("ERROR: StandardModel::gVnue, prediction implemented only via semianalytical approximate formula. Check flags!");
3065 }
3066}
3067
3068const double StandardModel::gAnue() const
3069{
3070 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
3072
3073 /* SM contribution with the approximate formula */
3075
3076 } else {
3077 throw std::runtime_error("ERROR: StandardModel::gAnue, prediction implemented only via semianalytical approximate formula. Check flags!");
3078 }
3079}
3080
3081
3082
3084// Lepton decays
3085
3086// Muon decay
3087
3088const double StandardModel::Gamma_muon() const
3089{
3090 double Gamma;
3091 double me, mmu, x, Fx, H1x, H2x, H3x, zeta3;
3092 double alpha, rEW;
3093 double pi2;
3094
3095 me = leptons[ELECTRON].getMass();
3096 mmu = leptons[MU].getMass();
3097 pi2 = M_PI*M_PI;
3098
3099 x = me*me/mmu/mmu;
3100 Fx = 1. - 8. * x + 8. * x*x*x - x*x*x*x -12. * x*x * log(x);
3101
3102 H1x = 25./8. - pi2/2. - (9. + 4. *pi2 + 12. * log(x) )*x + 16. * pi2 * pow(x,3./2.);
3103
3104 zeta3 = 1.2020569031595942;
3105
3106 H2x= 156815./5184. - 518. * pi2/81. - 895. *zeta3/36. + 67.*pi2*pi2/720. + 53. *pi2*log(2.)/6. - 0.042 - (5./4.) * pi2*sqrt(x);
3107
3108 H3x = -15.3;
3109
3110 // alpha(m_mu)
3111 alpha = 1./ale - log(x)/3./M_PI; // + 1./6./M_PI;
3112 alpha = 1./alpha;
3113
3114 // Rad. corrections
3115 rEW = 1. + H1x * alpha/M_PI + H2x * alpha*alpha/pi2 + H3x * alpha * alpha *alpha/pi2/M_PI;
3116
3117 // Gamma: PDG formula
3118 Gamma = GF*GF*pow(mmu,5)*Fx*rEW/192./pow(M_PI,3);
3119
3120 return Gamma;
3121}
3122
3123
3124// Tau decays
3125
3126// Leptonic decays
3127
3129{
3130 double Gamma;
3131 double ml, mtau, x, Fx, H1x, H2x, H3x, zeta3;
3132 double alpha, rEW;
3133 double pi2;
3134
3135 ml = l.getMass();
3136 mtau = leptons[TAU].getMass();
3137 pi2 = M_PI*M_PI;
3138
3139 x = ml*ml/mtau/mtau;
3140 Fx = 1. - 8. * x + 8. * x*x*x - x*x*x*x -12. * x*x * log(x);
3141
3142 H1x = 25./8. - pi2/2. - (9. + 4. *pi2 + 12. * log(x) )*x + 16. * pi2 * pow(x,3./2.);
3143
3144 zeta3 = 1.2020569031595942;
3145
3146 H2x= 156815./5184. - 518. * pi2/81. - 895. *zeta3/36. + 67.*pi2*pi2/720. + 53. *pi2*log(2.)/6. - 0.042 - (5./4.) * pi2*sqrt(x);
3147
3148 H3x = -15.3;
3149
3150 // alpha(m_tau)
3151 alpha = 1./133.29; // Improve
3152
3153 // Rad. corrections
3154 rEW = 1. + H1x * alpha/M_PI + H2x * alpha*alpha/pi2 + H3x * alpha * alpha *alpha/pi2/M_PI;
3155
3156 // Gamma: PDG formula
3157 Gamma = GF*GF*pow(mtau,5)*Fx*rEW/192./pow(M_PI,3);
3158
3159 return Gamma;
3160}
3161
3162
3163// Lepton universality tests
3164
3166{
3167 double g2LFU;
3168
3169 double me, mmu, mtau, xe, Fxe, xmu, Fxmu;
3170
3171 me = leptons[ELECTRON].getMass();
3172 mmu = leptons[MU].getMass();
3173 mtau = leptons[TAU].getMass();
3174
3175 xe = me*me/mtau/mtau;
3176 Fxe = 1. - 8. * xe + 8. * xe*xe*xe - xe*xe*xe*xe -12. * xe*xe * log(xe);
3177
3178 xmu = mmu*mmu/mtau/mtau;
3179 Fxmu = 1. - 8. * xmu + 8. * xmu*xmu*xmu - xmu*xmu*xmu*xmu -12. * xmu*xmu * log(xmu);
3180
3182
3183 g2LFU = g2LFU * (Fxe/Fxmu);
3184
3185 return sqrt(g2LFU);
3186}
3187
3189{
3190 double g2LFU;
3191
3192 double me, mmu, mtau, xtau, Fxtau, xmu, Fxmu;
3193
3194 me = leptons[ELECTRON].getMass();
3195 mmu = leptons[MU].getMass();
3196 mtau = leptons[TAU].getMass();
3197
3198 xtau = me*me/mtau/mtau;
3199 Fxtau = 1. - 8. * xtau + 8. * xtau*xtau*xtau - xtau*xtau*xtau*xtau -12. * xtau*xtau * log(xtau);
3200
3201 xmu = me*me/mmu/mmu;
3202 Fxmu = 1. - 8. * xmu + 8. * xmu*xmu*xmu - xmu*xmu*xmu*xmu -12. * xmu*xmu * log(xmu);
3203
3205
3206 g2LFU = g2LFU * (pow(mmu,5)*Fxmu/pow(mtau,5)/Fxtau);
3207
3208 return sqrt(g2LFU);
3209}
3210
3212{
3213 double g2LFU;
3214
3215 double me, mmu, mtau, xtau, Fxtau, xmu, Fxmu;
3216
3217 me = leptons[ELECTRON].getMass();
3218 mmu = leptons[MU].getMass();
3219 mtau = leptons[TAU].getMass();
3220
3221 xtau = mmu*mmu/mtau/mtau;
3222 Fxtau = 1. - 8. * xtau + 8. * xtau*xtau*xtau - xtau*xtau*xtau*xtau -12. * xtau*xtau * log(xtau);
3223
3224 xmu = me*me/mmu/mmu;
3225 Fxmu = 1. - 8. * xmu + 8. * xmu*xmu*xmu - xmu*xmu*xmu*xmu -12. * xmu*xmu * log(xmu);
3226
3227 g2LFU = (Gamma_tau_l_nunu(leptons[MU])/Gamma_muon());
3228
3229 g2LFU = g2LFU * (pow(mmu,5)*Fxmu/pow(mtau,5)/Fxtau);
3230
3231 return sqrt(g2LFU);
3232}
3233
3234
3236{
3237 // 1st approx.
3238
3239 return 1.0;
3240}
3241
3243{
3244 // 1st approx.
3245
3246 return 1.0;
3247}
3248
3249
3251// Higgs processes
3253
3254// Integrals
3255
3256gslpp::complex StandardModel::f_triangle(const double tau) const {
3257 gslpp::complex tmp;
3258 if (tau >= 1.0) {
3259 tmp = asin(1.0 / sqrt(tau));
3260 return (tmp * tmp);
3261 } else {
3262 tmp = log((1.0 + sqrt(1.0 - tau)) / (1.0 - sqrt(1.0 - tau))) - M_PI * gslpp::complex::i();
3263 return (-0.25 * tmp * tmp);
3264 }
3265}
3266
3267gslpp::complex StandardModel::g_triangle(const double tau) const {
3268 gslpp::complex tmp;
3269 if (tau >= 1.0) {
3270 tmp = sqrt(tau - 1.0) * asin(1.0 / sqrt(tau));
3271 return tmp;
3272 } else {
3273 tmp = sqrt(1.0 - tau) * (log((1.0 + sqrt(1.0 - tau)) / (1.0 - sqrt(1.0 - tau))) - M_PI * gslpp::complex::i());
3274 return 0.5 * tmp;
3275 }
3276}
3277
3278gslpp::complex StandardModel::I_triangle_1(const double tau, const double lambda) const {
3279 gslpp::complex tmp;
3280
3281 tmp = (tau * lambda * (f_triangle(tau) - f_triangle(lambda)) + 2.0 * tau * (g_triangle(tau) - g_triangle(lambda))) / (tau - lambda);
3282
3283 tmp = tau * lambda * (1.0 + tmp) / (2.0 * (tau - lambda));
3284
3285 return tmp;
3286}
3287
3288gslpp::complex StandardModel::I_triangle_2(const double tau, const double lambda) const {
3289 gslpp::complex tmp;
3290
3291 tmp = -0.5 * tau * lambda * (f_triangle(tau) - f_triangle(lambda)) / (tau - lambda);
3292
3293 return tmp;
3294}
3295
3296gslpp::complex StandardModel::AH_f(const double tau) const {
3297 return (2.0 * tau * (1.0 + (1.0 - tau) * f_triangle(tau)));
3298}
3299
3300gslpp::complex StandardModel::AH_W(const double tau) const {
3301 return -(2.0 + 3.0 * tau + 3.0 * tau * (2.0 - tau) * f_triangle(tau));
3302}
3303
3304gslpp::complex StandardModel::AHZga_f(const double tau, const double lambda) const {
3305 return I_triangle_1(tau, lambda) - I_triangle_2(tau, lambda);
3306}
3307
3308gslpp::complex StandardModel::AHZga_W(const double tau, const double lambda) const {
3309 gslpp::complex tmp;
3310
3311 double tan2w = sW2() / cW2();
3312
3313 tmp = 4.0 * (3.0 - tan2w) * I_triangle_2(tau, lambda);
3314
3315 tmp = tmp + ((1.0 + 2.0 / tau) * tan2w - (5.0 + 2.0 / tau)) * I_triangle_1(tau, lambda);
3316
3317 return sqrt(cW2()) * tmp;
3318}
3319
3321
3322const double StandardModel::SigmaeeZH(const double sqrt_s, const double Pe, const double Pp) const
3323{
3324 double xsLH, xsRH;
3325 double gL,gR,lam,fact;
3326 double s = sqrt_s*sqrt_s;
3327
3328 // From https://arxiv.org/pdf/hep-ph/9605437
3329
3330 gL = -0.5 + sW2();
3331
3332 gR = sW2();
3333
3334 lam = (1.0-(mHl+Mz)*(mHl+Mz)/s)*(1.0-(mHl-Mz)*(mHl-Mz)/s);
3335
3336 fact = (pow(GF*Mz*Mz,2.0)/96.0/M_PI/s) * sqrt(lam)*( lam + 12.0*Mz*Mz/s )/( 1.0 - Mz*Mz/s )/( 1.0 - Mz*Mz/s );
3337
3338 xsLH = 32.0 * gL * gL * fact;
3339 xsRH = 32.0 * gR * gR * fact;
3340
3341 return 0.25*( (1.0 - Pe)*(1.0 + Pp)*xsLH + (1.0 + Pe)*(1.0 - Pp)*xsRH );
3342}
3343
3344const double StandardModel::SigmaeeHvv(const double sqrt_s, const double Pe, const double Pp) const
3345{
3346 double xsLH=1.0, xsRH=0.0;
3347
3348 return 0.25*( (1.0 - Pe)*(1.0 + Pp)*xsLH + (1.0 + Pe)*(1.0 - Pp)*xsRH );
3349}
3350
3351const double StandardModel::SigmaeeHee(const double sqrt_s, const double Pe, const double Pp) const
3352{
3353 double xsLH=0.0, xsRH=0.0;
3354
3355 return 0.25*( (1.0 - Pe)*(1.0 + Pp)*xsLH + (1.0 + Pe)*(1.0 - Pp)*xsRH );
3356}
3357
3359// Higgs decay widths
3361
3362const double StandardModel::GammaHtogg() const
3363{
3364 double gamma;
3365 double tau_t = 4.0 * pow(quarks[TOP].getMass(),2)/mHl/mHl;
3366 double tau_b = 4.0 * pow(quarks[BOTTOM].getMass(),2)/mHl/mHl;
3367 double tau_c = 4.0 * pow(quarks[CHARM].getMass(),2)/mHl/mHl;
3368 double tau_s = 4.0 * pow(quarks[STRANGE].getMass(),2)/mHl/mHl;
3369 double asMH,LH,Lt,nl,h0,h1,h2, h3,G0;
3370
3371 // alfa_s(MH)
3372 asMH = Als(mHl, FULLNLO);
3373
3374 // NLO corrections ( See https://arxiv.org/pdf/0708.0916 and its REf. [25])
3375 // I only keep up to h3 in expr. (4), and use pole mass in tau factors for the moment
3376 nl = 5;
3377 LH = 0.; // log(mu^2/MH^2) evaluated at mu=MH
3378 Lt = 2.0*log(mHl/(quarks[TOP].getMass()));
3379
3380 h0 = (95./4.) + (11./2.)*LH + nl*(-7./6. - LH/3.);
3381 h1 = 5803./540. + 77.*LH/30. -14.*Lt/15. + nl * (-29./60. - 7. * LH / 45.);
3382 h2 = 1029839./189000. + 16973.*LH/12600. - 1543.*Lt/1575. + nl * ( - 89533./378000 - 1543.*LH/18900. );
3383 h3 = 9075763./2976750. + 1243*LH/1575. - 452.*Lt/575. + nl * ( - 3763./28350. -226. * LH / 4725. );
3384 G0 = GF * pow(mHl,3.0)/(36.*M_PI*sqrt(2.));
3385
3386 gamma = asMH*asMH * (4.0 * GF /sqrt(2.0)) * (mHl*mHl*mHl /64.0/pow(M_PI,3.0)) *
3387 ( AH_f(tau_t) + AH_f(tau_b) + AH_f(tau_c) + AH_f(tau_s) ).abs2()/4.0;
3388
3389 gamma = gamma + G0 * (asMH/M_PI) * (asMH/M_PI) * (asMH/M_PI) * (h0 + h1/tau_t + h2/tau_t/tau_t + h3/tau_t/tau_t/tau_t );
3390
3391 return gamma;
3392}
3393
3395{
3396 double x=Mz/mHl;
3397 double fx;
3398 double g2 = 4.0 * sqrt(2.0) * GF * Mz * Mz;
3399 double gamma;
3400
3401 fx = -fabs(1.0-x*x)*( 47.0*x*x/2.0 - 13.0/2.0 +1.0/x/x ) +
3402 3.0*( 1.0 - 6.0*x*x + 4.0*x*x*x*x )*fabs(log(x)) +
3403 3.0*( 1.0 - 8.0*x*x + 20.0*x*x*x*x )*acos(( 3.0*x*x - 1.0 )/2.0/x/x/x)/sqrt( 4.0*x*x- 1.0);
3404
3405 gamma = g2*g2 * mHl * fx * ( 7.0 - 40.0*sW2()/3.0 + 160.0 *sW2()*sW2()/9.0 ) / 2048.0 / pow(M_PI,3.0);
3406
3407 return gamma;
3408}
3409
3411{
3412 double x=Mw()/mHl;
3413 double fx;
3414 double g2 = 4.0 * sqrt(2.0) * GF * pow(Mw(),2);
3415 double gamma;
3416
3417 fx = -fabs(1.0-x*x)*( 47.0*x*x/2.0 - 13.0/2.0 +1.0/x/x ) +
3418 3.0*( 1.0 - 6.0*x*x + 4.0*x*x*x*x )*fabs(log(x)) +
3419 3.0*( 1.0 - 8.0*x*x + 20.0*x*x*x*x )*acos(( 3.0*x*x - 1.0 )/2.0/x/x/x)/sqrt( 4.0*x*x- 1.0);
3420
3421 gamma = 3.0 * g2*g2 * mHl * fx / 512.0 / pow(M_PI,3.0);
3422
3423 return gamma;
3424}
3425
3426const double StandardModel::GammaHtoZga() const
3427{
3428 double gamma;
3429
3430 double m_t = mtpole;
3431 double m_b = quarks[BOTTOM].getMass();
3432 double m_c = quarks[CHARM].getMass();
3433 double m_s = quarks[STRANGE].getMass();
3434 double m_tau = leptons[TAU].getMass();
3435 double m_mu = leptons[MU].getMass();
3436
3437 double M_w_2 = pow(Mw(),2.0);
3438
3439 double Qt = quarks[TOP].getCharge();
3440 double Qb = quarks[BOTTOM].getCharge();
3441 double Qc = quarks[CHARM].getCharge();
3442 double Qs = quarks[STRANGE].getCharge();
3443 double Qtau = leptons[TAU].getCharge();
3444 double Qmu = leptons[MU].getCharge();
3445
3446 double tau_t = 4.0 * m_t * m_t / mHl / mHl;
3447 double tau_b = 4.0 * m_b * m_b / mHl / mHl;
3448 double tau_c = 4.0 * m_c * m_c / mHl / mHl;
3449 double tau_s = 4.0 * m_s * m_s / mHl / mHl;
3450 double tau_tau = 4.0 * m_tau * m_tau / mHl / mHl;
3451 double tau_mu = 4.0 * m_mu * m_mu / mHl / mHl;
3452 double tau_W = 4.0 * M_w_2 / mHl / mHl;
3453
3454 double lambda_t = 4.0 * m_t * m_t / Mz / Mz;
3455 double lambda_b = 4.0 * m_b * m_b / Mz / Mz;
3456 double lambda_c = 4.0 * m_c * m_c / Mz / Mz;
3457 double lambda_s = 4.0 * m_s * m_s / Mz / Mz;
3458 double lambda_tau = 4.0 * m_tau * m_tau / Mz / Mz;
3459 double lambda_mu = 4.0 * m_mu * m_mu / Mz / Mz;
3460 double lambda_W = 4.0 * M_w_2 / Mz / Mz;
3461
3462 double sc = sqrt(sW2()*cW2());
3463 double vSMt = (2.0 * (quarks[TOP].getIsospin()) - 4.0 * Qt * sW2())/sc;
3464 double vSMb = (2.0 * (quarks[BOTTOM].getIsospin()) - 4.0 * Qb * sW2())/sc;
3465 double vSMc = (2.0 * (quarks[CHARM].getIsospin()) - 4.0 * Qc * sW2())/sc;
3466 double vSMs = (2.0 * (quarks[STRANGE].getIsospin()) - 4.0 * Qs * sW2())/sc;
3467 double vSMtau = (2.0 * (leptons[TAU].getIsospin()) - 4.0 * Qtau * sW2())/sc;
3468 double vSMmu = (2.0 * (leptons[MU].getIsospin()) - 4.0 * Qmu * sW2())/sc;
3469
3470 gslpp::complex MSM;
3471
3472 MSM = (ale/4.0/M_PI) * ((3.0 * vSMt * Qt * AHZga_f(tau_t, lambda_t) +
3473 3.0 * vSMb * Qb * AHZga_f(tau_b, lambda_b) +
3474 3.0 * vSMc * Qc * AHZga_f(tau_c, lambda_c) +
3475 3.0 * vSMs * Qs * AHZga_f(tau_s, lambda_s) +
3476 vSMtau * Qtau * AHZga_f(tau_tau, lambda_tau) +
3477 vSMmu * Qmu * AHZga_f(tau_mu, lambda_mu)) +
3478 AHZga_W(tau_W, lambda_W)/sqrt(sW2()));
3479
3480 gamma = (4.0*sqrt(2)*GF) * (MSM.abs2()) * pow(mHl*(1.0-Mz*Mz/mHl/mHl),3.0)/32.0/M_PI;
3481
3482 return gamma;
3483}
3484
3486{
3487 double gamma;
3488
3489 double m_t = mtpole;
3490 double m_b = quarks[BOTTOM].getMass();
3491 double m_c = quarks[CHARM].getMass();
3492 double m_s = quarks[STRANGE].getMass();
3493 double m_tau = leptons[TAU].getMass();
3494 double m_mu = leptons[MU].getMass();
3495
3496 double M_w_2 = pow(Mw(),2.0);
3497
3498 double Qt = quarks[TOP].getCharge();
3499 double Qb = quarks[BOTTOM].getCharge();
3500 double Qc = quarks[CHARM].getCharge();
3501 double Qs = quarks[STRANGE].getCharge();
3502 double Qtau = leptons[TAU].getCharge();
3503 double Qmu = leptons[MU].getCharge();
3504
3505 double tau_t = 4.0 * m_t * m_t / mHl / mHl;
3506 double tau_b = 4.0 * m_b * m_b / mHl / mHl;
3507 double tau_c = 4.0 * m_c * m_c / mHl / mHl;
3508 double tau_s = 4.0 * m_s * m_s / mHl / mHl;
3509 double tau_tau = 4.0 * m_tau * m_tau / mHl / mHl;
3510 double tau_mu = 4.0 * m_mu * m_mu / mHl / mHl;
3511 double tau_W = 4.0 * M_w_2 / mHl / mHl;
3512
3513 gslpp::complex MSM;
3514
3515 MSM = ale * (3.0 * Qt * Qt * AH_f(tau_t) +
3516 3.0 * Qb * Qb * AH_f(tau_b) +
3517 3.0 * Qc * Qc * AH_f(tau_c) +
3518 3.0 * Qs * Qs * AH_f(tau_s) +
3519 Qtau * Qtau * AH_f(tau_tau) +
3520 Qmu * Qmu * AH_f(tau_mu) +
3521 AH_W(tau_W));
3522
3523 gamma = (4.0*GF/sqrt(2)) * (MSM.abs2()) * pow(mHl,3.0)/512.0/pow(M_PI,3);
3524
3525 return gamma;
3526}
3527
3529{
3530 double mf=leptons[MU].getMass();
3531 double beta=1.0-4.0*mf*mf/mHl/mHl;
3532 double Nc=1.0;
3533 double gamma;
3534
3535 gamma = Nc * (4.0*GF/sqrt(2.0)) * (mf*mf/16.0/M_PI) * mHl * beta*beta*beta;
3536
3537 return gamma;
3538}
3539
3541{
3542 double mf=leptons[TAU].getMass();
3543 double beta=1.0-4.0*mf*mf/mHl/mHl;
3544 double Nc=1.0;
3545 double gamma;
3546
3547 gamma = Nc * (4.0*GF/sqrt(2.0)) * (mf*mf/16.0/M_PI) * mHl * beta*beta*beta;
3548
3549 return gamma;
3550}
3551
3552const double StandardModel::GammaHtocc() const
3553{
3554 double mf0=quarks[CHARM].getMass(), mf;
3555 double beta;
3556 double Nc=3.0;
3557 double gamma;
3558 double asMH,DeltaQCD,Deltamt,NF;
3559
3560 // alfa_s(MH)
3561 asMH = Als(mHl, FULLNLO);
3562
3563 mf = Mrun(mHl, mf0, mf0, CHARM, FULLNLO);
3564
3565 beta=1.0-4.0*mf*mf/mHl/mHl;
3566
3567 NF=5;
3568
3569 DeltaQCD = 1 + (asMH/M_PI) * ( 17.0/3.0 + (asMH/M_PI) * ( (35.94 - 1.36*NF) + (164.14 - 25.77*NF + 0.26*NF*NF)*(asMH/M_PI) ) );
3570
3571 Deltamt = (asMH/M_PI) * (asMH/M_PI) * ( 1.57 + (4.0/3.0)*log(mHl/mtpole) + (4.0/9.0) * log(mf/mHl) * log(mf/mHl) );
3572
3573 gamma = Nc * (4.0*GF/sqrt(2.0)) * (mf*mf/16.0/M_PI) * mHl * beta*beta*beta * (DeltaQCD + Deltamt);
3574
3575 return gamma;
3576}
3577
3578const double StandardModel::GammaHtoss() const
3579{
3580 double mf0=quarks[STRANGE].getMass(), mf;
3581 double beta;
3582 double Nc=3.0;
3583 double gamma;
3584 double asMH,DeltaQCD,Deltamt,NF;
3585
3586 // alfa_s(MH)
3587 asMH = Als(mHl, FULLNLO);
3588
3589 mf = Mrun(mHl, 2.0, mf0, STRANGE, FULLNLO);
3590
3591 beta=1.0-4.0*mf*mf/mHl/mHl;
3592
3593 NF=5;
3594
3595 DeltaQCD = 1 + (asMH/M_PI) * ( 17.0/3.0 + (asMH/M_PI) * ( (35.94 - 1.36*NF) + (164.14 - 25.77*NF + 0.26*NF*NF)*(asMH/M_PI) ) );
3596
3597 Deltamt = (asMH/M_PI) * (asMH/M_PI) * ( 1.57 + (4.0/3.0)*log(mHl/mtpole) + (4.0/9.0) * log(mf/mHl) * log(mf/mHl) );
3598
3599 gamma = Nc * (4.0*GF/sqrt(2.0)) * (mf*mf/16.0/M_PI) * mHl * beta*beta*beta * (DeltaQCD + Deltamt);
3600
3601 return gamma;
3602}
3603
3604const double StandardModel::GammaHtobb() const
3605{
3606 double mf0=quarks[BOTTOM].getMass(), mf;
3607 double beta;
3608 double Nc=3.0;
3609 double gamma;
3610 double asMH,DeltaQCD,Deltamt,NF;
3611
3612 // alfa_s(MH)
3613 asMH = Als(mHl, FULLNLO);
3614
3615 mf = Mrun(mHl, mf0, mf0, BOTTOM, FULLNLO);
3616
3617 beta=1.0-4.0*mf*mf/mHl/mHl;
3618
3619 NF=5;
3620
3621 DeltaQCD = 1 + (asMH/M_PI) * ( 17.0/3.0 + (asMH/M_PI) * ( (35.94 - 1.36*NF) + (164.14 - 25.77*NF + 0.26*NF*NF)*(asMH/M_PI) ) );
3622
3623 Deltamt = (asMH/M_PI) * (asMH/M_PI) * ( 1.57 + (4.0/3.0)*log(mHl/mtpole) + (4.0/9.0) * log(mf/mHl) * log(mf/mHl) );
3624
3625 gamma = Nc * (4.0*GF/sqrt(2.0)) * (mf*mf/16.0/M_PI) * mHl * beta*beta*beta * (DeltaQCD + Deltamt);
3626
3627 return gamma;
3628}
3629
3630const double StandardModel::GammaHTot() const
3631{
3632 double gamma;
3633
3634 gamma = GammaHtobb() + GammaHtocc() + GammaHtoss() +
3638
3639 return gamma;
3640}
3641
3643// Higgs branching ratios
3645
3646const double StandardModel::BrHtogg() const
3647{
3648 return GammaHtogg()/GammaHTot();
3649}
3650
3651const double StandardModel::BrHtoZZstar() const
3652{
3653 return GammaHtoZZstar()/GammaHTot();
3654}
3655
3656const double StandardModel::BrHtoWWstar() const
3657{
3658 return GammaHtoWWstar()/GammaHTot();
3659}
3660
3661const double StandardModel::BrHtoZga() const
3662{
3663 return GammaHtoZga()/GammaHTot();
3664}
3665
3666const double StandardModel::BrHtogaga() const
3667{
3668 return GammaHtogaga()/GammaHTot();
3669}
3670
3671const double StandardModel::BrHtomumu() const
3672{
3673 return GammaHtomumu()/GammaHTot();
3674}
3675
3676const double StandardModel::BrHtotautau() const
3677{
3678 return GammaHtotautau()/GammaHTot();
3679}
3680
3681const double StandardModel::BrHtocc() const
3682{
3683 return GammaHtocc()/GammaHTot();
3684}
3685
3686const double StandardModel::BrHtoss() const
3687{
3688 return GammaHtoss()/GammaHTot();
3689}
3690
3691const double StandardModel::BrHtobb() const
3692{
3693 return GammaHtobb()/GammaHTot();
3694}
3695
3697//Generic e+e- -> ff Inclusive Observables
3698
3699// For f!=e
3700// (f=e also included to define a t-subtracted observable, like in LEP)
3701
3702// Helicity amplitudes squared
3703const double StandardModel::MLR2eeff(const Particle f, const double s) const {
3704
3705 // Definitions
3706 double Qf, geLSM, gfRSM, is2c2, GZ, Mz2s;
3707
3708 double MLR2SM;
3709
3710 // -------------------------------------------
3711
3712 geLSM = (leptons[ELECTRON].getIsospin()) - (leptons[ELECTRON].getCharge()) * s02();
3713
3714 is2c2 = 1. / s02() / c02();
3715
3716 GZ = Gamma_Z();
3717
3718 Mz2s = Mz * Mz - s;
3719
3720 if (f.is("ELECTRON")) {
3721 Qf = leptons[ELECTRON].getCharge();
3722 gfRSM = - Qf * s02();
3723 } else if (f.is("MU")) {
3724 Qf = leptons[MU].getCharge();
3725 gfRSM = - Qf * s02();
3726 } else if (f.is("TAU")) {
3727 Qf = leptons[TAU].getCharge();
3728 gfRSM = - Qf * s02();
3729 } else if (f.is("UP")) {
3730 Qf = quarks[UP].getCharge();
3731 gfRSM = - Qf * s02();
3732 } else if (f.is("CHARM")) {
3733 Qf = quarks[CHARM].getCharge();
3734 gfRSM = - Qf * s02();
3735 } else if (f.is("DOWN")) {
3736 Qf = quarks[DOWN].getCharge();
3737 gfRSM = - Qf * s02();
3738 } else if (f.is("STRANGE")) {
3739 Qf = quarks[STRANGE].getCharge();
3740 gfRSM = - Qf * s02();
3741 } else if (f.is("BOTTOM")) {
3742 Qf = quarks[BOTTOM].getCharge();
3743 gfRSM = - Qf * s02();
3744 } else
3745 throw std::runtime_error("StandardModel::MLR2eeff: wrong argument");
3746
3747 // LR, RL, LL and RR SM squared amplitudes
3748 MLR2SM = Qf * Qf
3749 + (is2c2 * is2c2 * (geLSM * geLSM * gfRSM * gfRSM) * s * s
3750 + 2.0 * Qf * is2c2 * (geLSM * gfRSM) * Mz2s * s) / (Mz2s * Mz2s + Mz * Mz * GZ * GZ);
3751
3752 return MLR2SM;
3753}
3754const double StandardModel::MRL2eeff(const Particle f, const double s) const{
3755
3756 // Definitions
3757 double Qf, geRSM, gfLSM, is2c2, GZ, Mz2s;
3758
3759 double MRL2SM;
3760
3761 // -------------------------------------------
3762
3763 geRSM = - (leptons[ELECTRON].getCharge()) * s02();
3764
3765 is2c2 = 1. / s02() / c02();
3766
3767 GZ = Gamma_Z();
3768
3769 Mz2s = Mz * Mz - s;
3770
3771 if (f.is("ELECTRON")) {
3772 Qf = leptons[ELECTRON].getCharge();
3773 gfLSM = (leptons[ELECTRON].getIsospin()) - Qf * s02();
3774 } else if (f.is("MU")) {
3775 Qf = leptons[MU].getCharge();
3776 gfLSM = (leptons[MU].getIsospin()) - Qf * s02();
3777 } else if (f.is("TAU")) {
3778 Qf = leptons[TAU].getCharge();
3779 gfLSM = (leptons[TAU].getIsospin()) - Qf * s02();
3780 } else if (f.is("UP")) {
3781 Qf = quarks[UP].getCharge();
3782 gfLSM = (quarks[UP].getIsospin()) - Qf * s02();
3783 } else if (f.is("CHARM")) {
3784 Qf = quarks[CHARM].getCharge();
3785 gfLSM = (quarks[CHARM].getIsospin()) - Qf * s02();
3786 } else if (f.is("DOWN")) {
3787 Qf = quarks[DOWN].getCharge();
3788 gfLSM = (quarks[DOWN].getIsospin()) - Qf * s02();
3789 } else if (f.is("STRANGE")) {
3790 Qf = quarks[STRANGE].getCharge();
3791 gfLSM = (quarks[STRANGE].getIsospin()) - Qf * s02();
3792 } else if (f.is("BOTTOM")) {
3793 Qf = quarks[BOTTOM].getCharge();
3794 gfLSM = (quarks[BOTTOM].getIsospin()) - Qf * s02();
3795 } else
3796 throw std::runtime_error("StandardModel::MRL2eeff: wrong argument");
3797
3798 // RL SM squared amplitude
3799 MRL2SM = Qf * Qf
3800 + (is2c2 * is2c2 * (geRSM * geRSM * gfLSM * gfLSM) * s * s
3801 + 2.0 * Qf * is2c2 * (geRSM * gfLSM) * Mz2s * s) / (Mz2s * Mz2s + Mz * Mz * GZ * GZ);
3802
3803 return MRL2SM;
3804}
3805
3806const double StandardModel::MLL2eeff(const Particle f, const double s, const double t) const{
3807
3808 // Definitions
3809 double Qf, geLSM, gfLSM, is2c2, GZ, Mz2s;
3810
3811 double MLL2SM;
3812
3813 // -------------------------------------------
3814
3815 geLSM = (leptons[ELECTRON].getIsospin()) - (leptons[ELECTRON].getCharge()) * s02();
3816
3817 is2c2 = 1. / s02() / c02();
3818
3819 GZ = Gamma_Z();
3820
3821 Mz2s = Mz * Mz - s;
3822
3823 if (f.is("ELECTRON")) {
3824 Qf = leptons[ELECTRON].getCharge();
3825 gfLSM = (leptons[ELECTRON].getIsospin()) - Qf * s02();
3826 } else if (f.is("MU")) {
3827 Qf = leptons[MU].getCharge();
3828 gfLSM = (leptons[MU].getIsospin()) - Qf * s02();
3829 } else if (f.is("TAU")) {
3830 Qf = leptons[TAU].getCharge();
3831 gfLSM = (leptons[TAU].getIsospin()) - Qf * s02();
3832 } else if (f.is("UP")) {
3833 Qf = quarks[UP].getCharge();
3834 gfLSM = (quarks[UP].getIsospin()) - Qf * s02();
3835 } else if (f.is("CHARM")) {
3836 Qf = quarks[CHARM].getCharge();
3837 gfLSM = (quarks[CHARM].getIsospin()) - Qf * s02();
3838 } else if (f.is("DOWN")) {
3839 Qf = quarks[DOWN].getCharge();
3840 gfLSM = (quarks[DOWN].getIsospin()) - Qf * s02();
3841 } else if (f.is("STRANGE")) {
3842 Qf = quarks[STRANGE].getCharge();
3843 gfLSM = (quarks[STRANGE].getIsospin()) - Qf * s02();
3844 } else if (f.is("BOTTOM")) {
3845 Qf = quarks[BOTTOM].getCharge();
3846 gfLSM = (quarks[BOTTOM].getIsospin()) - Qf * s02();
3847 } else
3848 throw std::runtime_error("StandardModel::MLL2eeff: wrong argument");
3849
3850 // LL SM squared amplitude
3851 MLL2SM = Qf * Qf
3852 + (is2c2 * is2c2 * (geLSM * geLSM * gfLSM * gfLSM) * s * s
3853 + 2.0 * Qf * is2c2 * (geLSM * gfLSM) * Mz2s * s) / (Mz2s * Mz2s + Mz * Mz * GZ * GZ);
3854
3855 return MLL2SM;
3856
3857}
3858const double StandardModel::MRR2eeff(const Particle f, const double s, const double t) const{
3859
3860 // Definitions
3861 double Qf, geRSM, gfRSM, is2c2, GZ, Mz2s;
3862
3863 double MRR2SM;
3864
3865 // -------------------------------------------
3866
3867 geRSM = - (leptons[ELECTRON].getCharge()) * s02();
3868
3869 is2c2 = 1. / s02() / c02();
3870
3871 GZ = Gamma_Z();
3872
3873 Mz2s = Mz * Mz - s;
3874
3875 if (f.is("ELECTRON")) {
3876 Qf = leptons[ELECTRON].getCharge();
3877 gfRSM = - Qf * s02();
3878 } else if (f.is("MU")) {
3879 Qf = leptons[MU].getCharge();
3880 gfRSM = - Qf * s02();
3881 } else if (f.is("TAU")) {
3882 Qf = leptons[TAU].getCharge();
3883 gfRSM = - Qf * s02();
3884 } else if (f.is("UP")) {
3885 Qf = quarks[UP].getCharge();
3886 gfRSM = - Qf * s02();
3887 } else if (f.is("CHARM")) {
3888 Qf = quarks[CHARM].getCharge();
3889 gfRSM = - Qf * s02();
3890 } else if (f.is("DOWN")) {
3891 Qf = quarks[DOWN].getCharge();
3892 gfRSM = - Qf * s02();
3893 } else if (f.is("STRANGE")) {
3894 Qf = quarks[STRANGE].getCharge();
3895 gfRSM = - Qf * s02();
3896 } else if (f.is("BOTTOM")) {
3897 Qf = quarks[BOTTOM].getCharge();
3898 gfRSM = - Qf * s02();
3899 } else
3900 throw std::runtime_error("StandardModel::MRR2eeff: wrong argument");
3901
3902 // RR SM squared amplitude
3903 MRR2SM = Qf * Qf
3904 + (is2c2 * is2c2 * (geRSM * geRSM * gfRSM * gfRSM) * s * s
3905 + 2.0 * Qf * is2c2 * (geRSM * gfRSM) * Mz2s * s) / (Mz2s * Mz2s + Mz * Mz * GZ * GZ);
3906
3907 return MRR2SM;
3908}
3909
3910// Some simple functions for cos \theta integrals
3911
3912const double StandardModel::tovers2(const double cosmin, const double cosmax) const {
3913 return 0.25 * (cosmax * (1.0 - cosmax * (1.0 - cosmax / 3.0)) - cosmin * (1.0 - cosmin * (1.0 - cosmin / 3.0)));
3914}
3915
3916const double StandardModel::uovers2(const double cosmin, const double cosmax) const {
3917 return 0.25 * (cosmax * (1.0 + cosmax * (1.0 + cosmax / 3.0)) - cosmin * (1.0 + cosmin * (1.0 + cosmin / 3.0)));
3918}
3919
3920// Expressions for f=e
3921
3922// Integrals of the SM squared amplitudes x (t/s)^2, (s/t)^2, (u/s)^2 in [t0, t1]
3923const double StandardModel::intMLR2eeeets2(const double s, const double t0, const double t1) const {
3924
3925 double intM2;
3926 double sw2cw2;
3927 double gLeSM,gReSM;
3928 double GammaZSM;
3929 double Mz2, s2;
3930 double propZSM2,propZSMRe,MeeLR2SM;
3931
3932 sw2cw2 = s02() * c02();
3933 gLeSM = (leptons[ELECTRON].getIsospin()) - (leptons[ELECTRON].getCharge()) * s02();
3934 gReSM = - (leptons[ELECTRON].getCharge()) * s02();
3935 GammaZSM = Gamma_Z();
3936 Mz2 = Mz * Mz;
3937 s2 = s * s;
3938
3939 propZSM2 = s2/((s - Mz2)*(s - Mz2) + Mz2*GammaZSM*GammaZSM);
3940 propZSMRe = (s*(s - Mz2))/((s - Mz2)*(s - Mz2) + Mz2*GammaZSM*GammaZSM);
3941
3942 MeeLR2SM = 1.0 + (gLeSM*gLeSM*gReSM*gReSM/(sw2cw2*sw2cw2))*propZSM2 + 2.0*(gLeSM*gReSM/sw2cw2)*propZSMRe;
3943
3944 intM2 = MeeLR2SM*(t1*t1*t1 - t0*t0*t0)/(3.0*s*s);
3945
3946 return intM2;
3947}
3948
3949const double StandardModel::intMLRtilde2eeeest2(const double s, const double t0, const double t1) const {
3950
3951 double intM2;
3952 double sw2cw2;
3953 double gLeSM,gReSM;
3954 double Mz2;
3955
3956 sw2cw2 = s02() * c02();
3957 gLeSM = (leptons[ELECTRON].getIsospin()) - (leptons[ELECTRON].getCharge()) * s02();
3958 gReSM = - (leptons[ELECTRON].getCharge()) * s02();
3959 Mz2 = Mz * Mz;
3960
3961 intM2 = s*s*(((gLeSM*gLeSM*gReSM*gReSM)/sw2cw2/sw2cw2)*(1.0/(Mz2 - t1) - 1.0/(Mz2 - t0)) - 1.0/t1 + 1.0/t0 +
3962 (2.0*gLeSM*gReSM*(-log(t1/t0) + log((-Mz2 + t1)/(-Mz2 + t0))))/(Mz2*sw2cw2));
3963
3964 return intM2;
3965}
3966
3967const double StandardModel::intMLL2eeeeus2(const double s, const double t0, const double t1) const {
3968
3969 double intM2;
3970 double sw2cw2;
3971 double gLeSM;
3972 double GammaZSM;
3973 double Mz2, Mz4, s2;
3974
3975 sw2cw2 = s02() * c02();
3976 gLeSM = (leptons[ELECTRON].getIsospin()) - (leptons[ELECTRON].getCharge()) * s02();
3977 GammaZSM = Gamma_Z();
3978 Mz2 = Mz * Mz;
3979 Mz4 = Mz2 * Mz2;
3980 s2 = s * s;
3981
3982 intM2 = (gLeSM*gLeSM*gLeSM*gLeSM*s2 + 2.0*gLeSM*gLeSM*s*(-Mz2 + s)*sw2cw2 + sw2cw2*sw2cw2*(Mz4 + s2 + Mz2*(-2.0*s + GammaZSM*GammaZSM)))/(3.0*s2*sw2cw2*sw2cw2*(Mz4 + s2 + Mz2*(-2.0*s + GammaZSM*GammaZSM)))*(pow(s + t1,3.0) - pow(s + t0,3.0)) +
3983 ((2.0*(1.0 + (gLeSM*gLeSM*s*(-Mz2 + s))/(sw2cw2*(Mz4 + s2 + Mz2*(-2.0*s + GammaZSM*GammaZSM)))) )/s)*(2.0*s *(t1 - t0) + (t1*t1 - t0*t0)/2.0 + s2*log(t1/t0)) +
3984 (2.0*gLeSM*gLeSM* (-sw2cw2 + (gLeSM*gLeSM*(Mz2 - s)*s)/(Mz4 + s2 + Mz2*(-2.0*s + GammaZSM*GammaZSM))))/(s*sw2cw2*sw2cw2)* (-(1.0/2.0)*t1*(2.0*Mz2 + 4.0*s + t1) + (1.0/2.0)*t0*(2.0*Mz2 + 4.0*s + t0) - (Mz2 + s)*(Mz2 + s)*log((-Mz2 + t1)/(-Mz2 + t0)) ) +
3985 (2.0*(gLeSM*gLeSM) )/(Mz2*sw2cw2)*(Mz2 *(t1 - t0) - s2*log(t1/t0) + (Mz2 + s)*(Mz2 + s)*log((-Mz2 + t1)/(-Mz2 + t0))) +
3986 (-(s2/t1) + s2/t0 + t1 - t0 + 2.0*s*log(t1/t0)) +
3987 (gLeSM*gLeSM*gLeSM*gLeSM /sw2cw2/sw2cw2)*((Mz2 + s)*(Mz2 + s)*(1.0/(Mz2 - t1) - 1.0/(Mz2 - t0)) + t1 - t0 + 2.0*(Mz2 + s)*log((-Mz2 + t1)/(-Mz2 + t0)));
3988
3989 return intM2;
3990}
3991
3992const double StandardModel::intMRR2eeeeus2(const double s, const double t0, const double t1) const {
3993
3994 double intM2;
3995 double sw2cw2;
3996 double gReSM;
3997 double GammaZSM;
3998 double Mz2, Mz4, s2;
3999
4000 sw2cw2 = s02() * c02();
4001 gReSM = - (leptons[ELECTRON].getCharge()) * s02();
4002 GammaZSM = Gamma_Z();
4003 Mz2 = Mz * Mz;
4004 Mz4 = Mz2 * Mz2;
4005 s2 = s * s;
4006
4007 intM2 = (gReSM*gReSM*gReSM*gReSM*s2 + 2.0*gReSM*gReSM*s*(-Mz2 + s)*sw2cw2 + sw2cw2*sw2cw2*(Mz4 + s2 + Mz2*(-2.0*s + GammaZSM*GammaZSM)))/(3.0*s2*sw2cw2*sw2cw2*(Mz4 + s2 + Mz2*(-2.0*s + GammaZSM*GammaZSM)))*(pow(s + t1,3.0) - pow(s + t0,3.0)) +
4008 ((2.0*(1.0 + (gReSM*gReSM*s*(-Mz2 + s))/(sw2cw2*(Mz4 + s2 + Mz2*(-2.0*s + GammaZSM*GammaZSM)))) )/s)*(2.0*s *(t1 - t0) + (t1*t1 - t0*t0)/2.0 + s2*log(t1/t0)) +
4009 (2.0*gReSM*gReSM* (-sw2cw2 + (gReSM*gReSM*(Mz2 - s)*s)/(Mz4 + s2 + Mz2*(-2.0*s + GammaZSM*GammaZSM))))/(s*sw2cw2*sw2cw2)* (-(1.0/2.0)*t1*(2.0*Mz2 + 4.0*s + t1) + (1.0/2.0)*t0*(2.0*Mz2 + 4.0*s + t0) - (Mz2 + s)*(Mz2 + s)*log((-Mz2 + t1)/(-Mz2 + t0)) ) +
4010 (2.0*(gReSM*gReSM) )/(Mz2*sw2cw2)*(Mz2 *(t1 - t0) - s2*log(t1/t0) + (Mz2 + s)*(Mz2 + s)*log((-Mz2 + t1)/(-Mz2 + t0))) +
4011 (-(s2/t1) + s2/t0 + t1 - t0 + 2.0*s*log(t1/t0)) +
4012 (gReSM*gReSM*gReSM*gReSM /sw2cw2/sw2cw2)*((Mz2 + s)*(Mz2 + s)*(1.0/(Mz2 - t1) - 1.0/(Mz2 - t0)) + t1 - t0 + 2.0*(Mz2 + s)*log((-Mz2 + t1)/(-Mz2 + t0)));
4013
4014 return intM2;
4015}
4016
4017// Cross sections
4018
4019const double StandardModel::eeffsigmaEbin(const double pol_e, const double pol_p, const double s, const double cosmin, const double cosmax) const {
4020
4021 double sumM2, sigma;
4022 double topb = 0.3894e+9;
4023 double t0, t1, lambdaK;
4024
4025 double pLH, pRH; //Polarization factors, minus the 1/4 average
4026
4027 pLH = (1.0 - pol_e) * (1.0 + pol_p);
4028 pRH = (1.0 + pol_e) * (1.0 - pol_p);
4029
4030 // t values for cosmin and cosmax
4031 t0 = 0.5 * s * ( -1.0 + cosmin );
4032 t1 = 0.5 * s * ( -1.0 + cosmax );
4033
4034 // Kähllén function of (s,0,0)
4035 lambdaK = s*s;
4036
4037 // Sum of the integrals of the amplitudes squared x (t/s)^2, (s/t)^2, (u/s)^2
4038 sumM2 = (pLH + pRH) * ( intMLR2eeeets2(s, t0, t1) + intMLRtilde2eeeest2(s, t0, t1) ) +
4039 pLH * intMLL2eeeeus2(s, t0, t1) + pRH * intMRR2eeeeus2(s, t0, t1);
4040
4041 // Build the cross section
4042 sigma = M_PI * (alphaMz())*(alphaMz()) * sumM2 / s / sqrt(lambdaK);
4043
4044 return topb * sigma;
4045
4046}
4047
4048const double StandardModel::eeffsigma(const Particle f, const double pol_e, const double pol_p, const double s, const double cosmin, const double cosmax) const {
4049 // Only valid for f=/=e (MLL2, MRR2 do not depend on t for f=/=e. Simply enter t=1 as argument)
4050 // For f=e this corresponds to t-subtracted definition from LEP
4051 double sumM2, sigma;
4052 double tdumm = 1.;
4053 double topb = 0.3894e+9;
4054
4055 //double cosmin = -1.0;
4056 //double cosmax = 1.0;
4057
4058 double Nf;
4059
4060 double pLH, pRH; //Polarization factors, minus the 1/4 average
4061
4062 pLH = (1.0 - pol_e) * (1.0 + pol_p);
4063 pRH = (1.0 + pol_e) * (1.0 - pol_p);
4064
4065 if (f.is("LEPTON")) {
4066 Nf = 1.0;
4067 } else {
4068 Nf = 3.0;
4069 }
4070
4071 sumM2 = (pLH * MLR2eeff(f, s) + pRH * MRL2eeff(f, s)) * tovers2(cosmin, cosmax)
4072 + (pLH * MLL2eeff(f, s, tdumm) + pRH * MRR2eeff(f, s, tdumm)) * uovers2(cosmin, cosmax);
4073
4074 sigma = Nf * 0.5 * M_PI * (alphaMz())*(alphaMz()) * sumM2 / s;
4075
4076 return topb * sigma;
4077}
4078
4079/* BEGIN: REMOVE FROM THE PACKAGE */
4081//LEP2 Observables
4082
4083const double StandardModel::LEP2sigmaE(const double s) const
4084{
4085 return 0.;
4086}
4087
4088const double StandardModel::LEP2sigmaMu(const double s) const
4089{
4090 gsl_error_handler_t * old_handler = gsl_set_error_handler_off();
4091 double relerr = 1.e-8;
4092 double abserr = 1.e-20;
4093
4094 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
4096
4097 /* SM contribution with the approximate formula */
4099
4100 } else {
4101
4102 if(s == 130.*130.){
4103
4104 if (!flagLEP2[ISR]){
4106 } else {
4107 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu130, &(*this), _1));
4108 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4109 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4110 }
4112 }
4113
4114 if (flagLEP2[WeakBox]) {
4115 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu130, &(*this), _1));
4116 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4117 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4118 }
4119 double sigma_box = average;
4120 SMresult_cache += sigma_box;
4121 }
4122 } else if (s == 136.*136.) {
4123 if (!flagLEP2[ISR]){
4125 } else {
4126 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu136, &(*this), _1));
4127 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4128 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4129 }
4131 }
4132
4133 if (flagLEP2[WeakBox]) {
4134 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu136, &(*this), _1));
4135 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4136 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4137 }
4138 double sigma_box = average;
4139 SMresult_cache += sigma_box;
4140 }
4141 } else if (s == 161.*161.){
4142 if (!flagLEP2[ISR])
4144 else {
4145 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu161, &(*this), _1));
4146 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4147 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4148 }
4150 }
4151
4152 if (flagLEP2[WeakBox]) {
4153 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu161, &(*this), _1));
4154 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4155 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4156 }
4157 double sigma_box = average;
4158 SMresult_cache += sigma_box;
4159 }
4160 } else if (s == 172.*172.) {
4161 if (!flagLEP2[ISR])
4163 else {
4164 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu172, &(*this), _1));
4165 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4166 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4167 }
4169 }
4170
4171 if (flagLEP2[WeakBox]) {
4172 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu172, &(*this), _1));
4173 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4174 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4175 }
4176 double sigma_box = average;
4177 SMresult_cache += sigma_box;
4178 }
4179 } else if (s == 183.*183.) {
4180 if (!flagLEP2[ISR])
4182 else {
4183 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu183, &(*this), _1));
4184 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4185 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4186 }
4188 }
4189
4190 if (flagLEP2[WeakBox]) {
4191 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu183, &(*this), _1));
4192 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4193 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4194 }
4195 double sigma_box = average;
4196 SMresult_cache += sigma_box;
4197 }
4198 } else if (s == 189.*189.) {
4199 if (!flagLEP2[ISR])
4201 else {
4202 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu189, &(*this), _1));
4203 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4204 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4205 }
4207 }
4208
4209 if (flagLEP2[WeakBox]) {
4210 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu189, &(*this), _1));
4211 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4212 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4213 }
4214 double sigma_box = average;
4215 SMresult_cache += sigma_box;
4216 }
4217 } else if (s == 192.*192.) {
4218 if (!flagLEP2[ISR])
4220 else {
4221 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu192, &(*this), _1));
4222 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4223 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4224 }
4226 }
4227
4228 if (flagLEP2[WeakBox]) {
4229 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu192, &(*this), _1));
4230 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4231 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4232 }
4233 double sigma_box = average;
4234 SMresult_cache += sigma_box;
4235 }
4236 } else if (s == 196.*196.) {
4237 if (!flagLEP2[ISR])
4239 else {
4240 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu196, &(*this), _1));
4241 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4242 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4243 }
4245 }
4246
4247 if (flagLEP2[WeakBox]) {
4248 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu196, &(*this), _1));
4249 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4250 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4251 }
4252 double sigma_box = average;
4253 SMresult_cache += sigma_box;
4254 }
4255 } else if (s == 200.*200.) {
4256 if (!flagLEP2[ISR])
4258 else {
4259 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu200, &(*this), _1));
4260 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4261 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4262 }
4264 }
4265
4266 if (flagLEP2[WeakBox]) {
4267 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu200, &(*this), _1));
4268 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4269 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4270 }
4271 double sigma_box = average;
4272 SMresult_cache += sigma_box;
4273 }
4274 } else if (s == 202.*202.) {
4275 if (!flagLEP2[ISR])
4277 else {
4278 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu202, &(*this), _1));
4279 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4280 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4281 }
4283 }
4284
4285 if (flagLEP2[WeakBox]) {
4286 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu202, &(*this), _1));
4287 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4288 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4289 }
4290 double sigma_box = average;
4291 SMresult_cache += sigma_box;
4292 }
4293 } else if (s == 205.*205.) {
4294 if (!flagLEP2[ISR])
4296 else {
4297 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu205, &(*this), _1));
4298 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4299 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4300 }
4302 }
4303
4304 if (flagLEP2[WeakBox]) {
4305 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu205, &(*this), _1));
4306 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4307 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4308 }
4309 double sigma_box = average;
4310 SMresult_cache += sigma_box;
4311 }
4312 } else if (s == 207.*207.) {
4313 if (!flagLEP2[ISR])
4315 else {
4316 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_mu207, &(*this), _1));
4317 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4318 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4319 }
4321 }
4322
4323 if (flagLEP2[WeakBox]) {
4324 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu207, &(*this), _1));
4325 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4326 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4327 }
4328 double sigma_box = average;
4329 SMresult_cache += sigma_box;
4330 }
4331 } else {
4332 throw std::runtime_error("ERROR: wrong LEP2 energy in StandardModel::LEP2AFBmu!");
4333 }
4334
4335 double sigma_mu = SMresult_cache;
4336
4337 gsl_set_error_handler(old_handler);
4338
4339 return sigma_mu;
4340
4341 }
4342}
4343
4344
4345const double StandardModel::LEP2sigmaTau(const double s) const
4346{
4347
4348 gsl_error_handler_t * old_handler = gsl_set_error_handler_off();
4349 double relerr = 1.e-7;
4350 double abserr = 1.e-17;
4351
4352 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
4354
4355 /* SM contribution with the approximate formula */
4357
4358 } else {
4359
4360 if(s == 130.*130.){
4361
4362 if (!flagLEP2[ISR]){
4364 } else {
4365 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau130, &(*this), _1));
4366 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4367 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4368 }
4370 }
4371
4372 if (flagLEP2[WeakBox]) {
4373 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau130, &(*this), _1));
4374 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4375 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4376 }
4377 double sigma_box = average;
4378 SMresult_cache += sigma_box;
4379 }
4380 } else if (s == 136.*136.) {
4381 if (!flagLEP2[ISR]){
4383 } else {
4384 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau136, &(*this), _1));
4385 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4386 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4387 }
4389 }
4390
4391 if (flagLEP2[WeakBox]) {
4392 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau136, &(*this), _1));
4393 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4394 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4395 }
4396 double sigma_box = average;
4397 SMresult_cache += sigma_box;
4398 }
4399 } else if (s == 161.*161.){
4400 if (!flagLEP2[ISR])
4402 else {
4403 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau161, &(*this), _1));
4404 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4405 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4406 }
4408 }
4409
4410 if (flagLEP2[WeakBox]) {
4411 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau161, &(*this), _1));
4412 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4413 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4414 }
4415 double sigma_box = average;
4416 SMresult_cache += sigma_box;
4417 }
4418 } else if (s == 172.*172.) {
4419 if (!flagLEP2[ISR])
4421 else {
4422 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau172, &(*this), _1));
4423 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4424 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4425 }
4427 }
4428
4429 if (flagLEP2[WeakBox]) {
4430 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau172, &(*this), _1));
4431 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4432 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4433 }
4434 double sigma_box = average;
4435 SMresult_cache += sigma_box;
4436 }
4437 } else if (s == 183.*183.) {
4438 if (!flagLEP2[ISR])
4440 else {
4441 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau183, &(*this), _1));
4442 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4443 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4444 }
4446 }
4447
4448 if (flagLEP2[WeakBox]) {
4449 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau183, &(*this), _1));
4450 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4451 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4452 }
4453 double sigma_box = average;
4454 SMresult_cache += sigma_box;
4455 }
4456 } else if (s == 189.*189.) {
4457 if (!flagLEP2[ISR])
4459 else {
4460 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau189, &(*this), _1));
4461 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4462 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4463 }
4465 }
4466
4467 if (flagLEP2[WeakBox]) {
4468 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau189, &(*this), _1));
4469 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4470 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4471 }
4472 double sigma_box = average;
4473 SMresult_cache += sigma_box;
4474 }
4475 } else if (s == 192.*192.) {
4476 if (!flagLEP2[ISR])
4478 else {
4479 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau192, &(*this), _1));
4480 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4481 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4482 }
4484 }
4485
4486 if (flagLEP2[WeakBox]) {
4487 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau192, &(*this), _1));
4488 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4489 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4490 }
4491 double sigma_box = average;
4492 SMresult_cache += sigma_box;
4493 }
4494 } else if (s == 196.*196.) {
4495 if (!flagLEP2[ISR])
4497 else {
4498 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau196, &(*this), _1));
4499 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4500 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4501 }
4503 }
4504
4505 if (flagLEP2[WeakBox]) {
4506 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau196, &(*this), _1));
4507 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4508 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4509 }
4510 double sigma_box = average;
4511 SMresult_cache += sigma_box;
4512 }
4513 } else if (s == 200.*200.) {
4514 if (!flagLEP2[ISR])
4516 else {
4517 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau200, &(*this), _1));
4518 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4519 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4520 }
4522 }
4523
4524 if (flagLEP2[WeakBox]) {
4525 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau200, &(*this), _1));
4526 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4527 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4528 }
4529 double sigma_box = average;
4530 SMresult_cache += sigma_box;
4531 }
4532 } else if (s == 202.*202.) {
4533 if (!flagLEP2[ISR])
4535 else {
4536 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau202, &(*this), _1));
4537 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4538 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4539 }
4541 }
4542
4543 if (flagLEP2[WeakBox]) {
4544 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau202, &(*this), _1));
4545 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4546 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4547 }
4548 double sigma_box = average;
4549 SMresult_cache += sigma_box;
4550 }
4551 } else if (s == 205.*205.) {
4552 if (!flagLEP2[ISR])
4554 else {
4555 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau205, &(*this), _1));
4556 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4557 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4558 }
4560 }
4561
4562 if (flagLEP2[WeakBox]) {
4563 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau205, &(*this), _1));
4564 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4565 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4566 }
4567 double sigma_box = average;
4568 SMresult_cache += sigma_box;
4569 }
4570 } else if (s == 207.*207.) {
4571 if (!flagLEP2[ISR])
4573 else {
4574 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_tau207, &(*this), _1));
4575 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4576 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4577 }
4579 }
4580
4581 if (flagLEP2[WeakBox]) {
4582 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau207, &(*this), _1));
4583 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4584 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4585 }
4586 double sigma_box = average;
4587 SMresult_cache += sigma_box;
4588 }
4589 } else {
4590 throw std::runtime_error("ERROR: wrong LEP2 energy in StandardModel::LEP2sigmaTau!");
4591 }
4592
4593 double sigma_tau = SMresult_cache;
4594
4595 gsl_set_error_handler(old_handler);
4596
4597 return sigma_tau;
4598
4599 }
4600}
4601
4602
4603const double StandardModel::LEP2sigmaCharm(const double s) const
4604{
4605 gsl_error_handler_t * old_handler = gsl_set_error_handler_off();
4606 double relerr = 1.e-8;
4607 double abserr = 1.e-20;
4608
4609 if(s == 133.*133.){
4610
4611 if (!flagLEP2[ISR]){
4613 } else {
4614 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm133, &(*this), _1));
4615 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4616 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4617 }
4619 }
4620
4621 if (flagLEP2[WeakBox]) {
4622 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm133, &(*this), _1));
4623 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4624 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4625 }
4626 double sigma_box = average;
4627 SMresult_cache += sigma_box;
4628 }
4629 } else if (s == 167.*167.){
4630 if (!flagLEP2[ISR])
4632 else {
4633 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm167, &(*this), _1));
4634 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4635 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4636 }
4638 }
4639
4640 if (flagLEP2[WeakBox]) {
4641 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm167, &(*this), _1));
4642 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4643 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4644 }
4645 double sigma_box = average;
4646 SMresult_cache += sigma_box;
4647 }
4648 } else if (s == 183.*183.) {
4649 if (!flagLEP2[ISR])
4651 else {
4652 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm183, &(*this), _1));
4653 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4654 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4655 }
4657 }
4658
4659 if (flagLEP2[WeakBox]) {
4660 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm183, &(*this), _1));
4661 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4662 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4663 }
4664 double sigma_box = average;
4665 SMresult_cache += sigma_box;
4666 }
4667 } else if (s == 189.*189.) {
4668 if (!flagLEP2[ISR])
4670 else {
4671 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm189, &(*this), _1));
4672 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4673 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4674 }
4676 }
4677
4678 if (flagLEP2[WeakBox]) {
4679 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm189, &(*this), _1));
4680 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4681 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4682 }
4683 double sigma_box = average;
4684 SMresult_cache += sigma_box;
4685 }
4686 } else if (s == 192.*192.) {
4687 if (!flagLEP2[ISR])
4689 else {
4690 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm192, &(*this), _1));
4691 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4692 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4693 }
4695 }
4696
4697 if (flagLEP2[WeakBox]) {
4698 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm192, &(*this), _1));
4699 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4700 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4701 }
4702 double sigma_box = average;
4703 SMresult_cache += sigma_box;
4704 }
4705 } else if (s == 196.*196.) {
4706 if (!flagLEP2[ISR])
4708 else {
4709 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm196, &(*this), _1));
4710 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4711 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4712 }
4714 }
4715
4716 if (flagLEP2[WeakBox]) {
4717 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm196, &(*this), _1));
4718 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4719 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4720 }
4721 double sigma_box = average;
4722 SMresult_cache += sigma_box;
4723 }
4724 } else if (s == 200.*200.) {
4725 if (!flagLEP2[ISR])
4727 else {
4728 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm200, &(*this), _1));
4729 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4730 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4731 }
4733 }
4734
4735 if (flagLEP2[WeakBox]) {
4736 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm200, &(*this), _1));
4737 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4738 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4739 }
4740 double sigma_box = average;
4741 SMresult_cache += sigma_box;
4742 }
4743 } else if (s == 202.*202.) {
4744 if (!flagLEP2[ISR])
4746 else {
4747 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm202, &(*this), _1));
4748 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4749 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4750 }
4752 }
4753
4754 if (flagLEP2[WeakBox]) {
4755 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm202, &(*this), _1));
4756 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4757 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4758 }
4759 double sigma_box = average;
4760 SMresult_cache += sigma_box;
4761 }
4762 } else if (s == 205.*205.) {
4763 if (!flagLEP2[ISR])
4765 else {
4766 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm205, &(*this), _1));
4767 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4768 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4769 }
4771 }
4772
4773 if (flagLEP2[WeakBox]) {
4774 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm205, &(*this), _1));
4775 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4776 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4777 }
4778 double sigma_box = average;
4779 SMresult_cache += sigma_box;
4780 }
4781 } else if (s == 207.*207.) {
4782 if (!flagLEP2[ISR])
4784 else {
4785 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm207, &(*this), _1));
4786 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4787 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4788 }
4790 }
4791
4792 if (flagLEP2[WeakBox]) {
4793 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm207, &(*this), _1));
4794 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4795 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4796 }
4797 double sigma_box = average;
4798 SMresult_cache += sigma_box;
4799 }
4800 } else {
4801 throw std::runtime_error("ERROR: wrong LEP2 energy in StandardModel::LEP2sigmaCharm!");
4802 }
4803
4804
4805 double sigma_mu = SMresult_cache;
4806
4807 gsl_set_error_handler(old_handler);
4808
4809 return sigma_mu;
4810
4811}
4812
4813
4814const double StandardModel::LEP2sigmaBottom(const double s) const
4815{
4816 gsl_error_handler_t * old_handler = gsl_set_error_handler_off();
4817 double relerr = 1.e-8;
4818 double abserr = 1.e-20;
4819
4820 if(s == 133.*133.){
4821
4822 if (!flagLEP2[ISR]){
4824 } else {
4825 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom133, &(*this), _1));
4826 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4827 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4828 }
4830 }
4831
4832 if (flagLEP2[WeakBox]) {
4833 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom133, &(*this), _1));
4834 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4835 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4836 }
4837 double sigma_box = average;
4838 SMresult_cache += sigma_box;
4839 }
4840 } else if (s == 167.*167.){
4841 if (!flagLEP2[ISR])
4843 else {
4844 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom167, &(*this), _1));
4845 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4846 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4847 }
4849 }
4850
4851 if (flagLEP2[WeakBox]) {
4852 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom167, &(*this), _1));
4853 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4854 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4855 }
4856 double sigma_box = average;
4857 SMresult_cache += sigma_box;
4858 }
4859 } else if (s == 183.*183.) {
4860 if (!flagLEP2[ISR])
4862 else {
4863 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom183, &(*this), _1));
4864 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4865 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4866 }
4868 }
4869
4870 if (flagLEP2[WeakBox]) {
4871 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom183, &(*this), _1));
4872 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4873 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4874 }
4875 double sigma_box = average;
4876 SMresult_cache += sigma_box;
4877 }
4878 } else if (s == 189.*189.) {
4879 if (!flagLEP2[ISR])
4881 else {
4882 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom189, &(*this), _1));
4883 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4884 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4885 }
4887 }
4888
4889 if (flagLEP2[WeakBox]) {
4890 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom189, &(*this), _1));
4891 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4892 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4893 }
4894 double sigma_box = average;
4895 SMresult_cache += sigma_box;
4896 }
4897 } else if (s == 192.*192.) {
4898 if (!flagLEP2[ISR])
4900 else {
4901 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom192, &(*this), _1));
4902 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4903 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4904 }
4906 }
4907
4908 if (flagLEP2[WeakBox]) {
4909 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom192, &(*this), _1));
4910 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4911 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4912 }
4913 double sigma_box = average;
4914 SMresult_cache += sigma_box;
4915 }
4916 } else if (s == 196.*196.) {
4917 if (!flagLEP2[ISR])
4919 else {
4920 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom196, &(*this), _1));
4921 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4922 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4923 }
4925 }
4926
4927 if (flagLEP2[WeakBox]) {
4928 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom196, &(*this), _1));
4929 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4930 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4931 }
4932 double sigma_box = average;
4933 SMresult_cache += sigma_box;
4934 }
4935 } else if (s == 200.*200.) {
4936 if (!flagLEP2[ISR])
4938 else {
4939 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom200, &(*this), _1));
4940 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4941 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4942 }
4944 }
4945
4946 if (flagLEP2[WeakBox]) {
4947 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom200, &(*this), _1));
4948 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4949 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4950 }
4951 double sigma_box = average;
4952 SMresult_cache += sigma_box;
4953 }
4954 } else if (s == 202.*202.) {
4955 if (!flagLEP2[ISR])
4957 else {
4958 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom202, &(*this), _1));
4959 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4960 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4961 }
4963 }
4964
4965 if (flagLEP2[WeakBox]) {
4966 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom202, &(*this), _1));
4967 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4968 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4969 }
4970 double sigma_box = average;
4971 SMresult_cache += sigma_box;
4972 }
4973 } else if (s == 205.*205.) {
4974 if (!flagLEP2[ISR])
4976 else {
4977 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom205, &(*this), _1));
4978 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4979 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4980 }
4982 }
4983
4984 if (flagLEP2[WeakBox]) {
4985 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom205, &(*this), _1));
4986 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4987 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4988 }
4989 double sigma_box = average;
4990 SMresult_cache += sigma_box;
4991 }
4992 } else if (s == 207.*207.) {
4993 if (!flagLEP2[ISR])
4995 else {
4996 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom207, &(*this), _1));
4997 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
4998 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
4999 }
5001 }
5002
5003 if (flagLEP2[WeakBox]) {
5004 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom207, &(*this), _1));
5005 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5006 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5007 }
5008 double sigma_box = average;
5009 SMresult_cache += sigma_box;
5010 }
5011 } else {
5012 throw std::runtime_error("ERROR: wrong LEP2 energy in StandardModel::LEP2sigmaBottom!");
5013 }
5014
5015
5016 double sigma_mu = SMresult_cache;
5017
5018 gsl_set_error_handler(old_handler);
5019
5020 return sigma_mu;
5021
5022}
5023
5024
5025const double StandardModel::LEP2sigmaHadron(const double s) const
5026{
5027 gsl_error_handler_t * old_handler = gsl_set_error_handler_off();
5028 double relerr = 1.e-8;
5029 double abserr = 1.e-20;
5030
5031 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
5033
5034 /* SM contribution with the approximate formula */
5036
5037 } else {
5038
5039 if(s == 130.*130.){
5040
5041 if (!flagLEP2[ISR]){
5047 } else {
5048
5049 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up130, &(*this), _1));
5050 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5051 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5052 }
5054
5055 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down130, &(*this), _1));
5056 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5057 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5058 }
5060
5061 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm130, &(*this), _1));
5062 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5063 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5064 }
5066
5067 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange130, &(*this), _1));
5068 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5069 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5070 }
5072
5073 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom130, &(*this), _1));
5074 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5075 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5076 }
5078
5079 }
5080
5081 if (flagLEP2[WeakBox]) {
5082 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up130, &(*this), _1));
5083 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5084 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5085 }
5086 double sigma_box = average;
5087
5088 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down130, &(*this), _1));
5089 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5090 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5091 }
5092 sigma_box += average;
5093
5094 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm130, &(*this), _1));
5095 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5096 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5097 }
5098 sigma_box += average;
5099
5100 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange130, &(*this), _1));
5101 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5102 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5103 }
5104 sigma_box += average;
5105
5106 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom130, &(*this), _1));
5107 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5108 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5109 }
5110 sigma_box += average;
5111 SMresult_cache += sigma_box;
5112 }
5113 } else if (s == 133.*133.) {
5114 if (!flagLEP2[ISR]){
5120 } else {
5121
5122 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up133, &(*this), _1));
5123 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5124 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5125 }
5127
5128 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down133, &(*this), _1));
5129 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5130 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5131 }
5133
5134 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm133, &(*this), _1));
5135 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5136 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5137 }
5139
5140 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange133, &(*this), _1));
5141 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5142 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5143 }
5145
5146 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom133, &(*this), _1));
5147 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5148 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5149 }
5151 }
5152
5153 if (flagLEP2[WeakBox]) {
5154 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up133, &(*this), _1));
5155 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5156 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5157 }
5158 double sigma_box = average;
5159
5160 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down133, &(*this), _1));
5161 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5162 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5163 }
5164 sigma_box += average;
5165
5166 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm133, &(*this), _1));
5167 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5168 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5169 }
5170 sigma_box += average;
5171
5172 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange133, &(*this), _1));
5173 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5174 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5175 }
5176 sigma_box += average;
5177
5178 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom133, &(*this), _1));
5179 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5180 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5181 }
5182 sigma_box += average;
5183 SMresult_cache += sigma_box;
5184 }
5185 } else if (s == 136.*136.) {
5186 if (!flagLEP2[ISR]){
5192 } else {
5193
5194 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up136, &(*this), _1));
5195 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5196 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5197 }
5199
5200 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down136, &(*this), _1));
5201 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5202 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5203 }
5205
5206 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm136, &(*this), _1));
5207 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5208 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5209 }
5211
5212 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange136, &(*this), _1));
5213 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5214 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5215 }
5217
5218 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom136, &(*this), _1));
5219 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5220 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5221 }
5223 }
5224
5225 if (flagLEP2[WeakBox]) {
5226 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up136, &(*this), _1));
5227 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5228 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5229 }
5230 double sigma_box = average;
5231
5232 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down136, &(*this), _1));
5233 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5234 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5235 }
5236 sigma_box += average;
5237
5238 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm136, &(*this), _1));
5239 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5240 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5241 }
5242 sigma_box += average;
5243
5244 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange136, &(*this), _1));
5245 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5246 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5247 }
5248 sigma_box += average;
5249
5250 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom136, &(*this), _1));
5251 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5252 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5253 }
5254 sigma_box += average;
5255 SMresult_cache += sigma_box;
5256 }
5257 } else if (s == 161.*161.){
5258 if (!flagLEP2[ISR]){
5264 } else {
5265
5266 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up161, &(*this), _1));
5267 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5268 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5269 }
5271
5272 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down161, &(*this), _1));
5273 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5274 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5275 }
5277
5278 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm161, &(*this), _1));
5279 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, 1.e-12, 1.e-6, 100, w_GSL1, &average, &error) != 0){
5280 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5281 }
5283
5284 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange161, &(*this), _1));
5285 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 200, w_GSL1, &average, &error) != 0){
5286 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5287 }
5289
5290 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom161, &(*this), _1));
5291 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5292 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5293 }
5295 }
5296
5297 if (flagLEP2[WeakBox]) {
5298 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up161, &(*this), _1));
5299 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5300 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5301 }
5302 double sigma_box = average;
5303
5304 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down161, &(*this), _1));
5305 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5306 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5307 }
5308 sigma_box += average;
5309
5310 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm161, &(*this), _1));
5311 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5312 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5313 }
5314 sigma_box += average;
5315
5316 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange161, &(*this), _1));
5317 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5318 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5319 }
5320 sigma_box += average;
5321
5322 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom161, &(*this), _1));
5323 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5324 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5325 }
5326 sigma_box += average;
5327 SMresult_cache += sigma_box;
5328 }
5329 } else if (s == 167.*167.) {
5330 if (!flagLEP2[ISR]){
5336 } else {
5337
5338 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up167, &(*this), _1));
5339 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5340 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5341 }
5342
5344
5345 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down167, &(*this), _1));
5346 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, 1.e-15, 1.e-9, 200, w_GSL1, &average, &error) != 0){
5347 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5348 }
5350
5351 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm167, &(*this), _1));
5352 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, 1.e-15, 1.e-9, 200, w_GSL1, &average, &error) != 0){
5353 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5354 }
5356
5357 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange167, &(*this), _1));
5358 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, 1.e-15, 1.e-9, 200, w_GSL1, &average, &error) != 0){
5359 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5360 }
5362
5363 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom167, &(*this), _1));
5364 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, 1.e-15, 1.e-9, 200, w_GSL1, &average, &error) != 0){
5365 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5366 }
5368 }
5369
5370 if (flagLEP2[WeakBox]) {
5371 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up167, &(*this), _1));
5372 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5373 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5374 }
5375 double sigma_box = average;
5376
5377 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down167, &(*this), _1));
5378 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5379 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5380 }
5381 sigma_box += average;
5382
5383 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm167, &(*this), _1));
5384 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5385 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5386 }
5387 sigma_box += average;
5388
5389 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange167, &(*this), _1));
5390 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5391 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5392 }
5393 sigma_box += average;
5394
5395 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom167, &(*this), _1));
5396 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5397 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5398 }
5399 sigma_box += average;
5400 SMresult_cache += sigma_box;
5401 }
5402 } else if (s == 172.*172.) {
5403 if (!flagLEP2[ISR]){
5409 } else {
5410
5411 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up172, &(*this), _1));
5412 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5413 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5414 }
5416
5417 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down172, &(*this), _1));
5418 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5419 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5420 }
5422
5423 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm172, &(*this), _1));
5424 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5425 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5426 }
5428
5429 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange172, &(*this), _1));
5430 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5431 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5432 }
5434
5435 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom172, &(*this), _1));
5436 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5437 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5438 }
5440 }
5441
5442 if (flagLEP2[WeakBox]) {
5443 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up172, &(*this), _1));
5444 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5445 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5446 }
5447 double sigma_box = average;
5448
5449 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down172, &(*this), _1));
5450 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5451 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5452 }
5453 sigma_box += average;
5454
5455 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm172, &(*this), _1));
5456 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5457 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5458 }
5459 sigma_box += average;
5460
5461 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange172, &(*this), _1));
5462 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5463 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5464 }
5465 sigma_box += average;
5466
5467 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom172, &(*this), _1));
5468 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5469 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5470 }
5471 sigma_box += average;
5472 SMresult_cache += sigma_box;
5473 }
5474 } else if (s == 183.*183.) {
5475 if (!flagLEP2[ISR]){
5481 } else {
5482
5483 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up183, &(*this), _1));
5484 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5485 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5486 }
5488
5489 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down183, &(*this), _1));
5490 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5491 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5492 }
5494
5495 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm183, &(*this), _1));
5496 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5497 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5498 }
5500
5501 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange183, &(*this), _1));
5502 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5503 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5504 }
5506
5507 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom183, &(*this), _1));
5508 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5509 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5510 }
5512 }
5513
5514 if (flagLEP2[WeakBox]) {
5515 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up183, &(*this), _1));
5516 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5517 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5518 }
5519 double sigma_box = average;
5520
5521 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down183, &(*this), _1));
5522 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5523 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5524 }
5525 sigma_box += average;
5526
5527 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm183, &(*this), _1));
5528 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5529 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5530 }
5531 sigma_box += average;
5532
5533 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange183, &(*this), _1));
5534 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5535 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5536 }
5537 sigma_box += average;
5538
5539 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom183, &(*this), _1));
5540 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5541 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5542 }
5543 sigma_box += average;
5544 SMresult_cache += sigma_box;
5545 }
5546 } else if (s == 189.*189.) {
5547 if (!flagLEP2[ISR]){
5553 } else {
5554
5555 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up189, &(*this), _1));
5556 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5557 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5558 }
5560
5561 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down189, &(*this), _1));
5562 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5563 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5564 }
5566
5567 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm189, &(*this), _1));
5568 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5569 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5570 }
5572
5573 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange189, &(*this), _1));
5574 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5575 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5576 }
5578
5579 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom189, &(*this), _1));
5580 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5581 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5582 }
5584 }
5585
5586 if (flagLEP2[WeakBox]) {
5587 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up189, &(*this), _1));
5588 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5589 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5590 }
5591 double sigma_box = average;
5592
5593 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down189, &(*this), _1));
5594 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5595 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5596 }
5597 sigma_box += average;
5598
5599 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm189, &(*this), _1));
5600 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5601 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5602 }
5603 sigma_box += average;
5604
5605 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange189, &(*this), _1));
5606 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5607 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5608 }
5609 sigma_box += average;
5610
5611 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom189, &(*this), _1));
5612 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5613 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5614 }
5615 sigma_box += average;
5616 SMresult_cache += sigma_box;
5617 }
5618 } else if (s == 192.*192.) {
5619 if (!flagLEP2[ISR]){
5625 } else {
5626
5627 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up192, &(*this), _1));
5628 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5629 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5630 }
5632
5633 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down192, &(*this), _1));
5634 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5635 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5636 }
5638
5639 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm192, &(*this), _1));
5640
5641 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5642 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5643 }
5645
5646 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange192, &(*this), _1));
5647
5648 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5649 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5650 }
5652
5653 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom192, &(*this), _1));
5654 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5655 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5656 }
5658 }
5659
5660 if (flagLEP2[WeakBox]) {
5661 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up192, &(*this), _1));
5662 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5663 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5664 }
5665 double sigma_box = average;
5666
5667 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down192, &(*this), _1));
5668 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5669 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5670 }
5671 sigma_box += average;
5672
5673 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm192, &(*this), _1));
5674 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5675 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5676 }
5677 sigma_box += average;
5678
5679 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange192, &(*this), _1));
5680 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5681 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5682 }
5683 sigma_box += average;
5684
5685 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom192, &(*this), _1));
5686 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5687 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5688 }
5689 sigma_box += average;
5690 SMresult_cache += sigma_box;
5691 }
5692 } else if (s == 196.*196.) {
5693 if (!flagLEP2[ISR]){
5699 } else {
5700
5701 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up196, &(*this), _1));
5702 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5703 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5704 }
5706
5707 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down196, &(*this), _1));
5708 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5709 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5710 }
5712
5713 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm196, &(*this), _1));
5714 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5715 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5716 }
5718
5719 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange196, &(*this), _1));
5720
5721 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5722 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5723 }
5725
5726 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom196, &(*this), _1));
5727 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5728 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5729 }
5731 }
5732
5733 if (flagLEP2[WeakBox]) {
5734 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up196, &(*this), _1));
5735 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5736 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5737 }
5738 double sigma_box = average;
5739
5740 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down196, &(*this), _1));
5741 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5742 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5743 }
5744 sigma_box += average;
5745
5746 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm196, &(*this), _1));
5747 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5748 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5749 }
5750 sigma_box += average;
5751
5752 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange196, &(*this), _1));
5753 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5754 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5755 }
5756 sigma_box += average;
5757
5758 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom196, &(*this), _1));
5759 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5760 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5761 }
5762 sigma_box += average;
5763 SMresult_cache += sigma_box;
5764 }
5765 } else if (s == 200.*200.) {
5766 if (!flagLEP2[ISR]){
5772 } else {
5773
5774 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up200, &(*this), _1));
5775 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5776 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5777 }
5779
5780 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down200, &(*this), _1));
5781 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5782 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5783 }
5785
5786 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm200, &(*this), _1));
5787 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5788 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5789 }
5791
5792 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange200, &(*this), _1));
5793 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5794 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5795 }
5797
5798 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom200, &(*this), _1));
5799 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5800 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5801 }
5803 }
5804
5805 if (flagLEP2[WeakBox]) {
5806 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up200, &(*this), _1));
5807 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5808 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5809 }
5810 double sigma_box = average;
5811
5812 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down200, &(*this), _1));
5813 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5814 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5815 }
5816 sigma_box += average;
5817
5818 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm200, &(*this), _1));
5819 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5820 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5821 }
5822 sigma_box += average;
5823
5824 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange200, &(*this), _1));
5825 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5826 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5827 }
5828 sigma_box += average;
5829
5830 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom200, &(*this), _1));
5831 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5832 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5833 }
5834 sigma_box += average;
5835 SMresult_cache += sigma_box;
5836 }
5837 } else if (s == 202.*202.) {
5838 if (!flagLEP2[ISR]){
5844 } else {
5845
5846 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up202, &(*this), _1));
5847
5848
5849
5850 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5851 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5852 }
5854
5855 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down202, &(*this), _1));
5856
5857
5858
5859 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5860 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5861 }
5863
5864 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm202, &(*this), _1));
5865
5866
5867
5868 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5869 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5870 }
5872
5873 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange202, &(*this), _1));
5874
5875
5876
5877 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5878 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5879 }
5881
5882 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom202, &(*this), _1));
5883
5884
5885
5886 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5887 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5888 }
5890 }
5891
5892 if (flagLEP2[WeakBox]) {
5893 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up202, &(*this), _1));
5894
5895
5896
5897 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5898 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5899 }
5900 double sigma_box = average;
5901
5902 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down202, &(*this), _1));
5903
5904
5905
5906 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5907 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5908 }
5909 sigma_box += average;
5910
5911 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm202, &(*this), _1));
5912
5913
5914
5915 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5916 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5917 }
5918 sigma_box += average;
5919
5920 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange202, &(*this), _1));
5921
5922
5923
5924 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5925 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5926 }
5927 sigma_box += average;
5928
5929 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom202, &(*this), _1));
5930
5931
5932
5933 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5934 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5935 }
5936 sigma_box += average;
5937 SMresult_cache += sigma_box;
5938 }
5939 } else if (s == 205.*205.) {
5940 if (!flagLEP2[ISR]){
5946 } else {
5947
5948 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up205, &(*this), _1));
5949
5950
5951
5952 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5953 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5954 }
5956
5957 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down205, &(*this), _1));
5958
5959
5960
5961 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5962 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5963 }
5965
5966 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm205, &(*this), _1));
5967
5968
5969
5970 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5971 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5972 }
5974
5975 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange205, &(*this), _1));
5976
5977
5978
5979 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5980 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5981 }
5983
5984 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom205, &(*this), _1));
5985
5986
5987
5988 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
5989 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
5990 }
5992 }
5993
5994 if (flagLEP2[WeakBox]) {
5995 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up205, &(*this), _1));
5996
5997
5998
5999 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6000 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6001 }
6002 double sigma_box = average;
6003
6004 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down205, &(*this), _1));
6005
6006
6007
6008 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6009 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6010 }
6011 sigma_box += average;
6012
6013 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm205, &(*this), _1));
6014
6015
6016
6017 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6018 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6019 }
6020 sigma_box += average;
6021
6022 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange205, &(*this), _1));
6023
6024
6025
6026 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6027 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6028 }
6029 sigma_box += average;
6030
6031 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom205, &(*this), _1));
6032
6033
6034
6035 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6036 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6037 }
6038 sigma_box += average;
6039 SMresult_cache += sigma_box;
6040 }
6041 } else if (s == 207.*207.) {
6042 if (!flagLEP2[ISR]){
6048 } else {
6049
6050 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_up207, &(*this), _1));
6051
6052
6053
6054 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6055 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6056 }
6058
6059 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_down207, &(*this), _1));
6060
6061
6062
6063 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6064 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6065 }
6067
6068 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_charm207, &(*this), _1));
6069
6070
6071
6072 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6073 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6074 }
6076
6077 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_strange207, &(*this), _1));
6078
6079
6080
6081 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6082 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6083 }
6085
6086 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_sigmaWithISR_bottom207, &(*this), _1));
6087
6088
6089
6090 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6091 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6092 }
6094 }
6095
6096 if (flagLEP2[WeakBox]) {
6097 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_up207, &(*this), _1));
6098
6099
6100
6101 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6102 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6103 }
6104 double sigma_box = average;
6105
6106 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_down207, &(*this), _1));
6107
6108
6109
6110 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6111 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6112 }
6113 sigma_box += average;
6114
6115 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm207, &(*this), _1));
6116
6117
6118
6119 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6120 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6121 }
6122 sigma_box += average;
6123
6124 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_strange207, &(*this), _1));
6125
6126
6127
6128 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6129 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6130 }
6131 sigma_box += average;
6132
6133 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom207, &(*this), _1));
6134
6135
6136
6137 if (gsl_integration_qags(&f_GSL, -1., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6138 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6139 }
6140 sigma_box += average;
6141 SMresult_cache += sigma_box;
6142 }
6143 } else {
6144 throw std::runtime_error("ERROR: wrong LEP2 energy in StandardModel::LEP2sigmaHadron!");
6145 }
6146
6147 double sigma_had = SMresult_cache;
6148
6149 gsl_set_error_handler(old_handler);
6150
6151 return sigma_had;
6152
6153 }
6154}
6155
6156
6157const double StandardModel::LEP2AFBbottom(const double s) const
6158{
6159
6160 bSigmaForAFB = true;
6161 gsl_error_handler_t * old_handler = gsl_set_error_handler_off();
6162 double relerr = 1.e-7;
6163 double abserr = 1.e-17;
6164
6165 if(s == 133.*133.){
6166 double AFB_noBox, sigma = 0.0;
6167 if (!flagLEP2[ISR])
6168 AFB_noBox = AFB_NoISR_q(QCD::quark(BOTTOM),s);
6169 else {
6170 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_bottom133, &(*this), _1));
6171 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6172 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6173 }
6174 double numerator = average; // interval
6175
6176
6177 sigma = LEP2sigmaBottom(s);
6178
6179 AFB_noBox = numerator/sigma;
6180 }
6181 SMresult_cache = AFB_noBox;
6182
6183 if (flagLEP2[WeakBox]) {
6184 // numerator
6185 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom133, &(*this), _1));
6186 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6187 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6188 }
6189 double sigma_box_F = average; // interval
6190 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom133, &(*this), _1));
6191 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6192 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6193 }
6194 double sigma_box_B = average; // interval
6195
6196 // denominator
6197 if (!flagLEP2[ISR]) {
6198
6199 sigma = LEP2sigmaBottom(s);
6200 }
6201
6202 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6203 }
6204 } else if (s == 167.*167.){
6205 double AFB_noBox, sigma = 0.0;
6206 if (!flagLEP2[ISR])
6207 AFB_noBox = AFB_NoISR_q(QCD::quark(BOTTOM),s);
6208 else {
6209 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_bottom167, &(*this), _1));
6210 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6211 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6212 }
6213 double numerator = average; // interval
6214
6215
6216 sigma = LEP2sigmaBottom(s);
6217
6218 AFB_noBox = numerator/sigma;
6219 }
6220 SMresult_cache = AFB_noBox;
6221
6222 if (flagLEP2[WeakBox]) {
6223 // numerator
6224 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom167, &(*this), _1));
6225 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6226 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6227 }
6228 double sigma_box_F = average; // interval
6229 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom167, &(*this), _1));
6230 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6231 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6232 }
6233 double sigma_box_B = average; // interval
6234
6235 // denominator
6236 if (!flagLEP2[ISR]) {
6237
6238 sigma = LEP2sigmaBottom(s);
6239 }
6240
6241 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6242 }
6243 } else if (s == 183.*183.) {
6244 double AFB_noBox, sigma = 0.0;
6245 if (!flagLEP2[ISR])
6246 AFB_noBox = AFB_NoISR_q(QCD::quark(BOTTOM),s);
6247 else {
6248 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_bottom183, &(*this), _1));
6249 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6250 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6251 }
6252 double numerator = average; // interval
6253
6254
6255 sigma = LEP2sigmaBottom(s);
6256
6257 AFB_noBox = numerator/sigma;
6258 }
6259 SMresult_cache = AFB_noBox;
6260
6261 if (flagLEP2[WeakBox]) {
6262 // numerator
6263 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom183, &(*this), _1));
6264 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6265 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6266 }
6267 double sigma_box_F = average; // interval
6268 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom183, &(*this), _1));
6269 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6270 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6271 }
6272 double sigma_box_B = average; // interval
6273
6274 // denominator
6275 if (!flagLEP2[ISR]) {
6276
6277 sigma = LEP2sigmaBottom(s);
6278 }
6279
6280 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6281 }
6282 } else if (s == 189.*189.) {
6283 double AFB_noBox, sigma = 0.0;
6284 if (!flagLEP2[ISR])
6285 AFB_noBox = AFB_NoISR_q(QCD::quark(BOTTOM),s);
6286 else {
6287 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_bottom189, &(*this), _1));
6288 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6289 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6290 }
6291 double numerator = average; // interval
6292
6293
6294 sigma = LEP2sigmaBottom(s);
6295
6296 AFB_noBox = numerator/sigma;
6297 }
6298 SMresult_cache = AFB_noBox;
6299
6300 if (flagLEP2[WeakBox]) {
6301 // numerator
6302 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom189, &(*this), _1));
6303 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6304 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6305 }
6306 double sigma_box_F = average; // interval
6307 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom189, &(*this), _1));
6308 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6309 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6310 }
6311 double sigma_box_B = average; // interval
6312
6313 // denominator
6314 if (!flagLEP2[ISR]) {
6315
6316 sigma = LEP2sigmaBottom(s);
6317 }
6318
6319 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6320 }
6321 } else if (s == 192.*192.) {
6322 double AFB_noBox, sigma = 0.0;
6323 if (!flagLEP2[ISR])
6324 AFB_noBox = AFB_NoISR_q(QCD::quark(BOTTOM),s);
6325 else {
6326 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_bottom192, &(*this), _1));
6327 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6328 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6329 }
6330 double numerator = average; // interval
6331
6332
6333 sigma = LEP2sigmaBottom(s);
6334
6335 AFB_noBox = numerator/sigma;
6336 }
6337 SMresult_cache = AFB_noBox;
6338
6339 if (flagLEP2[WeakBox]) {
6340 // numerator
6341 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom192, &(*this), _1));
6342 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6343 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6344 }
6345 double sigma_box_F = average; // interval
6346 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom192, &(*this), _1));
6347 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6348 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6349 }
6350 double sigma_box_B = average; // interval
6351
6352 // denominator
6353 if (!flagLEP2[ISR]) {
6354
6355 sigma = LEP2sigmaBottom(s);
6356 }
6357
6358 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6359 }
6360 } else if (s == 196.*196.) {
6361 double AFB_noBox, sigma = 0.0;
6362 if (!flagLEP2[ISR])
6363 AFB_noBox = AFB_NoISR_q(QCD::quark(BOTTOM),s);
6364 else {
6365 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_bottom196, &(*this), _1));
6366 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6367 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6368 }
6369 double numerator = average; // interval
6370
6371
6372 sigma = LEP2sigmaBottom(s);
6373
6374 AFB_noBox = numerator/sigma;
6375 }
6376 SMresult_cache = AFB_noBox;
6377
6378 if (flagLEP2[WeakBox]) {
6379 // numerator
6380 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom196, &(*this), _1));
6381 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6382 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6383 }
6384 double sigma_box_F = average; // interval
6385 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom196, &(*this), _1));
6386 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6387 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6388 }
6389 double sigma_box_B = average; // interval
6390
6391 // denominator
6392 if (!flagLEP2[ISR]) {
6393
6394 sigma = LEP2sigmaBottom(s);
6395 }
6396
6397 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6398 }
6399 } else if (s == 200.*200.) {
6400 double AFB_noBox, sigma = 0.0;
6401 if (!flagLEP2[ISR])
6402 AFB_noBox = AFB_NoISR_q(QCD::quark(BOTTOM),s);
6403 else {
6404 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_bottom200, &(*this), _1));
6405 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6406 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6407 }
6408 double numerator = average; // interval
6409
6410
6411 sigma = LEP2sigmaBottom(s);
6412
6413 AFB_noBox = numerator/sigma;
6414 }
6415 SMresult_cache = AFB_noBox;
6416
6417 if (flagLEP2[WeakBox]) {
6418 // numerator
6419 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom200, &(*this), _1));
6420 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6421 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6422 }
6423 double sigma_box_F = average; // interval
6424 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom200, &(*this), _1));
6425 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6426 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6427 }
6428 double sigma_box_B = average; // interval
6429
6430 // denominator
6431 if (!flagLEP2[ISR]) {
6432
6433 sigma = LEP2sigmaBottom(s);
6434 }
6435
6436 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6437 }
6438 } else if (s == 202.*202.) {
6439 double AFB_noBox, sigma = 0.0;
6440 if (!flagLEP2[ISR])
6441 AFB_noBox = AFB_NoISR_q(QCD::quark(BOTTOM),s);
6442 else {
6443 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_bottom202, &(*this), _1));
6444 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6445 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6446 }
6447 double numerator = average; // interval
6448
6449
6450 sigma = LEP2sigmaBottom(s);
6451
6452 AFB_noBox = numerator/sigma;
6453 }
6454 SMresult_cache = AFB_noBox;
6455
6456 if (flagLEP2[WeakBox]) {
6457 // numerator
6458 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom202, &(*this), _1));
6459 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6460 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6461 }
6462 double sigma_box_F = average; // interval
6463 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom202, &(*this), _1));
6464 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6465 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6466 }
6467 double sigma_box_B = average; // interval
6468
6469 // denominator
6470 if (!flagLEP2[ISR]) {
6471
6472 sigma = LEP2sigmaBottom(s);
6473 }
6474
6475 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6476 }
6477 } else if (s == 205.*205.) {
6478 double AFB_noBox, sigma = 0.0;
6479 if (!flagLEP2[ISR])
6480 AFB_noBox = AFB_NoISR_q(QCD::quark(BOTTOM),s);
6481 else {
6482 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_bottom205, &(*this), _1));
6483 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6484 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6485 }
6486 double numerator = average; // interval
6487
6488
6489 sigma = LEP2sigmaBottom(s);
6490
6491 AFB_noBox = numerator/sigma;
6492 }
6493 SMresult_cache = AFB_noBox;
6494
6495 if (flagLEP2[WeakBox]) {
6496 // numerator
6497 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom205, &(*this), _1));
6498 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6499 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6500 }
6501 double sigma_box_F = average; // interval
6502 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom205, &(*this), _1));
6503 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6504 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6505 }
6506 double sigma_box_B = average; // interval
6507
6508 // denominator
6509 if (!flagLEP2[ISR]) {
6510
6511 sigma = LEP2sigmaBottom(s);
6512 }
6513
6514 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6515 }
6516 } else if (s == 207.*207.) {
6517 double AFB_noBox, sigma = 0.0;
6518 if (!flagLEP2[ISR])
6519 AFB_noBox = AFB_NoISR_q(QCD::quark(BOTTOM),s);
6520 else {
6521 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_bottom207, &(*this), _1));
6522 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6523 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6524 }
6525 double numerator = average; // interval
6526
6527
6528 sigma = LEP2sigmaBottom(s);
6529
6530 AFB_noBox = numerator/sigma;
6531 }
6532 SMresult_cache = AFB_noBox;
6533
6534 if (flagLEP2[WeakBox]) {
6535 // numerator
6536 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom207, &(*this), _1));
6537 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6538 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6539 }
6540 double sigma_box_F = average; // interval
6541 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_bottom207, &(*this), _1));
6542 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6543 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6544 }
6545 double sigma_box_B = average; // interval
6546
6547 // denominator
6548 if (!flagLEP2[ISR]) {
6549
6550 sigma = LEP2sigmaBottom(s);
6551 }
6552
6553 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6554 }
6555 } else {
6556 throw std::runtime_error("ERROR: wrong LEP2 energy in StandardModel::LEP2AFBbottom!");
6557 }
6558
6559 double AFBbottom = SMresult_cache;
6560
6561 gsl_set_error_handler(old_handler);
6562 bSigmaForAFB = false;
6563 return AFBbottom;
6564
6565}
6566
6567
6568const double StandardModel::LEP2AFBcharm(const double s) const
6569{
6570
6571 bSigmaForAFB = true;
6572 gsl_error_handler_t * old_handler = gsl_set_error_handler_off();
6573 double relerr = 1.e-7;
6574 double abserr = 1.e-17;
6575
6576 if(s == 133.*133.){
6577 double AFB_noBox, sigma = 0.0;
6578 if (!flagLEP2[ISR])
6579 AFB_noBox = AFB_NoISR_q(QCD::quark(CHARM),s);
6580 else {
6581 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_charm133, &(*this), _1));
6582 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6583 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6584 }
6585 double numerator = average; // interval
6586
6587
6588 sigma = LEP2sigmaCharm(s);
6589
6590 AFB_noBox = numerator/sigma;
6591 }
6592 SMresult_cache = AFB_noBox;
6593
6594 if (flagLEP2[WeakBox]) {
6595 // numerator
6596 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm133, &(*this), _1));
6597 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6598 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6599 }
6600 double sigma_box_F = average; // interval
6601 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm133, &(*this), _1));
6602 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6603 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6604 }
6605 double sigma_box_B = average; // interval
6606
6607 // denominator
6608 if (!flagLEP2[ISR]) {
6609
6610 sigma = LEP2sigmaCharm(s);
6611 }
6612
6613 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6614 }
6615 } else if (s == 167.*167.){
6616 double AFB_noBox, sigma = 0.0;
6617 if (!flagLEP2[ISR])
6618 AFB_noBox = AFB_NoISR_q(QCD::quark(CHARM),s);
6619 else {
6620 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_charm167, &(*this), _1));
6621 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6622 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6623 }
6624 double numerator = average; // interval
6625
6626
6627 sigma = LEP2sigmaCharm(s);
6628
6629 AFB_noBox = numerator/sigma;
6630 }
6631 SMresult_cache = AFB_noBox;
6632
6633 if (flagLEP2[WeakBox]) {
6634 // numerator
6635 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm167, &(*this), _1));
6636 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6637 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6638 }
6639 double sigma_box_F = average; // interval
6640 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm167, &(*this), _1));
6641 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6642 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6643 }
6644 double sigma_box_B = average; // interval
6645
6646 // denominator
6647 if (!flagLEP2[ISR]) {
6648
6649 sigma = LEP2sigmaCharm(s);
6650 }
6651
6652 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6653 }
6654 } else if (s == 183.*183.) {
6655 double AFB_noBox, sigma = 0.0;
6656 if (!flagLEP2[ISR])
6657 AFB_noBox = AFB_NoISR_q(QCD::quark(CHARM),s);
6658 else {
6659 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_charm183, &(*this), _1));
6660 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6661 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6662 }
6663 double numerator = average; // interval
6664
6665
6666 sigma = LEP2sigmaCharm(s);
6667
6668 AFB_noBox = numerator/sigma;
6669 }
6670 SMresult_cache = AFB_noBox;
6671
6672 if (flagLEP2[WeakBox]) {
6673 // numerator
6674 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm183, &(*this), _1));
6675 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6676 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6677 }
6678 double sigma_box_F = average; // interval
6679 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm183, &(*this), _1));
6680 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6681 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6682 }
6683 double sigma_box_B = average; // interval
6684
6685 // denominator
6686 if (!flagLEP2[ISR]) {
6687
6688 sigma = LEP2sigmaCharm(s);
6689 }
6690
6691 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6692 }
6693 } else if (s == 189.*189.) {
6694 double AFB_noBox, sigma = 0.0;
6695 if (!flagLEP2[ISR])
6696 AFB_noBox = AFB_NoISR_q(QCD::quark(CHARM),s);
6697 else {
6698 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_charm189, &(*this), _1));
6699 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6700 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6701 }
6702 double numerator = average; // interval
6703
6704
6705 sigma = LEP2sigmaCharm(s);
6706
6707 AFB_noBox = numerator/sigma;
6708 }
6709 SMresult_cache = AFB_noBox;
6710
6711 if (flagLEP2[WeakBox]) {
6712 // numerator
6713 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm189, &(*this), _1));
6714 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6715 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6716 }
6717 double sigma_box_F = average; // interval
6718 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm189, &(*this), _1));
6719 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6720 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6721 }
6722 double sigma_box_B = average; // interval
6723
6724 // denominator
6725 if (!flagLEP2[ISR]) {
6726
6727 sigma = LEP2sigmaCharm(s);
6728 }
6729
6730 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6731 }
6732 } else if (s == 192.*192.) {
6733 double AFB_noBox, sigma = 0.0;
6734 if (!flagLEP2[ISR])
6735 AFB_noBox = AFB_NoISR_q(QCD::quark(CHARM),s);
6736 else {
6737 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_charm192, &(*this), _1));
6738 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6739 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6740 }
6741 double numerator = average; // interval
6742
6743
6744 sigma = LEP2sigmaCharm(s);
6745
6746 AFB_noBox = numerator/sigma;
6747 }
6748 SMresult_cache = AFB_noBox;
6749
6750 if (flagLEP2[WeakBox]) {
6751 // numerator
6752 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm192, &(*this), _1));
6753 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6754 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6755 }
6756 double sigma_box_F = average; // interval
6757 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm192, &(*this), _1));
6758 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6759 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6760 }
6761 double sigma_box_B = average; // interval
6762
6763 // denominator
6764 if (!flagLEP2[ISR]) {
6765
6766 sigma = LEP2sigmaCharm(s);
6767 }
6768
6769 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6770 }
6771 } else if (s == 196.*196.) {
6772 double AFB_noBox, sigma = 0.0;
6773 if (!flagLEP2[ISR])
6774 AFB_noBox = AFB_NoISR_q(QCD::quark(CHARM),s);
6775 else {
6776 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_charm196, &(*this), _1));
6777 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6778 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6779 }
6780 double numerator = average; // interval
6781
6782
6783 sigma = LEP2sigmaCharm(s);
6784
6785 AFB_noBox = numerator/sigma;
6786 }
6787 SMresult_cache = AFB_noBox;
6788
6789 if (flagLEP2[WeakBox]) {
6790 // numerator
6791 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm196, &(*this), _1));
6792 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6793 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6794 }
6795 double sigma_box_F = average; // interval
6796 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm196, &(*this), _1));
6797 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6798 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6799 }
6800 double sigma_box_B = average; // interval
6801
6802 // denominator
6803 if (!flagLEP2[ISR]) {
6804
6805 sigma = LEP2sigmaCharm(s);
6806 }
6807
6808 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6809 }
6810 } else if (s == 200.*200.) {
6811 double AFB_noBox, sigma = 0.0;
6812 if (!flagLEP2[ISR])
6813 AFB_noBox = AFB_NoISR_q(QCD::quark(CHARM),s);
6814 else {
6815 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_charm200, &(*this), _1));
6816 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6817 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6818 }
6819 double numerator = average; // interval
6820
6821
6822 sigma = LEP2sigmaCharm(s);
6823
6824 AFB_noBox = numerator/sigma;
6825 }
6826 SMresult_cache = AFB_noBox;
6827
6828 if (flagLEP2[WeakBox]) {
6829 // numerator
6830 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm200, &(*this), _1));
6831 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6832 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6833 }
6834 double sigma_box_F = average; // interval
6835 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm200, &(*this), _1));
6836 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6837 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6838 }
6839 double sigma_box_B = average; // interval
6840
6841 // denominator
6842 if (!flagLEP2[ISR]) {
6843
6844 sigma = LEP2sigmaCharm(s);
6845 }
6846
6847 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6848 }
6849 } else if (s == 202.*202.) {
6850 double AFB_noBox, sigma = 0.0;
6851 if (!flagLEP2[ISR])
6852 AFB_noBox = AFB_NoISR_q(QCD::quark(CHARM),s);
6853 else {
6854 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_charm202, &(*this), _1));
6855 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6856 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6857 }
6858 double numerator = average; // interval
6859
6860
6861 sigma = LEP2sigmaCharm(s);
6862
6863 AFB_noBox = numerator/sigma;
6864 }
6865 SMresult_cache = AFB_noBox;
6866
6867 if (flagLEP2[WeakBox]) {
6868 // numerator
6869 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm202, &(*this), _1));
6870 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6871 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6872 }
6873 double sigma_box_F = average; // interval
6874 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm202, &(*this), _1));
6875 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6876 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6877 }
6878 double sigma_box_B = average; // interval
6879
6880 // denominator
6881 if (!flagLEP2[ISR]) {
6882
6883 sigma = LEP2sigmaCharm(s);
6884 }
6885
6886 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6887 }
6888 } else if (s == 205.*205.) {
6889 double AFB_noBox, sigma = 0.0;
6890 if (!flagLEP2[ISR])
6891 AFB_noBox = AFB_NoISR_q(QCD::quark(CHARM),s);
6892 else {
6893 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_charm205, &(*this), _1));
6894 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6895 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6896 }
6897 double numerator = average; // interval
6898
6899
6900 sigma = LEP2sigmaCharm(s);
6901
6902 AFB_noBox = numerator/sigma;
6903 }
6904 SMresult_cache = AFB_noBox;
6905
6906 if (flagLEP2[WeakBox]) {
6907 // numerator
6908 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm205, &(*this), _1));
6909 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6910 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6911 }
6912 double sigma_box_F = average; // interval
6913 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm205, &(*this), _1));
6914 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6915 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6916 }
6917 double sigma_box_B = average; // interval
6918
6919 // denominator
6920 if (!flagLEP2[ISR]) {
6921
6922 sigma = LEP2sigmaCharm(s);
6923 }
6924
6925 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6926 }
6927 } else if (s == 207.*207.) {
6928 double AFB_noBox, sigma = 0.0;
6929 if (!flagLEP2[ISR])
6930 AFB_noBox = AFB_NoISR_q(QCD::quark(CHARM),s);
6931 else {
6932 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_charm205, &(*this), _1));
6933 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6934 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6935 }
6936 double numerator = average; // interval
6937
6938
6939 sigma = LEP2sigmaCharm(s);
6940
6941 AFB_noBox = numerator/sigma;
6942 }
6943 SMresult_cache = AFB_noBox;
6944
6945 if (flagLEP2[WeakBox]) {
6946 // numerator
6947 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm207, &(*this), _1));
6948 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6949 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6950 }
6951 double sigma_box_F = average; // interval
6952 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_charm207, &(*this), _1));
6953 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
6954 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
6955 }
6956 double sigma_box_B = average; // interval
6957
6958 // denominator
6959 if (!flagLEP2[ISR]) {
6960
6961 sigma = LEP2sigmaCharm(s);
6962 }
6963
6964 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
6965 }
6966 } else {
6967 throw std::runtime_error("ERROR: wrong LEP2 energy in StandardModel::LEP2AFBcharm!");
6968 }
6969
6970 double AFBcharm = SMresult_cache;
6971
6972 gsl_set_error_handler(old_handler);
6973 bSigmaForAFB = false;
6974 return AFBcharm;
6975
6976}
6977
6978const double StandardModel::LEP2AFBe(const double s) const
6979{
6980 return 0.;
6981}
6982
6983const double StandardModel::LEP2AFBmu(const double s) const
6984{
6985
6986 bSigmaForAFB = true;
6987 gsl_error_handler_t * old_handler = gsl_set_error_handler_off();
6988 double relerr = 1.e-7;
6989 double abserr = 1.e-17;
6990
6991 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
6993
6994 /* SM contribution with the approximate formula */
6996
6997 } else {
6998
6999 if(s == 130.*130.){
7000 double AFB_noBox, sigma = 0.0;
7001 if (!flagLEP2[ISR])
7002 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7003 else {
7004 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu130, &(*this), _1));
7005 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7006 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7007 }
7008 double numerator = average; // interval
7009
7010
7011 sigma = LEP2sigmaMu(s);
7012
7013 AFB_noBox = numerator/sigma;
7014 }
7015 SMresult_cache = AFB_noBox;
7016
7017 if (flagLEP2[WeakBox]) {
7018 // numerator
7019 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu130, &(*this), _1));
7020 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7021 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7022 }
7023 double sigma_box_F = average; // interval
7024 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu130, &(*this), _1));
7025 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7026 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7027 }
7028 double sigma_box_B = average; // interval
7029
7030 // denominator
7031 if (!flagLEP2[ISR]) {
7032
7033 sigma = LEP2sigmaMu(s);
7034 }
7035
7036 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7037 }
7038 } else if (s == 136.*136.){
7039 double AFB_noBox, sigma = 0.0;
7040 if (!flagLEP2[ISR])
7041 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7042 else {
7043 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu136, &(*this), _1));
7044 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7045 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7046 }
7047 double numerator = average; // interval
7048
7049
7050 sigma = LEP2sigmaMu(s);
7051
7052 AFB_noBox = numerator/sigma;
7053 }
7054 SMresult_cache = AFB_noBox;
7055
7056 if (flagLEP2[WeakBox]) {
7057 // numerator
7058 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu136, &(*this), _1));
7059 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7060 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7061 }
7062 double sigma_box_F = average; // interval
7063 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu136, &(*this), _1));
7064 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7065 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7066 }
7067 double sigma_box_B = average; // interval
7068
7069 // denominator
7070 if (!flagLEP2[ISR]) {
7071
7072 sigma = LEP2sigmaMu(s);
7073 }
7074
7075 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7076 }
7077 } else if (s == 161.*161.){
7078 double AFB_noBox, sigma = 0.0;
7079 if (!flagLEP2[ISR])
7080 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7081 else {
7082 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu161, &(*this), _1));
7083 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7084 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7085 }
7086 double numerator = average; // interval
7087
7088
7089 sigma = LEP2sigmaMu(s);
7090
7091 AFB_noBox = numerator/sigma;
7092 }
7093 SMresult_cache = AFB_noBox;
7094
7095 if (flagLEP2[WeakBox]) {
7096 // numerator
7097 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu161, &(*this), _1));
7098 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7099 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7100 }
7101 double sigma_box_F = average; // interval
7102 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu161, &(*this), _1));
7103 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7104 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7105 }
7106 double sigma_box_B = average; // interval
7107
7108 // denominator
7109 if (!flagLEP2[ISR]) {
7110
7111 sigma = LEP2sigmaMu(s);
7112 }
7113
7114 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7115 }
7116 } else if (s == 172.*172.){
7117 double AFB_noBox, sigma = 0.0;
7118 if (!flagLEP2[ISR])
7119 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7120 else {
7121 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu172, &(*this), _1));
7122 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7123 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7124 }
7125 double numerator = average; // interval
7126
7127
7128 sigma = LEP2sigmaMu(s);
7129
7130 AFB_noBox = numerator/sigma;
7131 }
7132 SMresult_cache = AFB_noBox;
7133
7134 if (flagLEP2[WeakBox]) {
7135 // numerator
7136 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu172, &(*this), _1));
7137 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7138 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7139 }
7140 double sigma_box_F = average; // interval
7141 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu172, &(*this), _1));
7142 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7143 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7144 }
7145 double sigma_box_B = average; // interval
7146
7147 // denominator
7148 if (!flagLEP2[ISR]) {
7149
7150 sigma = LEP2sigmaMu(s);
7151 }
7152
7153 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7154 }
7155 } else if (s == 183.*183.) {
7156 double AFB_noBox, sigma = 0.0;
7157 if (!flagLEP2[ISR])
7158 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7159 else {
7160 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu183, &(*this), _1));
7161 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7162 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7163 }
7164 double numerator = average; // interval
7165
7166
7167 sigma = LEP2sigmaMu(s);
7168
7169 AFB_noBox = numerator/sigma;
7170 }
7171 SMresult_cache = AFB_noBox;
7172
7173 if (flagLEP2[WeakBox]) {
7174 // numerator
7175 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu183, &(*this), _1));
7176 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7177 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7178 }
7179 double sigma_box_F = average; // interval
7180 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu183, &(*this), _1));
7181 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7182 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7183 }
7184 double sigma_box_B = average; // interval
7185
7186 // denominator
7187 if (!flagLEP2[ISR]) {
7188
7189 sigma = LEP2sigmaMu(s);
7190 }
7191
7192 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7193 }
7194 } else if (s == 189.*189.) {
7195 double AFB_noBox, sigma = 0.0;
7196 if (!flagLEP2[ISR])
7197 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7198 else {
7199 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu189, &(*this), _1));
7200 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7201 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7202 }
7203 double numerator = average; // interval
7204
7205
7206 sigma = LEP2sigmaMu(s);
7207
7208 AFB_noBox = numerator/sigma;
7209 }
7210 SMresult_cache = AFB_noBox;
7211
7212 if (flagLEP2[WeakBox]) {
7213 // numerator
7214 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu189, &(*this), _1));
7215 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7216 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7217 }
7218 double sigma_box_F = average; // interval
7219 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu189, &(*this), _1));
7220 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7221 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7222 }
7223 double sigma_box_B = average; // interval
7224
7225 // denominator
7226 if (!flagLEP2[ISR]) {
7227
7228 sigma = LEP2sigmaMu(s);
7229 }
7230
7231 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7232 }
7233 } else if (s == 192.*192.) {
7234 double AFB_noBox, sigma = 0.0;
7235 if (!flagLEP2[ISR])
7236 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7237 else {
7238 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu192, &(*this), _1));
7239 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7240 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7241 }
7242 double numerator = average; // interval
7243
7244
7245 sigma = LEP2sigmaMu(s);
7246
7247 AFB_noBox = numerator/sigma;
7248 }
7249 SMresult_cache = AFB_noBox;
7250
7251 if (flagLEP2[WeakBox]) {
7252 // numerator
7253 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu192, &(*this), _1));
7254 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7255 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7256 }
7257 double sigma_box_F = average; // interval
7258 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu192, &(*this), _1));
7259 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7260 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7261 }
7262 double sigma_box_B = average; // interval
7263
7264 // denominator
7265 if (!flagLEP2[ISR]) {
7266
7267 sigma = LEP2sigmaMu(s);
7268 }
7269
7270 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7271 }
7272 } else if (s == 196.*196.) {
7273 double AFB_noBox, sigma = 0.0;
7274 if (!flagLEP2[ISR])
7275 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7276 else {
7277 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu196, &(*this), _1));
7278 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7279 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7280 }
7281 double numerator = average; // interval
7282
7283
7284 sigma = LEP2sigmaMu(s);
7285
7286 AFB_noBox = numerator/sigma;
7287 }
7288 SMresult_cache = AFB_noBox;
7289
7290 if (flagLEP2[WeakBox]) {
7291 // numerator
7292 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu196, &(*this), _1));
7293 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7294 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7295 }
7296 double sigma_box_F = average; // interval
7297 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu196, &(*this), _1));
7298 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7299 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7300 }
7301 double sigma_box_B = average; // interval
7302
7303 // denominator
7304 if (!flagLEP2[ISR]) {
7305
7306 sigma = LEP2sigmaMu(s);
7307 }
7308
7309 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7310 }
7311 } else if (s == 200.*200.) {
7312 double AFB_noBox, sigma = 0.0;
7313 if (!flagLEP2[ISR])
7314 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7315 else {
7316 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu200, &(*this), _1));
7317 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7318 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7319 }
7320 double numerator = average; // interval
7321
7322
7323 sigma = LEP2sigmaMu(s);
7324
7325 AFB_noBox = numerator/sigma;
7326 }
7327 SMresult_cache = AFB_noBox;
7328
7329 if (flagLEP2[WeakBox]) {
7330 // numerator
7331 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu200, &(*this), _1));
7332 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7333 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7334 }
7335 double sigma_box_F = average; // interval
7336 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu200, &(*this), _1));
7337 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7338 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7339 }
7340 double sigma_box_B = average; // interval
7341
7342 // denominator
7343 if (!flagLEP2[ISR]) {
7344
7345 sigma = LEP2sigmaMu(s);
7346 }
7347
7348 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7349 }
7350 } else if (s == 202.*202.) {
7351 double AFB_noBox, sigma = 0.0;
7352 if (!flagLEP2[ISR])
7353 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7354 else {
7355 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu202, &(*this), _1));
7356 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7357 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7358 }
7359 double numerator = average; // interval
7360
7361
7362 sigma = LEP2sigmaMu(s);
7363
7364 AFB_noBox = numerator/sigma;
7365 }
7366 SMresult_cache = AFB_noBox;
7367
7368 if (flagLEP2[WeakBox]) {
7369 // numerator
7370 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu202, &(*this), _1));
7371 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7372 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7373 }
7374 double sigma_box_F = average; // interval
7375 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu202, &(*this), _1));
7376 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7377 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7378 }
7379 double sigma_box_B = average; // interval
7380
7381 // denominator
7382 if (!flagLEP2[ISR]) {
7383
7384 sigma = LEP2sigmaMu(s);
7385 }
7386
7387 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7388 }
7389 } else if (s == 205.*205.) {
7390 double AFB_noBox, sigma = 0.0;
7391 if (!flagLEP2[ISR])
7392 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7393 else {
7394 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu205, &(*this), _1));
7395 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7396 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7397 }
7398 double numerator = average; // interval
7399
7400
7401 sigma = LEP2sigmaMu(s);
7402
7403 AFB_noBox = numerator/sigma;
7404 }
7405 SMresult_cache = AFB_noBox;
7406
7407 if (flagLEP2[WeakBox]) {
7408 // numerator
7409 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu205, &(*this), _1));
7410 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7411 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7412 }
7413 double sigma_box_F = average; // interval
7414 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu205, &(*this), _1));
7415 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7416 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7417 }
7418 double sigma_box_B = average; // interval
7419
7420 // denominator
7421 if (!flagLEP2[ISR]) {
7422
7423 sigma = LEP2sigmaMu(s);
7424 }
7425
7426 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7427 }
7428 } else if (s == 207.*207.) {
7429 double AFB_noBox, sigma = 0.0;
7430 if (!flagLEP2[ISR])
7431 AFB_noBox = AFB_NoISR_l(QCD::lepton(MU),s);
7432 else {
7433 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_mu207, &(*this), _1));
7434 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7435 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7436 }
7437 double numerator = average; // interval
7438
7439
7440 sigma = LEP2sigmaMu(s);
7441
7442 AFB_noBox = numerator/sigma;
7443 }
7444 SMresult_cache = AFB_noBox;
7445
7446 if (flagLEP2[WeakBox]) {
7447 // numerator
7448 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu207, &(*this), _1));
7449 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7450 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7451 }
7452 double sigma_box_F = average; // interval
7453 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_mu207, &(*this), _1));
7454 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7455 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7456 }
7457 double sigma_box_B = average; // interval
7458
7459 // denominator
7460 if (!flagLEP2[ISR]) {
7461
7462 sigma = LEP2sigmaMu(s);
7463 }
7464
7465 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7466 }
7467 } else {
7468 throw std::runtime_error("ERROR: wrong LEP2 energy in StandardModel::AFBmu!");
7469 }
7470
7471 double AFBmu = SMresult_cache;
7472
7473 gsl_set_error_handler(old_handler);
7474 bSigmaForAFB = false;
7475 return AFBmu;
7476 }
7477}
7478
7479
7480const double StandardModel::LEP2AFBtau(const double s) const
7481{
7482
7483 bSigmaForAFB = true;
7484 gsl_error_handler_t * old_handler = gsl_set_error_handler_off();
7485 double relerr = 1.e-7;
7486 double abserr = 1.e-17;
7487
7488 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
7490
7491 /* SM contribution with the approximate formula */
7493
7494 } else {
7495
7496 if(s == 130.*130.){
7497 double AFB_noBox, sigma = 0.0;
7498 if (!flagLEP2[ISR])
7499 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7500 else {
7501 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau130, &(*this), _1));
7502 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7503 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7504 }
7505 double numerator = average; // interval
7506
7507
7508 sigma = LEP2sigmaTau(s);
7509
7510 AFB_noBox = numerator/sigma;
7511 }
7512 SMresult_cache = AFB_noBox;
7513
7514 if (flagLEP2[WeakBox]) {
7515 // numerator
7516 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau130, &(*this), _1));
7517 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7518 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7519 }
7520 double sigma_box_F = average; // interval
7521 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau130, &(*this), _1));
7522 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7523 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7524 }
7525 double sigma_box_B = average; // interval
7526
7527 // denominator
7528 if (!flagLEP2[ISR]) {
7529
7530 sigma = LEP2sigmaTau(s);
7531 }
7532
7533 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7534 }
7535 } else if (s == 136.*136.){
7536 double AFB_noBox, sigma = 0.0;
7537 if (!flagLEP2[ISR])
7538 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7539 else {
7540 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau136, &(*this), _1));
7541 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7542 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7543 }
7544 double numerator = average; // interval
7545
7546
7547 sigma = LEP2sigmaTau(s);
7548
7549 AFB_noBox = numerator/sigma;
7550 }
7551 SMresult_cache = AFB_noBox;
7552
7553 if (flagLEP2[WeakBox]) {
7554 // numerator
7555 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau136, &(*this), _1));
7556 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7557 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7558 }
7559 double sigma_box_F = average; // interval
7560 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau136, &(*this), _1));
7561 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7562 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7563 }
7564 double sigma_box_B = average; // interval
7565
7566 // denominator
7567 if (!flagLEP2[ISR]) {
7568
7569 sigma = LEP2sigmaTau(s);
7570 }
7571
7572 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7573 }
7574 } else if (s == 161.*161.){
7575 double AFB_noBox, sigma = 0.0;
7576 if (!flagLEP2[ISR])
7577 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7578 else {
7579 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau161, &(*this), _1));
7580 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7581 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7582 }
7583 double numerator = average; // interval
7584
7585
7586 sigma = LEP2sigmaTau(s);
7587
7588 AFB_noBox = numerator/sigma;
7589 }
7590 SMresult_cache = AFB_noBox;
7591
7592 if (flagLEP2[WeakBox]) {
7593 // numerator
7594 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau161, &(*this), _1));
7595 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7596 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7597 }
7598 double sigma_box_F = average; // interval
7599 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau161, &(*this), _1));
7600 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7601 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7602 }
7603 double sigma_box_B = average; // interval
7604
7605 // denominator
7606 if (!flagLEP2[ISR]) {
7607
7608 sigma = LEP2sigmaTau(s);
7609 }
7610
7611 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7612 }
7613 } else if (s == 172.*172.){
7614 double AFB_noBox, sigma = 0.0;
7615 if (!flagLEP2[ISR])
7616 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7617 else {
7618 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau172, &(*this), _1));
7619 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7620 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7621 }
7622 double numerator = average; // interval
7623
7624
7625 sigma = LEP2sigmaTau(s);
7626
7627 AFB_noBox = numerator/sigma;
7628 }
7629 SMresult_cache = AFB_noBox;
7630
7631 if (flagLEP2[WeakBox]) {
7632 // numerator
7633 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau172, &(*this), _1));
7634 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7635 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7636 }
7637 double sigma_box_F = average; // interval
7638 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau172, &(*this), _1));
7639 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7640 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7641 }
7642 double sigma_box_B = average; // interval
7643
7644 // denominator
7645 if (!flagLEP2[ISR]) {
7646
7647 sigma = LEP2sigmaTau(s);
7648 }
7649
7650 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7651 }
7652 } else if (s == 183.*183.) {
7653 double AFB_noBox, sigma = 0.0;
7654 if (!flagLEP2[ISR])
7655 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7656 else {
7657 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau183, &(*this), _1));
7658 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7659 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7660 }
7661 double numerator = average; // interval
7662
7663
7664 sigma = LEP2sigmaTau(s);
7665
7666 AFB_noBox = numerator/sigma;
7667 }
7668 SMresult_cache = AFB_noBox;
7669
7670 if (flagLEP2[WeakBox]) {
7671 // numerator
7672 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau183, &(*this), _1));
7673 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7674 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7675 }
7676 double sigma_box_F = average; // interval
7677 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau183, &(*this), _1));
7678 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7679 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7680 }
7681 double sigma_box_B = average; // interval
7682
7683 // denominator
7684 if (!flagLEP2[ISR]) {
7685
7686 sigma = LEP2sigmaTau(s);
7687 }
7688
7689 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7690 }
7691 } else if (s == 189.*189.) {
7692 double AFB_noBox, sigma = 0.0;
7693 if (!flagLEP2[ISR])
7694 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7695 else {
7696 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau189, &(*this), _1));
7697 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7698 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7699 }
7700 double numerator = average; // interval
7701
7702
7703 sigma = LEP2sigmaTau(s);
7704
7705 AFB_noBox = numerator/sigma;
7706 }
7707 SMresult_cache = AFB_noBox;
7708
7709 if (flagLEP2[WeakBox]) {
7710 // numerator
7711 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau189, &(*this), _1));
7712 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7713 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7714 }
7715 double sigma_box_F = average; // interval
7716 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau189, &(*this), _1));
7717 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7718 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7719 }
7720 double sigma_box_B = average; // interval
7721
7722 // denominator
7723 if (!flagLEP2[ISR]) {
7724
7725 sigma = LEP2sigmaTau(s);
7726 }
7727
7728 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7729 }
7730 } else if (s == 192.*192.) {
7731 double AFB_noBox, sigma = 0.0;
7732 if (!flagLEP2[ISR])
7733 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7734 else {
7735 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau192, &(*this), _1));
7736 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7737 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7738 }
7739 double numerator = average; // interval
7740
7741
7742 sigma = LEP2sigmaTau(s);
7743
7744 AFB_noBox = numerator/sigma;
7745 }
7746 SMresult_cache = AFB_noBox;
7747
7748 if (flagLEP2[WeakBox]) {
7749 // numerator
7750 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau192, &(*this), _1));
7751 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7752 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7753 }
7754 double sigma_box_F = average; // interval
7755 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau192, &(*this), _1));
7756 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7757 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7758 }
7759 double sigma_box_B = average; // interval
7760
7761 // denominator
7762 if (!flagLEP2[ISR]) {
7763
7764 sigma = LEP2sigmaTau(s);
7765 }
7766
7767 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7768 }
7769 } else if (s == 196.*196.) {
7770 double AFB_noBox, sigma = 0.0;
7771 if (!flagLEP2[ISR])
7772 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7773 else {
7774 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau196, &(*this), _1));
7775 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7776 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7777 }
7778 double numerator = average; // interval
7779
7780
7781 sigma = LEP2sigmaTau(s);
7782
7783 AFB_noBox = numerator/sigma;
7784 }
7785 SMresult_cache = AFB_noBox;
7786
7787 if (flagLEP2[WeakBox]) {
7788 // numerator
7789 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau196, &(*this), _1));
7790 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7791 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7792 }
7793 double sigma_box_F = average; // interval
7794 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau196, &(*this), _1));
7795 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7796 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7797 }
7798 double sigma_box_B = average; // interval
7799
7800 // denominator
7801 if (!flagLEP2[ISR]) {
7802
7803 sigma = LEP2sigmaTau(s);
7804 }
7805
7806 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7807 }
7808 } else if (s == 200.*200.) {
7809 double AFB_noBox, sigma = 0.0;
7810 if (!flagLEP2[ISR])
7811 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7812 else {
7813 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau200, &(*this), _1));
7814 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7815 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7816 }
7817 double numerator = average; // interval
7818
7819
7820 sigma = LEP2sigmaTau(s);
7821
7822 AFB_noBox = numerator/sigma;
7823 }
7824 SMresult_cache = AFB_noBox;
7825
7826 if (flagLEP2[WeakBox]) {
7827 // numerator
7828 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau200, &(*this), _1));
7829 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7830 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7831 }
7832 double sigma_box_F = average; // interval
7833 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau200, &(*this), _1));
7834 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7835 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7836 }
7837 double sigma_box_B = average; // interval
7838
7839 // denominator
7840 if (!flagLEP2[ISR]) {
7841
7842 sigma = LEP2sigmaTau(s);
7843 }
7844
7845 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7846 }
7847 } else if (s == 202.*202.) {
7848 double AFB_noBox, sigma = 0.0;
7849 if (!flagLEP2[ISR])
7850 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7851 else {
7852 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau202, &(*this), _1));
7853 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7854 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7855 }
7856 double numerator = average; // interval
7857
7858
7859 sigma = LEP2sigmaTau(s);
7860
7861 AFB_noBox = numerator/sigma;
7862 }
7863 SMresult_cache = AFB_noBox;
7864
7865 if (flagLEP2[WeakBox]) {
7866 // numerator
7867 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau202, &(*this), _1));
7868 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7869 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7870 }
7871 double sigma_box_F = average; // interval
7872 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau202, &(*this), _1));
7873 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7874 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7875 }
7876 double sigma_box_B = average; // interval
7877
7878 // denominator
7879 if (!flagLEP2[ISR]) {
7880
7881 sigma = LEP2sigmaTau(s);
7882 }
7883
7884 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7885 }
7886 } else if (s == 205.*205.) {
7887 double AFB_noBox, sigma = 0.0;
7888 if (!flagLEP2[ISR])
7889 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7890 else {
7891 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau205, &(*this), _1));
7892 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7893 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7894 }
7895 double numerator = average; // interval
7896
7897
7898 sigma = LEP2sigmaTau(s);
7899
7900 AFB_noBox = numerator/sigma;
7901 }
7902 SMresult_cache = AFB_noBox;
7903
7904 if (flagLEP2[WeakBox]) {
7905 // numerator
7906 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau205, &(*this), _1));
7907 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7908 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7909 }
7910 double sigma_box_F = average; // interval
7911 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau205, &(*this), _1));
7912 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7913 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7914 }
7915 double sigma_box_B = average; // interval
7916
7917 // denominator
7918 if (!flagLEP2[ISR]) {
7919
7920 sigma = LEP2sigmaTau(s);
7921 }
7922
7923 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7924 }
7925 } else if (s == 207.*207.) {
7926 double AFB_noBox, sigma = 0.0;
7927 if (!flagLEP2[ISR])
7928 AFB_noBox = AFB_NoISR_l(QCD::lepton(TAU),s);
7929 else {
7930 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_AFBnumeratorWithISR_tau207, &(*this), _1));
7931 if (gsl_integration_qags(&f_GSL, 0., 1.-0.85*0.85, abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7932 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7933 }
7934 double numerator = average; // interval
7935
7936
7937 sigma = LEP2sigmaTau(s);
7938
7939 AFB_noBox = numerator/sigma;
7940 }
7941 SMresult_cache = AFB_noBox;
7942
7943 if (flagLEP2[WeakBox]) {
7944 // numerator
7945 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau207, &(*this), _1));
7946 if (gsl_integration_qags(&f_GSL, 0., 1., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7947 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7948 }
7949 double sigma_box_F = average; // interval
7950 f_GSL = convertToGslFunction(bind(&StandardModel::getIntegrand_dsigmaBox_tau207, &(*this), _1));
7951 if (gsl_integration_qags(&f_GSL, -1., 0., abserr, relerr, 100, w_GSL1, &average, &error) != 0){
7952 SMresult_cache = std::numeric_limits<double>::quiet_NaN();
7953 }
7954 double sigma_box_B = average; // interval
7955
7956 // denominator
7957 if (!flagLEP2[ISR]) {
7958
7959 sigma = LEP2sigmaTau(s);
7960 }
7961
7962 SMresult_cache += (sigma_box_F - sigma_box_B)/sigma;
7963 }
7964 } else {
7965 throw std::runtime_error("ERROR: wrong LEP2 energy in StandardModel::LEP2AFBtau!");
7966 }
7967
7968 double AFBtau = SMresult_cache;
7969
7970 gsl_set_error_handler(old_handler);
7971 bSigmaForAFB = false;
7972 return AFBtau;
7973 }
7974}
7975
7976
7977const double StandardModel::LEP2Rbottom(const double s) const
7978{
7979
7980 double sigma_b = LEP2sigmaBottom(s);
7981 double sigma_had = LEP2sigmaHadron(s);
7982 SMresult_cache = sigma_b / sigma_had;
7983 double R_bottom = SMresult_cache;
7984
7985 return R_bottom;
7986}
7987
7988
7989const double StandardModel::LEP2Rcharm(const double s) const
7990{
7991
7992 double sigma_c = LEP2sigmaCharm(s);
7993 double sigma_had = LEP2sigmaHadron(s);
7994 SMresult_cache = sigma_c / sigma_had;
7995 double R_charm = SMresult_cache;
7996
7997 return R_charm;
7998}
7999
8000
8001const double StandardModel::sigma_NoISR_l(const QCD::lepton l_flavor, const double s) const
8002{
8003 double ml = getLeptons(l_flavor).getMass();
8004 double l_charge = getLeptons(l_flavor).getCharge();
8005 double sigma = myTwoFermionsLEP2->sigma_l(l_flavor, ml, s, Mw(), Gamma_Z(), flagLEP2[Weak]);
8006
8007 if (!bSigmaForAFB && flagLEP2[QEDFSR])
8008 sigma *= myTwoFermionsLEP2->QED_FSR_forSigma(s, l_charge);
8009
8010 return sigma;
8011}
8012
8013const double StandardModel::sigma_NoISR_q(const QCD::quark q_flavor, const double s) const
8014{
8015 double mq = m_q(q_flavor, sqrt(s));
8016 double q_charge = getQuarks(q_flavor).getCharge();
8017 double sigma = myTwoFermionsLEP2->sigma_q(q_flavor, mq, s, Mw(), Gamma_Z(), flagLEP2[Weak]);
8018
8019 if (!bSigmaForAFB && flagLEP2[QEDFSR])
8020 sigma *= myTwoFermionsLEP2->QED_FSR_forSigma(s, q_charge);
8021
8022 if (!bSigmaForAFB && flagLEP2[QCDFSR])
8024
8025 return sigma;
8026}
8027
8028const double StandardModel::AFB_NoISR_l(const QCD::lepton l_flavor, const double s) const
8029{
8030 double ml = getLeptons(l_flavor).getMass();
8031 double AFB = myTwoFermionsLEP2->AFB_l(l_flavor, ml, s, Mw(), Gamma_Z(), flagLEP2[Weak]);
8032
8033 return AFB;
8034}
8035
8036const double StandardModel::AFB_NoISR_q(const QCD::quark q_flavor, const double s) const
8037{
8038 double mq = m_q(q_flavor, sqrt(s));
8039 double AFB = myTwoFermionsLEP2->AFB_q(q_flavor, mq, s, Mw(), Gamma_Z(), flagLEP2[Weak]);
8040
8041 if (flagLEP2[QCDFSR])
8042 AFB *= myTwoFermionsLEP2->QCD_FSR_forAFB(q_flavor, mq, s);
8043
8044 return AFB;
8045}
8046
8047const double StandardModel::Integrand_sigmaWithISR_l(double x, const QCD::lepton l_flavor, const double s) const
8048{
8049 double sprime = (1.0 - x)*s;
8050 double ml = getLeptons(l_flavor).getMass();
8051 double l_charge = getLeptons(l_flavor).getCharge();
8052 double sigma = myTwoFermionsLEP2->sigma_l(l_flavor, ml, sprime, Mw(), Gamma_Z(),
8053 flagLEP2[Weak]);
8054 double H = myTwoFermionsLEP2->H_ISR(x, s);
8055
8056 if (!bSigmaForAFB && flagLEP2[QEDFSR])
8057 sigma *= myTwoFermionsLEP2->QED_FSR_forSigma(sprime, l_charge);
8058
8059 return ( H*sigma );
8060}
8061
8063{
8064 double s = 130. * 130.;
8066}
8067
8069{
8070 double s = 136. * 136.;
8072}
8073
8075{
8076 double s = 161. * 161.;
8078}
8079
8081{
8082 double s = 172. * 172.;
8084}
8085
8087{
8088 double s = 183. * 183.;
8090}
8091
8093{
8094 double s = 189. * 189.;
8096}
8097
8099{
8100 double s = 192. * 192.;
8102}
8103
8105{
8106 double s = 196. * 196.;
8108}
8109
8111{
8112 double s = 200. * 200.;
8114}
8115
8117{
8118 double s = 202. * 202.;
8120}
8121
8123{
8124 double s = 205. * 205.;
8126}
8127
8129{
8130 double s = 207. * 207.;
8132}
8133
8134
8136{
8137 double s = 130. * 130.;
8139}
8140
8142{
8143 double s = 136. * 136.;
8145}
8146
8148{
8149 double s = 161. * 161.;
8151}
8152
8154{
8155 double s = 172. * 172.;
8157}
8158
8160{
8161 double s = 183. * 183.;
8163}
8164
8166{
8167 double s = 189. * 189.;
8169}
8170
8172{
8173 double s = 192. * 192.;
8175}
8176
8178{
8179 double s = 196. * 196.;
8181}
8182
8184{
8185 double s = 200. * 200.;
8187}
8188
8190{
8191 double s = 202. * 202.;
8193}
8194
8196{
8197 double s = 205. * 205.;
8199}
8200
8202{
8203 double s = 207. * 207.;
8205}
8206
8207const double StandardModel::Integrand_sigmaWithISR_q(double x, const QCD::quark q_flavor, const double s) const
8208{
8209 double sprime = (1.0 - x)*s;
8210 double mq = m_q(q_flavor, sqrt(s));
8211 double q_charge = getQuarks(q_flavor).getCharge();
8212 double sigma = myTwoFermionsLEP2->sigma_q(q_flavor, mq, sprime, Mw(), Gamma_Z(),
8213 flagLEP2[Weak]);
8214 double H = myTwoFermionsLEP2->H_ISR(x, s);
8215
8216 if (!bSigmaForAFB && flagLEP2[QEDFSR])
8217 sigma *= myTwoFermionsLEP2->QED_FSR_forSigma(sprime, q_charge);
8218
8219 if (!bSigmaForAFB && flagLEP2[QCDFSR])
8220 sigma *= myTwoFermionsLEP2->QCD_FSR_forSigma(sprime);
8221
8222 return ( H*sigma );
8223}
8224
8225
8226
8227
8228//up
8229
8230
8232{
8233 double s = 130. * 130.;
8234 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8235}
8236
8238{
8239 double s = 133. * 133.;
8240 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8241}
8242
8244{
8245 double s = 136. * 136.;
8246 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8247}
8248
8250{
8251 double s = 161. * 161.;
8252 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8253}
8254
8256{
8257 double s = 167. * 167.;
8258 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8259}
8260
8262{
8263 double s = 172. * 172.;
8264 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8265}
8266
8268{
8269 double s = 183. * 183.;
8270 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8271}
8272
8274{
8275 double s = 189. * 189.;
8276 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8277}
8278
8280{
8281 double s = 192. * 192.;
8282 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8283}
8284
8286{
8287 double s = 196. * 196.;
8288 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8289}
8290
8292{
8293 double s = 200. * 200.;
8294 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8295}
8296
8298{
8299 double s = 202. * 202.;
8300 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8301}
8302
8304{
8305 double s = 205. * 205.;
8306 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8307}
8308
8310{
8311 double s = 207. * 207.;
8312 return (Integrand_sigmaWithISR_q(x, QCD::quark(UP), s));
8313}
8314
8315
8316//down
8317
8319{
8320 double s = 130. * 130.;
8322}
8323
8325{
8326 double s = 133. * 133.;
8328}
8329
8330
8332{
8333 double s = 136. * 136.;
8335}
8336
8338{
8339 double s = 161. * 161.;
8341}
8342
8344{
8345 double s = 167. * 167.;
8347}
8348
8350{
8351 double s = 172. * 172.;
8353}
8354
8356{
8357 double s = 183. * 183.;
8359}
8360
8362{
8363 double s = 189. * 189.;
8365}
8366
8368{
8369 double s = 192. * 192.;
8371}
8372
8374{
8375 double s = 196. * 196.;
8377}
8378
8380{
8381 double s = 200. * 200.;
8383}
8384
8386{
8387 double s = 202. * 202.;
8389}
8390
8392{
8393 double s = 205. * 205.;
8395}
8396
8398{
8399 double s = 207. * 207.;
8401}
8402
8403
8404//charm
8405
8406
8408{
8409 double s = 130. * 130.;
8411}
8412
8414{
8415 double s = 133. * 133.;
8417}
8418
8420{
8421 double s = 136. * 136.;
8423}
8424
8426{
8427 double s = 161. * 161.;
8429}
8430
8432{
8433 double s = 167. * 167.;
8435}
8436
8438{
8439 double s = 172. * 172.;
8441}
8442
8444{
8445 double s = 183. * 183.;
8447}
8448
8450{
8451 double s = 189. * 189.;
8453}
8454
8456{
8457 double s = 192. * 192.;
8459}
8460
8462{
8463 double s = 196. * 196.;
8465}
8466
8468{
8469 double s = 200. * 200.;
8471}
8472
8474{
8475 double s = 202. * 202.;
8477}
8478
8480{
8481 double s = 205. * 205.;
8483}
8484
8486{
8487 double s = 207. * 207.;
8489}
8490
8491
8492//strange
8493
8494
8496{
8497 double s = 130. * 130.;
8499}
8500
8502{
8503 double s = 133. * 133.;
8505}
8506
8508{
8509 double s = 136. * 136.;
8511}
8512
8514{
8515 double s = 161. * 161.;
8517}
8518
8520{
8521 double s = 167. * 167.;
8523}
8524
8526{
8527 double s = 172. * 172.;
8529}
8530
8532{
8533 double s = 183. * 183.;
8535}
8536
8538{
8539 double s = 189. * 189.;
8541}
8542
8544{
8545 double s = 192. * 192.;
8547}
8548
8550{
8551 double s = 196. * 196.;
8553}
8554
8556{
8557 double s = 200. * 200.;
8559}
8560
8562{
8563 double s = 202. * 202.;
8565}
8566
8568{
8569 double s = 205. * 205.;
8571}
8572
8574{
8575 double s = 207. * 207.;
8577}
8578
8579
8580//bottom
8581
8582
8584{
8585 double s = 130. * 130.;
8587}
8588
8590{
8591 double s = 133. * 133.;
8593}
8594
8596{
8597 double s = 136. * 136.;
8599}
8600
8602{
8603 double s = 161. * 161.;
8605}
8606
8608{
8609 double s = 167. * 167.;
8611}
8612
8614{
8615 double s = 172. * 172.;
8617}
8618
8620{
8621 double s = 183. * 183.;
8623}
8624
8626{
8627 double s = 189. * 189.;
8629}
8630
8632{
8633 double s = 192. * 192.;
8635}
8636
8638{
8639 double s = 196. * 196.;
8641}
8642
8644{
8645 double s = 200. * 200.;
8647}
8648
8650{
8651 double s = 202. * 202.;
8653}
8654
8656{
8657 double s = 205. * 205.;
8659}
8660
8662{
8663 double s = 207. * 207.;
8665}
8666
8667
8668
8669
8670
8671const double StandardModel::Integrand_dsigmaBox_l(double cosTheta, const QCD::lepton l_flavor, const double s) const
8672{
8673 double ml = getLeptons(l_flavor).getMass();
8674 return ( myTwoFermionsLEP2->dsigma_l_box(l_flavor, ml, s, cosTheta, Mw(), Gamma_Z()) );
8675}
8676
8678{
8679 double s = 130. * 130.;
8680 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8681}
8682
8684{
8685 double s = 136. * 136.;
8686 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8687}
8688
8690{
8691 double s = 161. * 161.;
8692 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8693}
8694
8696{
8697 double s = 172. * 172.;
8698 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8699}
8700
8702{
8703 double s = 183. * 183.;
8704 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8705}
8706
8708{
8709 double s = 189. * 189.;
8710 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8711}
8712
8714{
8715 double s = 192. * 192.;
8716 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8717}
8718
8720{
8721 double s = 196. * 196.;
8722 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8723}
8724
8726{
8727 double s = 200. * 200.;
8728 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8729}
8730
8732{
8733 double s = 202. * 202.;
8734 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8735}
8736
8738{
8739 double s = 205. * 205.;
8740 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8741}
8742
8744{
8745 double s = 207. * 207.;
8746 return (Integrand_dsigmaBox_l(x, QCD::lepton(MU), s));
8747}
8748
8749
8750
8751
8752
8754{
8755 double s = 130. * 130.;
8756 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8757}
8758
8760{
8761 double s = 136. * 136.;
8762 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8763}
8764
8766{
8767 double s = 161. * 161.;
8768 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8769}
8770
8772{
8773 double s = 172. * 172.;
8774 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8775}
8776
8778{
8779 double s = 183. * 183.;
8780 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8781}
8782
8784{
8785 double s = 189. * 189.;
8786 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8787}
8788
8790{
8791 double s = 192. * 192.;
8792 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8793}
8794
8796{
8797 double s = 196. * 196.;
8798 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8799}
8800
8802{
8803 double s = 200. * 200.;
8804 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8805}
8806
8808{
8809 double s = 202. * 202.;
8810 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8811}
8812
8814{
8815 double s = 205. * 205.;
8816 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8817}
8818
8820{
8821 double s = 207. * 207.;
8822 return (Integrand_dsigmaBox_l(x, QCD::lepton(TAU), s));
8823}
8824
8825
8826
8827
8828
8829
8830const double StandardModel::Integrand_dsigmaBox_q(double cosTheta, const QCD::quark q_flavor, const double s) const
8831{
8832 double mq = m_q(q_flavor, sqrt(s));
8833 return ( myTwoFermionsLEP2->dsigma_q_box(q_flavor, mq, s, cosTheta, Mw(), Gamma_Z()) );
8834}
8835
8836
8837
8838
8839//up
8840
8841
8843{
8844 double s = 130. * 130.;
8845 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8846}
8847
8849{
8850 double s = 133. * 133.;
8851 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8852}
8853
8855{
8856 double s = 136. * 136.;
8857 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8858}
8859
8861{
8862 double s = 161. * 161.;
8863 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8864}
8865
8867{
8868 double s = 167. * 167.;
8869 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8870}
8871
8873{
8874 double s = 172. * 172.;
8875 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8876}
8877
8879{
8880 double s = 183. * 183.;
8881 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8882}
8883
8885{
8886 double s = 189. * 189.;
8887 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8888}
8889
8891{
8892 double s = 192. * 192.;
8893 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8894}
8895
8897{
8898 double s = 196. * 196.;
8899 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8900}
8901
8903{
8904 double s = 200. * 200.;
8905 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8906}
8907
8909{
8910 double s = 202. * 202.;
8911 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8912}
8913
8915{
8916 double s = 205. * 205.;
8917 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8918}
8919
8921{
8922 double s = 207. * 207.;
8923 return (Integrand_dsigmaBox_q(x, QCD::quark(UP), s));
8924}
8925
8926
8927//down
8928
8930{
8931 double s = 130. * 130.;
8932 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8933}
8934
8936{
8937 double s = 133. * 133.;
8938 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8939}
8940
8942{
8943 double s = 136. * 136.;
8944 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8945}
8946
8948{
8949 double s = 161. * 161.;
8950 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8951}
8952
8954{
8955 double s = 167. * 167.;
8956 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8957}
8958
8960{
8961 double s = 172. * 172.;
8962 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8963}
8964
8966{
8967 double s = 183. * 183.;
8968 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8969}
8970
8972{
8973 double s = 189. * 189.;
8974 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8975}
8976
8978{
8979 double s = 192. * 192.;
8980 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8981}
8982
8984{
8985 double s = 196. * 196.;
8986 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8987}
8988
8990{
8991 double s = 200. * 200.;
8992 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8993}
8994
8996{
8997 double s = 202. * 202.;
8998 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
8999}
9000
9002{
9003 double s = 205. * 205.;
9004 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
9005}
9006
9008{
9009 double s = 207. * 207.;
9010 return (Integrand_dsigmaBox_q(x, QCD::quark(DOWN), s));
9011}
9012
9013
9014//charm
9015
9016
9018{
9019 double s = 130. * 130.;
9020 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9021}
9022
9024{
9025 double s = 133. * 133.;
9026 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9027}
9028
9030{
9031 double s = 136. * 136.;
9032 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9033}
9034
9036{
9037 double s = 161. * 161.;
9038 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9039}
9040
9042{
9043 double s = 167. * 167.;
9044 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9045}
9046
9048{
9049 double s = 172. * 172.;
9050 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9051}
9052
9054{
9055 double s = 183. * 183.;
9056 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9057}
9058
9060{
9061 double s = 189. * 189.;
9062 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9063}
9064
9066{
9067 double s = 192. * 192.;
9068 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9069}
9070
9072{
9073 double s = 196. * 196.;
9074 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9075}
9076
9078{
9079 double s = 200. * 200.;
9080 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9081}
9082
9084{
9085 double s = 202. * 202.;
9086 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9087}
9088
9090{
9091 double s = 205. * 205.;
9092 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9093}
9094
9096{
9097 double s = 207. * 207.;
9098 return (Integrand_dsigmaBox_q(x, QCD::quark(CHARM), s));
9099}
9100
9101
9102//strange
9103
9104
9106{
9107 double s = 130. * 130.;
9109}
9110
9112{
9113 double s = 133. * 133.;
9115}
9116
9118{
9119 double s = 136. * 136.;
9121}
9122
9124{
9125 double s = 161. * 161.;
9127}
9128
9130{
9131 double s = 167. * 167.;
9133}
9134
9135
9136
9138{
9139 double s = 172. * 172.;
9141}
9142
9144{
9145 double s = 183. * 183.;
9147}
9148
9150{
9151 double s = 189. * 189.;
9153}
9154
9156{
9157 double s = 192. * 192.;
9159}
9160
9162{
9163 double s = 196. * 196.;
9165}
9166
9168{
9169 double s = 200. * 200.;
9171}
9172
9174{
9175 double s = 202. * 202.;
9177}
9178
9180{
9181 double s = 205. * 205.;
9183}
9184
9186{
9187 double s = 207. * 207.;
9189}
9190
9191
9192//bottom
9193
9194
9196{
9197 double s = 130. * 130.;
9199}
9200
9202{
9203 double s = 133. * 133.;
9205}
9206
9208{
9209 double s = 136. * 136.;
9211}
9212
9214{
9215 double s = 161. * 161.;
9217}
9218
9220{
9221 double s = 167. * 167.;
9223}
9224
9226{
9227 double s = 172. * 172.;
9229}
9230
9232{
9233 double s = 183. * 183.;
9235}
9236
9238{
9239 double s = 189. * 189.;
9241}
9242
9244{
9245 double s = 192. * 192.;
9247}
9248
9250{
9251 double s = 196. * 196.;
9253}
9254
9256{
9257 double s = 200. * 200.;
9259}
9260
9262{
9263 double s = 202. * 202.;
9265}
9266
9268{
9269 double s = 205. * 205.;
9271}
9272
9274{
9275 double s = 207. * 207.;
9277}
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291const double StandardModel::Integrand_AFBnumeratorWithISR_l(double x, const QCD::lepton l_flavor, const double s) const
9292{
9293 double sprime = (1.0 - x)*s;
9294 double Ncf = 1.0;
9295 double ml = getLeptons(l_flavor).getMass();
9296 double G3prime = myTwoFermionsLEP2->G_3prime_l(l_flavor, ml, sprime, Mw(), Gamma_Z(),flagLEP2[Weak]);
9297 double H = myTwoFermionsLEP2->H_ISR_FB(x, s);
9298
9299 return ( M_PI*ale*ale*Ncf*H*G3prime/sprime );
9300}
9301
9302
9304{
9305 double s = 130. * 130.;
9307}
9308
9310{
9311 double s = 136. * 136.;
9313}
9314
9316{
9317 double s = 161. * 161.;
9319}
9320
9322{
9323 double s = 172. * 172.;
9325}
9326
9328{
9329 double s = 183. * 183.;
9331}
9332
9334{
9335 double s = 189. * 189.;
9337}
9338
9340{
9341 double s = 192. * 192.;
9343}
9344
9346{
9347 double s = 196. * 196.;
9349}
9350
9352{
9353 double s = 200. * 200.;
9355}
9356
9358{
9359 double s = 202. * 202.;
9361}
9362
9364{
9365 double s = 205. * 205.;
9367}
9368
9370{
9371 double s = 207. * 207.;
9373}
9374
9375
9377{
9378 double s = 130. * 130.;
9380}
9381
9383{
9384 double s = 136. * 136.;
9386}
9387
9389{
9390 double s = 161. * 161.;
9392}
9393
9395{
9396 double s = 172. * 172.;
9398}
9399
9401{
9402 double s = 183. * 183.;
9404}
9405
9407{
9408 double s = 189. * 189.;
9410}
9411
9413{
9414 double s = 192. * 192.;
9416}
9417
9419{
9420 double s = 196. * 196.;
9422}
9423
9425{
9426 double s = 200. * 200.;
9428}
9429
9431{
9432 double s = 202. * 202.;
9434}
9435
9437{
9438 double s = 205. * 205.;
9440}
9441
9443{
9444 double s = 207. * 207.;
9446}
9447
9448
9449
9450const double StandardModel::Integrand_AFBnumeratorWithISR_q(double x, const QCD::quark q_flavor, const double s) const
9451{
9452 double sprime = (1.0 - x)*s;
9453 double Ncf = 3.0;
9454 double mq = m_q(q_flavor, sqrt(s));
9455 double G3prime = myTwoFermionsLEP2->G_3prime_q(q_flavor, mq, sprime, Mw(), Gamma_Z(),flagLEP2[Weak]);
9456 double H = myTwoFermionsLEP2->H_ISR_FB(x, s);
9457
9458 if (flagLEP2[QCDFSR])
9459 G3prime *= myTwoFermionsLEP2->QCD_FSR_forAFB(q_flavor, mq, sprime);
9460
9461 return ( M_PI*ale*ale*Ncf*H*G3prime/sprime );
9462}
9463
9464
9466{
9467 double s = 133. * 133.;
9469}
9470
9472{
9473 double s = 167. * 167.;
9475}
9476
9478{
9479 double s = 172. * 172.;
9481}
9482
9484{
9485 double s = 183. * 183.;
9487}
9488
9490{
9491 double s = 189. * 189.;
9493}
9494
9496{
9497 double s = 192. * 192.;
9499}
9500
9502{
9503 double s = 196. * 196.;
9505}
9506
9508{
9509 double s = 200. * 200.;
9511}
9512
9514{
9515 double s = 202. * 202.;
9517}
9518
9520{
9521 double s = 205. * 205.;
9523}
9524
9526{
9527 double s = 207. * 207.;
9529}
9530
9531
9532
9533
9535{
9536 double s = 133. * 133.;
9538}
9539
9541{
9542 double s = 167. * 167.;
9544}
9545
9547{
9548 double s = 172. * 172.;
9550}
9551
9553{
9554 double s = 183. * 183.;
9556}
9557
9559{
9560 double s = 189. * 189.;
9562}
9563
9565{
9566 double s = 192. * 192.;
9568}
9569
9571{
9572 double s = 196. * 196.;
9574}
9575
9577{
9578 double s = 200. * 200.;
9580}
9581
9583{
9584 double s = 202. * 202.;
9586}
9587
9589{
9590 double s = 205. * 205.;
9592}
9593
9595{
9596 double s = 207. * 207.;
9598}
9599
9600
9601
9602// LEP2 differential observables
9603
9604const double StandardModel::LEP2dsigmadcosE(const double s, const double cos) const
9605{
9606 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
9608
9609 /* SM contribution with the approximate formula */
9611
9612 } else {
9613 throw std::runtime_error("ERROR: StandardModel::LEP2dsigmadcosE only implemented via semi-analytical approx");
9614 }
9615}
9616
9617const double StandardModel::LEP2dsigmadcosMu(double s, double cos) const
9618{
9619 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
9621
9622 /* SM contribution with the approximate formula */
9624
9625 } else {
9626 throw std::runtime_error("ERROR: StandardModel::LEP2dsigmadcosMu only implemented via semi-analytical approx");
9627 }
9628}
9629
9630const double StandardModel::LEP2dsigmadcosTau(double s, double cos) const
9631{
9632 // Use same flag as other Z pole observables for the moment to decide whether to use approx formulae
9634
9635 /* SM contribution with the approximate formula */
9637
9638 } else {
9639 throw std::runtime_error("ERROR: StandardModel::LEP2dsigmadcosTau only implemented via semi-analytical approx");
9640 }
9641}
9642
9643
9644// LEP2 differential observables: Defined in bins. SM prediction given already by the above
9645
9646const double StandardModel::LEP2dsigmadcosBinE(const double s, const double cos, const double cosmin, const double cosmax) const
9647{
9648 return LEP2dsigmadcosE(s, cos);
9649}
9650
9651const double StandardModel::LEP2dsigmadcosBinMu(double s, double cos, const double cosmin, const double cosmax) const
9652{
9653 return LEP2dsigmadcosMu(s, cos);
9654}
9655
9656const double StandardModel::LEP2dsigmadcosBinTau(double s, double cos, const double cosmin, const double cosmax) const
9657{
9658 return LEP2dsigmadcosTau(s, cos);
9659}
9660
9661
9662/* END: REMOVE FROM THE PACKAGE */
std::map< std::string, double > DPars
Definition: Minimal.cpp:11
@ FULLNNNLO
Definition: OrderScheme.h:40
@ NNLO
Definition: OrderScheme.h:36
@ LO
Definition: OrderScheme.h:34
@ NNNLO
Definition: OrderScheme.h:37
@ NLO
Definition: OrderScheme.h:35
@ FULLNNLO
Definition: OrderScheme.h:39
@ FULLNLO
Definition: OrderScheme.h:38
An observable class for the forward-backward asymmetry in at the pole.
Definition: AFBbottom.h:39
An observable class for the forward-backward asymmetry in at the pole.
Definition: AFBcharm.h:32
An observable class for the forward-backward asymmetry in at the pole.
Definition: AFBlepton.h:160
void computeCKMwithWolfenstein(double Lambda_v, double A_v, double Rho_v, double Eta_v)
A set method to calculate the CKM matrix from Wolfenstein parameters.
Definition: CKM.cpp:13
const gslpp::complex getV_ud() const
A member for returning the value of the CKM element .
Definition: CKM.h:202
const gslpp::complex getV_us() const
A member for returning the value of the CKM element .
Definition: CKM.h:211
const double computeGamma() const
The CKM angle .
Definition: CKM.cpp:125
const gslpp::complex getV_cb() const
A member for returning the value of the CKM element .
Definition: CKM.h:247
const gslpp::complex getV_ub() const
A member for returning the value of the CKM element .
Definition: CKM.h:220
const gslpp::matrix< gslpp::complex > getCKM() const
A member for returning the CKM matrix.
Definition: CKM.h:59
const double getA() const
A member for returning the value of the Wolfenstein parameter .
Definition: CKM.h:97
void computeCKM(double Vus_v, double Vcb_v, double Vub_v, double gamma_v, bool useVud=false)
A set method to calculate the CKM matrix from CKM elements and .
Definition: CKM.cpp:86
const double getRhoBar() const
A member for returning the value of the Wolfenstein parameter .
Definition: CKM.h:70
const double getLambda() const
A member for returning the value of the Wolfenstein parameter .
Definition: CKM.h:88
const double getEtaBar() const
A member for returning the value of the Wolfenstein parameter .
Definition: CKM.h:79
A class for approximate formulae of the EW precision observables.
double LEP2AFBmuApprox(const double s) const
The forward-backward asymmetry at LEP2.
double LEThetaLnuNApprox() const
The effective neutrino nucleon LH parameter: ThetaLnuN.
double LEgAnueApprox() const
The effective (muon) neutrino-electron axial-vector coupling: gAnue.
double LEP2AFBtauApprox(const double s) const
The forward-backward asymmetry at LEP2.
double LEP2sigmaHadronApprox(const double s) const
The cross section at LEP2.
double LEP2dsigmadcosTauApprox(const double s, const double cos) const
The differential cross section at LEP2.
double sin2thetaEff(const Particle p) const
The value of the effective weak mixing anlge for a given fermion.
double Mw() const
The -boson mass with the full two-loop EW corrections.
double sin2thetaEff_b_full() const
with the full two-loop EW corrections.
double LEgVnueApprox() const
The effective (muon) neutrino-electron vector coupling: gVnue.
double sin2thetaEff_l_full() const
with the full two-loop EW corrections.
double LEgLnuN2Approx() const
The effective neutrino nucleon LH coupling: gLnuN2.
double X_full(const std::string observable) const
, , , , , , , , , , , or .
double LEP2dsigmadcosMuApprox(const double s, const double cos) const
The differential cross section at LEP2.
double dAlpha5hMw() const
The value of obtained from the -boson mass, using the full two-loop EW corrections.
double LEP2dsigmadcosEApprox(const double s, const double cos) const
The differential cross section at LEP2.
double LEThetaRnuNApprox() const
The effective neutrino nucleon RH parameter: ThetaRnuN.
double LEP2sigmaTauApprox(const double s) const
The cross section at LEP2.
double DeltaR_TwoLoopEW_rem(const double Mw_i) const
.
double LEP2sigmaMuApprox(const double s) const
The cross section at LEP2.
double LEgRnuN2Approx() const
The effective neutrino nucleon RH coupling: gRnuN2.
A class for one-loop corrections to the EW precision observables.
gslpp::complex deltaKappa_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
double rho_GammaW(const Particle fi, const Particle fj, const double Mw_i) const
EW radiative corrections to the width of , denoted as .
double DeltaRbar_rem(const double Mw_i) const
.
double DeltaR_rem(const double Mw_i) const
Remainder contribution of to , denoted as .
gslpp::complex FZ(const double s, const double Mw_i) const
The unified form factor .
double DeltaAlpha_t(const double s) const
Top-quark contribution of to the electromagnetic coupling , denoted as .
double DeltaRho(const double Mw_i) const
Leading one-loop contribution of to , denoted as .
double DeltaAlpha_l(const double s) const
Leptonic contribution of to the electromagnetic coupling , denoted as .
gslpp::complex FW(const double s, const Particle f, const double Mw_i) const
The unified form factor for .
gslpp::complex deltaRho_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
A class for three-loop corrections to the EW precision observables.
double DeltaAlpha_l(const double s) const
Leptonic contribution of to the electromagnetic coupling , denoted as .
double DeltaRho(const double Mw_i) const
Leading three-loop contribution of to , denoted as .
double DeltaR_rem(const double Mw_i) const
Remainder contribution of to , denoted as .
gslpp::complex deltaRho_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
double DeltaAlpha_t(const double s) const
Top-quark contribution of to the electromagnetic coupling , denoted as .
gslpp::complex deltaKappa_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
A class for three-loop corrections to the EW precision observables.
double DeltaRho(const double Mw_i) const
Leading three-loop contribution of to , denoted as .
double DeltaAlpha_t(const double s) const
Top-quark contribution of to the electromagnetic coupling , denoted as .
double DeltaAlpha_l(const double s) const
Leptonic contribution of to the electromagnetic coupling , denoted as .
gslpp::complex deltaKappa_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
double DeltaR_rem(const double Mw_i) const
Remainder contribution of to , denoted as .
gslpp::complex deltaRho_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
A class for three-loop corrections to the EW precision observables.
double DeltaR_rem(const double Mw_i) const
Remainder contribution of to , denoted as .
double DeltaAlpha_t(const double s) const
Top-quark contribution of to the electromagnetic coupling , denoted as .
double DeltaRho(const double Mw_i) const
Leading three-loop QCD contribution of to , denoted as .
gslpp::complex deltaKappa_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
gslpp::complex deltaRho_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
double DeltaAlpha_l(const double s) const
Leptonic contribution of to the electromagnetic coupling , denoted as .
A class for the form factors , and in the processes at LEP-II.
double dsigma_q_box(const QCD::quark q, const double mf, const double s, const double cosTheta, const double Mw, const double GammaZ) const
double G_3prime_l(const QCD::lepton l, const double mf, const double s, const double Mw, const double GammaZ, const bool bWeak) const
double sigma_q(const QCD::quark q, const double mf, const double s, const double Mw, const double GammaZ, const bool bWeak) const
double QED_FSR_forSigma(const double s, const double Qf) const
double AFB_q(const QCD::quark q, const double mf, const double s, const double Mw, const double GammaZ, const bool bWeak) const
double QCD_FSR_forAFB(const QCD::quark q, const double mf, const double s) const
double QCD_FSR_forSigma(const double s) const
double AFB_l(const QCD::lepton l, const double mf, const double s, const double Mw, const double GammaZ, const bool bWeak) const
double sigma_l(const QCD::lepton l, const double mf, const double s, const double Mw, const double GammaZ, const bool bWeak) const
double H_ISR_FB(const double x, const double s) const
double dsigma_l_box(const QCD::lepton l, const double mf, const double s, const double cosTheta, const double Mw, const double GammaZ) const
double G_3prime_q(const QCD::quark q, const double mf, const double s, const double Mw, const double GammaZ, const bool bWeak) const
double H_ISR(const double x, const double s) const
A class for two-loop corrections to the EW precision observables.
Definition: EWSMTwoLoopEW.h:57
gslpp::complex deltaRho_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
double DeltaRho(const double Mw_i) const
Leading two-loop contribution of to , denoted as .
double DeltaAlpha_t(const double s) const
Top-quark contribution of to the electromagnetic coupling , denoted as .
double tau_2() const
The function .
double DeltaAlpha_l(const double s) const
Leptonic contribution of to the electromagnetic coupling , denoted as .
double DeltaR_rem(const double Mw_i) const
Remainder contribution of to , denoted as .
gslpp::complex deltaKappa_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
A class for two-loop corrections to the EW precision observables.
double DeltaAlpha_t(const double s) const
Top-quark contribution of to the electromagnetic coupling , denoted as .
double DeltaR_rem(const double Mw_i) const
Remainder contribution of to , denoted as .
gslpp::complex deltaRho_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
double DeltaRho(const double Mw_i) const
Leading two-loop QCD contribution of to , denoted as .
gslpp::complex deltaKappa_rem_f(const Particle f, const double Mw_i) const
Remainder contribution of to the effective couplings , denoted as .
double DeltaAlpha_l(const double s) const
Leptonic contribution of to the electromagnetic coupling , denoted as .
A class for cache variables used in computing radiative corrections to the EW precision observables.
Definition: EWSMcache.h:40
double a_f(const Particle f) const
The tree-level axial-vector coupling for , denoted as .
Definition: EWSMcache.h:301
double getZeta4() const
A get method to access the value of the zeta function .
Definition: EWSMcache.h:155
double v_f(const Particle f, const double Mw_i) const
The tree-level vector coupling for , denoted as .
Definition: EWSMcache.h:290
double delta_f(const Particle f, const double Mw_i) const
.
Definition: EWSMcache.h:323
double getZeta5() const
A get method to access the value of the zeta function .
Definition: EWSMcache.h:164
double getZeta3() const
A get method to access the value of the zeta function .
Definition: EWSMcache.h:146
double Xt_GF() const
The quantity with the coupling .
Definition: EWSMcache.h:343
double alsMt() const
The strong coupling at NNLO.
Definition: EWSMcache.h:378
void setFlagCacheInEWSMcache(bool FlagCacheInEWSMcache)
A set method to change the model flag CacheInEWSMcache in StandardModel.
Definition: EWSMcache.h:83
double mf(const Particle f, const double mu=0.0, const orders order=FULLNNLO) const
The mass of an SM fermion.
Definition: EWSMcache.cpp:49
double getZeta2() const
A get method to access the value of the zeta function .
Definition: EWSMcache.h:137
void setSMupdated() const
a member used for the caching for .
Definition: Flavour.cpp:373
bool setFlag(const std::string name, const bool value)
Definition: Flavour.cpp:37
The parent class in LeptonFlavour for calculating all the Wilson coefficients for various Lepton Flav...
Definition: LeptonFlavour.h:26
void addMissingModelParameter(const std::string &missingParameterName)
Definition: Model.h:250
bool isModelSUSY() const
Definition: Model.h:182
std::map< std::string, std::reference_wrapper< const double > > ModelParamMap
Definition: Model.h:280
void setModelInitialized(bool ModelInitialized)
A set method to fix the failure or success of the initialization of the model.
Definition: Model.h:145
bool IsModelInitialized() const
A method to check if the model is initialized.
Definition: Model.h:136
std::string name
The name of the model.
Definition: Model.h:285
void setModelName(const std::string name)
A method to set the name of the model.
Definition: Model.h:50
bool UpdateError
A boolean set to false if update is successful.
Definition: Model.h:272
void raiseMissingModelParameterCount()
Definition: Model.h:260
An observable class for the -boson mass.
Definition: Mw.h:22
void computePMNS(double s12_v, double s13_v, double s23_v, double delta_v, double alpha21_v, double alpha31_v)
A set method to calculate the PMNS matrix from PMNS parameters.
Definition: PMNS.cpp:13
gslpp::matrix< gslpp::complex > getPMNS() const
A member for returning the PMNS matrix.
Definition: PMNS.h:42
A class for particles.
Definition: Particle.h:26
bool is(std::string name_i) const
Definition: Particle.cpp:23
double getIsospin() const
A get method to access the particle isospin.
Definition: Particle.h:115
const double & getMass() const
A get method to access the particle mass.
Definition: Particle.h:61
std::string getName() const
Definition: Particle.h:147
void setMass(double mass)
A set method to fix the particle mass.
Definition: Particle.h:70
double getCharge() const
A get method to access the particle charge.
Definition: Particle.h:97
int getIndex() const
Definition: Particle.h:160
A class for parameters related to QCD, hadrons and quarks.
Definition: QCD.h:304
virtual bool CheckParameters(const std::map< std::string, double > &DPars)
A method to check if all the mandatory parameters for QCD have been provided in model initialization.
Definition: QCD.cpp:421
bool requireYu
Switch for generating the Yukawa couplings to the up-type quarks.
Definition: QCD.h:1012
double mut
The threshold between six- and five-flavour theory in GeV.
Definition: QCD.h:1021
double CF
Definition: QCD.h:1026
virtual bool PostUpdate()
The post-update method for QCD.
Definition: QCD.cpp:158
const double Beta2(const double nf) const
The coefficient for a certain number of flavours .
Definition: QCD.cpp:611
double zeta2
computed with the GSL.
Definition: QCD.h:1032
double Nc
The number of colours.
Definition: QCD.h:1025
double zeta3
computed with the GSL.
Definition: QCD.h:1033
double muc
The threshold between four- and three-flavour theory in GeV.
Definition: QCD.h:1023
double CA
Definition: QCD.h:1026
virtual bool PreUpdate()
The pre-update method for QCD.
Definition: QCD.cpp:130
virtual bool setFlag(const std::string name, const bool value)
A method to set a flag of QCD.
Definition: QCD.cpp:479
const double Beta1(const double nf) const
The coefficient for a certain number of flavours .
Definition: QCD.cpp:606
const double Mrun(const double mu, const double m, const quark q, const orders order=FULLNNLO) const
Computes a running quark mass from .
Definition: QCD.cpp:1353
quark
An enum type for quarks.
Definition: QCD.h:323
@ UP
Definition: QCD.h:324
@ BOTTOM
Definition: QCD.h:329
@ TOP
Definition: QCD.h:328
@ DOWN
Definition: QCD.h:325
@ STRANGE
Definition: QCD.h:327
@ CHARM
Definition: QCD.h:326
virtual bool setFlagStr(const std::string name, const std::string value)
A method to set a flag of QCD.
Definition: QCD.cpp:511
virtual bool CheckFlags() const
A method to check the sanity of the set of model flags.
Definition: QCD.cpp:517
virtual bool Init(const std::map< std::string, double > &DPars)
Initializes the QCD parameters found in the argument.
Definition: QCD.cpp:120
const double BelowTh(const double mu) const
The active flavour threshold below the scale as defined in QCD::Thresholds().
Definition: QCD.cpp:559
double TF
Definition: QCD.h:1026
virtual void setParameter(const std::string name, const double &value)
A method to set the value of a parameter of QCD.
Definition: QCD.cpp:343
const double Beta0(const double nf) const
The coefficient for a certain number of flavours .
Definition: QCD.cpp:601
const std::string orderToString(const orders order) const
Converts an object of the enum type "orders" to the corresponding string.
Definition: QCD.cpp:95
const double Beta3(const double nf) const
The coefficient for a certain number of flavours .
Definition: QCD.cpp:618
bool requireYd
Switch for generating the Yukawa couplings to the down-type quarks.
Definition: QCD.h:1013
const double getMtpole() const
A get method to access the pole mass of the top quark.
Definition: QCD.h:600
const double AboveTh(const double mu) const
The active flavour threshold above the scale as defined in QCD::Thresholds().
Definition: QCD.cpp:547
const double Nf(const double mu) const
The number of active flavour at scale .
Definition: QCD.cpp:571
const double AlsWithInit(const double mu, const double alsi, const double mu_i, const int nf, const orders order) const
Computes the running strong coupling from in the scheme, where it is forbidden to across a flavour...
Definition: QCD.cpp:627
const double NfThresholdCorrections(double mu, double M, double als, int nf, orders order) const
Threshold corrections in matching with from eq. (34) of hep-ph/0512060.
Definition: QCD.cpp:709
const orders FullOrder(orders order) const
Return the FULLORDER enum corresponding to order.
Definition: QCD.cpp:728
lepton
An enum type for leptons.
Definition: QCD.h:310
@ NEUTRINO_2
Definition: QCD.h:313
@ NEUTRINO_1
Definition: QCD.h:311
@ MU
Definition: QCD.h:314
@ ELECTRON
Definition: QCD.h:312
@ NEUTRINO_3
Definition: QCD.h:315
@ TAU
Definition: QCD.h:316
const Particle & getQuarks(const QCD::quark q) const
A get method to access a quark as an object of the type Particle.
Definition: QCD.h:536
const double AlsByOrder(const double mu, const orders order=FULLNLO, bool Nf_thr=true) const
Definition: QCD.cpp:804
Particle quarks[6]
The vector of all SM quarks.
Definition: QCD.h:1027
const double MassOfNf(int nf) const
The Mbar mass of the heaviest quark in the theory with Nf active flavour.
Definition: QCD.cpp:745
double mtpole
The pole mass of the top quark.
Definition: QCD.h:1020
double mub
The threshold between five- and four-flavour theory in GeV.
Definition: QCD.h:1022
void CacheShift(double cache[][5], int n) const
A member used to manage the caching for this class.
const double getIntegrand_sigmaWithISR_down183(double x) const
virtual const double LEP2sigmaCharm(const double s) const
double dAle5Mz
The five-flavour hadronic contribution to the electromagnetic coupling, , used as input for FlagMWinp...
EWSMThreeLoopEW * myThreeLoopEW
A pointer to an object of type EWSMThreeLoopEW.
const double getIntegrand_dsigmaBox_strange167(double x) const
double dAl5hMz
The five-flavour hadronic contribution to the electromagnetic coupling, . (Non-input parameter)
double Delta_EWQCD(const QCD::quark q) const
The non-factorizable EW-QCD corrections to the partial widths for , denoted as .
const double getIntegrand_sigmaWithISR_strange167(double x) const
double delSin2th_b
The theoretical uncertainty in , denoted as .
virtual const double GammaHtoZZstar() const
The in the Standard Model.
virtual const double SigmaeeHvv(const double sqrt_s, const double Pe, const double Pp) const
The in the Standard Model.
double Vub
used as an input for FlagWolfenstein = FALSE
virtual const double BrHtocc() const
The Br in the Standard Model.
double taub() const
Top-mass corrections to the vertex, denoted by .
static std::string SMvars[NSMvars]
A string array containing the labels of the model parameters in StandardModel.
const double MRL2eeff(const Particle f, const double s) const
const double getIntegrand_sigmaWithISR_strange189(double x) const
const double getIntegrand_dsigmaBox_mu200(double x) const
double A
The CKM parameter in the Wolfenstein parameterization.
const double getIntegrand_sigmaWithISR_strange161(double x) const
virtual const double sin2thetaEff(const Particle f) const
The effective weak mixing angle for at the the -mass scale.
EWSMcache * getMyEWSMcache() const
A get method to retrieve the member pointer of type EWSMcache.
bool requireCKM
An internal flag to control whether the CKM matrix has to be recomputed.
virtual const double GammaHtotautau() const
The in the Standard Model.
const double getIntegrand_AFBnumeratorWithISR_tau130(double x) const
virtual const double GammaZ(const Particle f) const
The partial decay width, .
const double uovers2(const double cosmin, const double cosmax) const
virtual void computeCKM()
The method to compute the CKM matrix.
const double getIntegrand_AFBnumeratorWithISR_charm133(double x) const
const double getIntegrand_sigmaWithISR_charm192(double x) const
const double getIntegrand_AFBnumeratorWithISR_tau200(double x) const
double gamma
used as an input for FlagWolfenstein = FALSE
double Vud
used as an input for FlagWolfenstein = FALSE and FlagUseVud = TRUE
const double getIntegrand_dsigmaBox_up130(double x) const
const double getIntegrand_dsigmaBox_down207(double x) const
virtual const double BrHtoZZstar() const
The Br in the Standard Model.
const double getIntegrand_dsigmaBox_tau136(double x) const
const bool IsFlagNoApproximateGammaZ() const
A method to retrieve the model flag NoApproximateGammaZ.
virtual bool PreUpdate()
The pre-update method for StandardModel.
const double getIntegrand_AFBnumeratorWithISR_mu192(double x) const
const double getIntegrand_sigmaWithISR_tau207(double x) const
const Particle & getLeptons(const QCD::lepton p) const
A get method to retrieve the member object of a lepton.
const double getIntegrand_AFBnumeratorWithISR_bottom192(double x) const
const double getIntegrand_dsigmaBox_down200(double x) const
const double tovers2(const double cosmin, const double cosmax) const
gslpp::complex AHZga_W(const double tau, const double lambda) const
W loop function entering in the calculation of the effective coupling.
const double getIntegrand_dsigmaBox_strange172(double x) const
const double sW2_MSbar_Approx() const
The (approximated formula for the) square of the sine of the weak mixing angle in the MSbar scheme,...
const double getIntegrand_dsigmaBox_mu207(double x) const
virtual ~StandardModel()
The default destructor.
virtual const double LEP2sigmaHadron(const double s) const
const double getIntegrand_dsigmaBox_up202(double x) const
const double getIntegrand_sigmaWithISR_down192(double x) const
std::string FlagRhoZ
A string for the model flag RhoZ.
const double getIntegrand_AFBnumeratorWithISR_mu207(double x) const
virtual const double BrHtomumu() const
The Br in the Standard Model.
const double getIntegrand_dsigmaBox_strange130(double x) const
const double getIntegrand_AFBnumeratorWithISR_charm183(double x) const
virtual const double LEP2sigmaTau(const double s) const
double Mz
The mass of the boson in GeV.
EWSMThreeLoopQCD * myThreeLoopQCD
A pointer to an object of type EWSMThreeLoopQCD.
virtual const double TauLFU_gtaugmuPi() const
The computation of the LFU ratio .
virtual const double GammaHtogaga() const
The in the Standard Model.
const double getIntegrand_AFBnumeratorWithISR_tau172(double x) const
const double MLL2eeff(const Particle f, const double s, const double t) const
const double getIntegrand_sigmaWithISR_tau205(double x) const
double m_q(const QCD::quark q, const double mu, const orders order=FULLNLO) const
const double getIntegrand_AFBnumeratorWithISR_bottom196(double x) const
const double getIntegrand_sigmaWithISR_strange136(double x) const
const double getIntegrand_sigmaWithISR_down207(double x) const
const double getIntegrand_sigmaWithISR_tau196(double x) const
const double getIntegrand_dsigmaBox_down136(double x) const
const double getIntegrand_dsigmaBox_strange189(double x) const
const double getIntegrand_sigmaWithISR_bottom200(double x) const
const double MwFromMwbar(const double Mwbar) const
A method to convert the -boson mass in the complex-pole/fixed-width scheme to that in the experimenta...
const double getIntegrand_sigmaWithISR_up183(double x) const
virtual const double GammaHtobb() const
The in the Standard Model.
const double getIntegrand_dsigmaBox_mu136(double x) const
const double getIntegrand_sigmaWithISR_strange183(double x) const
virtual const double AFB(const Particle f) const
const double getIntegrand_dsigmaBox_down183(double x) const
double RAq(const QCD::quark q) const
The radiator factor associated with the final-state QED and QCD corrections to the the axial-vector-c...
const double getIntegrand_dsigmaBox_charm130(double x) const
const double getMz() const
A get method to access the mass of the boson .
const double getIntegrand_AFBnumeratorWithISR_tau192(double x) const
const double getIntegrand_sigmaWithISR_strange200(double x) const
const double getIntegrand_AFBnumeratorWithISR_charm205(double x) const
void setFlagCacheInStandardModel(bool FlagCacheInStandardModel)
A set method to change the model flag CacheInStandardModel of StandardModel.
const double getIntegrand_sigmaWithISR_tau161(double x) const
const double getIntegrand_sigmaWithISR_up167(double x) const
double GammaW_cache
A cache of the value of .
double delMw
The theoretical uncertainty in , denoted as , in GeV.
virtual const double LEP2AFBtau(const double s) const
const double getIntegrand_AFBnumeratorWithISR_tau196(double x) const
bool flag_order[orders_EW_size]
An array of internal flags controlling the inclusions of higher-order corrections.
virtual const gslpp::complex rhoZ_f(const Particle f) const
The effective leptonic neutral-current coupling in the SM.
const double getIntegrand_AFBnumeratorWithISR_charm200(double x) const
virtual const double gLnuN2() const
The effective neutrino nucleon LH coupling: gLnuN2.
const double getIntegrand_sigmaWithISR_strange207(double x) const
const double getIntegrand_AFBnumeratorWithISR_mu196(double x) const
const double getIntegrand_dsigmaBox_mu189(double x) const
const double Ale(double mu, orders order, bool Nf_thr=true) const
The running electromagnetic coupling in the scheme.
const double getIntegrand_dsigmaBox_down161(double x) const
virtual const double Gamma_tau_l_nunu(const Particle l) const
The computation of the leptonic tau decays.
StandardModel()
The default constructor.
const double getIntegrand_dsigmaBox_strange207(double x) const
const double getIntegrand_sigmaWithISR_down202(double x) const
gsl_function f_GSL
const double Integrand_dsigmaBox_q(double cosTheta, const QCD::quark q_flavor, const double s) const
virtual const double LEP2dsigmadcosBinTau(const double s, const double cos, const double cosmin, const double cosmax) const
const double getIntegrand_dsigmaBox_bottom189(double x) const
EWSMTwoLoopEW * myTwoLoopEW
A pointer to an object of type EWSMTwoLoopEW.
const double getIntegrand_AFBnumeratorWithISR_mu136(double x) const
const double getIntegrand_AFBnumeratorWithISR_mu130(double x) const
virtual bool CheckParameters(const std::map< std::string, double > &DPars)
A method to check if all the mandatory parameters for StandardModel have been provided in model initi...
virtual bool CheckFlags() const
A method to check the sanity of the set of model flags.
const double getIntegrand_dsigmaBox_charm161(double x) const
const double getIntegrand_dsigmaBox_up192(double x) const
void ComputeDeltaRho(const double Mw_i, double DeltaRho[orders_EW_size]) const
A method to collect computed via subclasses.
const double getIntegrand_sigmaWithISR_strange202(double x) const
double RVq(const QCD::quark q) const
The radiator factor associated with the final-state QED and QCD corrections to the the vector-current...
virtual const double LEP2Rbottom(const double s) const
const double getIntegrand_sigmaWithISR_tau183(double x) const
bool FlagFixMuwMut
A boolean for the model flag FixMuwMut.
const double AlsEByOrder(double mu, orders order, bool Nf_thr) const
const double getAlsMz() const
A get method to access the value of .
const double getIntegrand_sigmaWithISR_tau130(double x) const
const double getIntegrand_AFBnumeratorWithISR_bottom172(double x) const
virtual const double RWlilj(const Particle li, const Particle lj) const
The lepton universality ratio .
gslpp::complex AH_f(const double tau) const
Fermionic loop function entering in the calculation of the effective and couplings.
virtual const double Gamma_inv() const
The invisible partial decay width of the boson, .
const double getIntegrand_dsigmaBox_bottom207(double x) const
const double getIntegrand_AFBnumeratorWithISR_mu172(double x) const
virtual const double Qwp() const
The computation of the proton weak charge: Qwp.
const double getIntegrand_dsigmaBox_tau183(double x) const
const double getIntegrand_AFBnumeratorWithISR_mu202(double x) const
const double getIntegrand_AFBnumeratorWithISR_charm172(double x) const
const double getIntegrand_dsigmaBox_down202(double x) const
virtual const double R_inv() const
The ratio of the invisible and leptonic (electron) decay widths of the boson, .
virtual bool Init(const std::map< std::string, double > &DPars)
A method to initialize the model parameters.
CKM myCKM
An object of type CKM.
virtual const double LEP2AFBe(const double s) const
double SMresult_cache
const double getIntegrand_sigmaWithISR_charm183(double x) const
const double getIntegrand_dsigmaBox_bottom202(double x) const
const double getIntegrand_dsigmaBox_bottom200(double x) const
bool checkEWPOscheme(const std::string scheme) const
A method to check if a given scheme name in string form is valid.
const double getIntegrand_dsigmaBox_bottom205(double x) const
bool useDeltaAlpha_cache
const double getIntegrand_dsigmaBox_tau196(double x) const
const double getIntegrand_sigmaWithISR_tau200(double x) const
const double getIntegrand_sigmaWithISR_bottom207(double x) const
const double getIntegrand_dsigmaBox_bottom183(double x) const
virtual bool setFlagStr(const std::string name, const std::string value)
A method to set a flag of StandardModel.
bool requireYn
An internal flag to control whether the neutrino Yukawa matrix has to be recomputed.
const double getIntegrand_dsigmaBox_mu161(double x) const
const double eeffsigma(const Particle f, const double pol_e, const double pol_p, const double s, const double cosmin, const double cosmax) const
virtual const double BrHtotautau() const
The Br in the Standard Model.
virtual const double Gamma_muon() const
The computation of the muon decay.
const double getIntegrand_dsigmaBox_up200(double x) const
const double intMLR2eeeets2(const double s, const double t0, const double t1) const
const double getIntegrand_dsigmaBox_tau192(double x) const
const double getIntegrand_AFBnumeratorWithISR_bottom207(double x) const
const double getIntegrand_AFBnumeratorWithISR_tau136(double x) const
const double DeltaAlphaTop(const double s) const
Top-quark contribution to the electromagnetic coupling , denoted as .
const double getIntegrand_sigmaWithISR_charm205(double x) const
const double getIntegrand_dsigmaBox_tau189(double x) const
virtual const double BrHtogaga() const
The Br in the Standard Model.
const double getIntegrand_AFBnumeratorWithISR_charm207(double x) const
gsl_integration_workspace * w_GSL1
virtual const double SigmaeeZH(const double sqrt_s, const double Pe, const double Pp) const
The in the Standard Model.
virtual const gslpp::complex kappaZ_f(const Particle f) const
The effective leptonic neutral-current coupling in the SM.
gslpp::matrix< gslpp::complex > Yn
The Yukawa matrix of the neutrinos.
const double getIntegrand_AFBnumeratorWithISR_charm202(double x) const
EWSMTwoFermionsLEP2 * myTwoFermionsLEP2
A pointer to an object of type EWSMTwoFermionsLEP2.
Matching< StandardModelMatching, StandardModel > SMM
An object of type Matching.
virtual const double Gamma_had() const
The hadronic decay width of the boson, .
const double getIntegrand_sigmaWithISR_charm207(double x) const
const double ale_OS(const double mu, orders order=FULLNLO) const
The running electromagnetic coupling in the on-shell scheme.
virtual void computeYukawas()
The method to compute the Yukawas matrix.
virtual const double rho_GammaW(const Particle fi, const Particle fj) const
EW radiative corrections to the width of , denoted as .
const double AleWithInit(double mu, double alsi, double mu_i, orders order) const
const double getIntegrand_sigmaWithISR_bottom136(double x) const
const double getIntegrand_sigmaWithISR_charm202(double x) const
gslpp::matrix< gslpp::complex > Yu
The Yukawa matrix of the up-type quarks.
virtual const double LEP2AFBcharm(const double s) const
std::string FlagMw
A string for the model flag Mw.
const double Integrand_sigmaWithISR_l(double x, const QCD::lepton l_flavor, const double s) const
const double getIntegrand_AFBnumeratorWithISR_tau183(double x) const
virtual const double GammaHtogg() const
The in the Standard Model.
double delsigma0H
The theoretical uncertainty in , denoted as in nb.
virtual const double BrHtobb() const
The Br in the Standard Model.
virtual const gslpp::complex gA_f(const Particle f) const
The effective leptonic neutral-current axial-vector coupling in the SM.
const double getIntegrand_sigmaWithISR_bottom130(double x) const
const double getIntegrand_sigmaWithISR_charm161(double x) const
const double getIntegrand_sigmaWithISR_mu207(double x) const
virtual const double GammaHtoZga() const
The in the Standard Model.
const double getIntegrand_sigmaWithISR_bottom192(double x) const
virtual const double alrmoller(const double q2, const double y) const
The computation of the parity violating asymmetry in Moller scattering.
double rhob
The CKM parameter in the Wolfenstein parameterization.
Particle leptons[6]
An array of Particle objects for the leptons.
const double Integrand_AFBnumeratorWithISR_q(double x, const QCD::quark q_flavor, const double s) const
const double getIntegrand_sigmaWithISR_charm172(double x) const
const double getIntegrand_sigmaWithISR_charm200(double x) const
const double getIntegrand_dsigmaBox_up167(double x) const
const double getIntegrand_dsigmaBox_mu183(double x) const
const double eeffsigmaEbin(const double pol_e, const double pol_p, const double s, const double cosmin, const double cosmax) const
double delSin2th_l
The theoretical uncertainty in , denoted as .
const double getIntegrand_dsigmaBox_charm167(double x) const
virtual const double RWc() const
The ratio .
const double getIntegrand_sigmaWithISR_mu172(double x) const
const double getIntegrand_sigmaWithISR_mu136(double x) const
const double sigma_NoISR_q(const QCD::quark q_flavor, const double s) const
bool FlagMWinput
A boolean for the model flag MWinput.
virtual const double Ruc() const
const double getIntegrand_dsigmaBox_strange200(double x) const
const double getIntegrand_dsigmaBox_mu172(double x) const
const double getIntegrand_sigmaWithISR_bottom196(double x) const
virtual const double sigma0_had() const
The hadronic cross section for at the -pole, .
virtual const double GammaW() const
The total width of the boson, .
const double intMLRtilde2eeeest2(const double s, const double t0, const double t1) const
const double getIntegrand_dsigmaBox_strange196(double x) const
const double s02() const
The square of the sine of the weak mixing angle defined without weak radiative corrections.
Flavour SMFlavour
An object of type Flavour.
gslpp::complex g_triangle(const double tau) const
Loop function entering in the calculation of the effective coupling.
const double getIntegrand_dsigmaBox_up207(double x) const
const double getIntegrand_sigmaWithISR_charm133(double x) const
bool FlagWithoutNonUniversalVC
A boolean for the model flag WithoutNonUniversalVC.
const double getIntegrand_sigmaWithISR_down200(double x) const
bool FlagSMAux
A boolean for the model flag SMAux.
const double getIntegrand_sigmaWithISR_charm130(double x) const
const double getIntegrand_sigmaWithISR_down196(double x) const
const double getIntegrand_sigmaWithISR_bottom172(double x) const
gslpp::matrix< gslpp::complex > Yd
The Yukawa matrix of the down-type quarks.
const double getIntegrand_sigmaWithISR_up133(double x) const
virtual const double LEP2AFBmu(const double s) const
virtual const double BrW(const Particle fi, const Particle fj) const
The branching ratio of the boson decaying into a SM fermion pair, .
const double getIntegrand_dsigmaBox_down189(double x) const
const double getIntegrand_AFBnumeratorWithISR_bottom200(double x) const
const double getIntegrand_sigmaWithISR_charm167(double x) const
const double Integrand_dsigmaBox_l(double cosTheta, const QCD::lepton l_flavor, const double s) const
EWSMOneLoopEW * myOneLoopEW
A pointer to an object of type EWSMOneLoopEW.
double delR0c
The theoretical uncertainty in , denoted as .
virtual const double epsilon2() const
The SM contribution to the epsilon parameter .
const double getIntegrand_dsigmaBox_charm205(double x) const
const double getIntegrand_sigmaWithISR_up172(double x) const
virtual const double LEP2dsigmadcosMu(const double s, const double cos) const
const double getIntegrand_dsigmaBox_up161(double x) const
virtual const double Qwemoller(const double q2, const double y) const
The computation of the electron's weak charge.
const double getIntegrand_dsigmaBox_tau202(double x) const
virtual const double DeltaR() const
The SM prediction for derived from that for the boson mass.
std::string FlagKappaZ
A string for the model flag KappaZ.
const double getIntegrand_dsigmaBox_charm183(double x) const
const double getIntegrand_dsigmaBox_bottom196(double x) const
virtual const double LEP2dsigmadcosBinE(const double s, const double cos, const double cosmin, const double cosmax) const
const double getIntegrand_sigmaWithISR_strange205(double x) const
const double getIntegrand_dsigmaBox_bottom172(double x) const
virtual const double Gamma_Z() const
The total decay width of the boson, .
const double getIntegrand_dsigmaBox_down133(double x) const
const double getIntegrand_dsigmaBox_mu192(double x) const
const double getIntegrand_dsigmaBox_down167(double x) const
const double getIntegrand_dsigmaBox_mu196(double x) const
virtual const double gRnuN2() const
The effective neutrino nucleon RH coupling: gRnuN2.
const double getIntegrand_sigmaWithISR_strange133(double x) const
const bool IsFlagWithoutNonUniversalVC() const
A method to retrieve the model flag WithoutNonUniversalVC.
const double getIntegrand_sigmaWithISR_tau189(double x) const
const double getIntegrand_AFBnumeratorWithISR_bottom205(double x) const
double GF
The Fermi constant in .
const double getIntegrand_sigmaWithISR_down130(double x) const
const double getIntegrand_sigmaWithISR_strange192(double x) const
virtual const double epsilonb() const
The SM contribution to the epsilon parameter .
EWSMApproximateFormulae * myApproximateFormulae
A pointer to an object of type EWSMApproximateFormulae.
virtual const gslpp::complex deltaRhoZ_f(const Particle f) const
Flavour non-universal vertex corrections to , denoted by .
const double getIntegrand_dsigmaBox_bottom130(double x) const
virtual const double GammaHtocc() const
The in the Standard Model.
const double getIntegrand_sigmaWithISR_strange130(double x) const
const double getIntegrand_AFBnumeratorWithISR_bottom189(double x) const
const double getIntegrand_dsigmaBox_tau172(double x) const
const double intMRR2eeeeus2(const double s, const double t0, const double t1) const
double resumKappaZ(const double DeltaRho[orders_EW_size], const double deltaKappa_rem[orders_EW_size], const double DeltaRbar_rem, const bool bool_Zbb) const
A method to compute the real part of the effetvive coupling from , and .
virtual const double TauLFU_gtaugmuK() const
The computation of the LFU ratio .
const double getIntegrand_dsigmaBox_strange161(double x) const
virtual const double LEP2sigmaE(const double s) const
const double getIntegrand_sigmaWithISR_down136(double x) const
const double Beta_s(int nm, unsigned int nf) const
QCD beta function coefficients including QED corrections - eq. (36) hep-ph/0512066.
const double AFB_NoISR_q(const QCD::quark q_flavor, const double s) const
virtual const double BrHtoWWstar() const
The Br in the Standard Model.
const double getIntegrand_sigmaWithISR_bottom205(double x) const
const double getIntegrand_dsigmaBox_tau200(double x) const
virtual const double Mw() const
The SM prediction for the -boson mass in the on-shell scheme, .
virtual bool setFlag(const std::string name, const bool value)
A method to set a flag of StandardModel.
const double getIntegrand_sigmaWithISR_up192(double x) const
virtual const double A_f(const Particle f) const
The left-right asymmetry in at the -pole, .
const double MRR2eeff(const Particle f, const double s, const double t) const
double Mw_cache
A cache of the value of .
double DeltaAlphaLepton_cache
A cache of the value of .
const double getIntegrand_AFBnumeratorWithISR_mu205(double x) const
const double getIntegrand_dsigmaBox_bottom133(double x) const
const double getIntegrand_dsigmaBox_strange205(double x) const
virtual const gslpp::complex deltaKappaZ_f(const Particle f) const
Flavour non-universal vertex corrections to , denoted by .
const double getIntegrand_AFBnumeratorWithISR_tau202(double x) const
const double getIntegrand_dsigmaBox_bottom167(double x) const
virtual const double amuon() const
The computation of the anomalous magnetic moment of the muon .
virtual const double BrHtoZga() const
The Br in the Standard Model.
gslpp::complex I_triangle_1(const double tau, const double lambda) const
Loop function entering in the calculation of the effective coupling.
virtual const double epsilon1() const
The SM contribution to the epsilon parameter .
double delSin2th_q
The theoretical uncertainty in , denoted as .
bool FlagUseVud
A boolean for the model flag UseVud.
const double getIntegrand_sigmaWithISR_bottom133(double x) const
const double getIntegrand_sigmaWithISR_mu161(double x) const
double Mzbar() const
The -boson mass in the complex-pole/fixed-width scheme.
static const double Mw_error
The target accuracy of the iterative calculation of the -boson mass in units of GeV.
static const int NSMvars
The number of the model parameters in StandardModel.
const double getIntegrand_dsigmaBox_mu202(double x) const
const double getIntegrand_sigmaWithISR_up200(double x) const
const double sigma_NoISR_l(const QCD::lepton l_flavor, const double s) const
const double Integrand_sigmaWithISR_q(double x, const QCD::quark q_flavor, const double s) const
const double getIntegrand_dsigmaBox_up183(double x) const
virtual const double LEP2Rcharm(const double s) const
double SMparamsForEWPO_cache[NumSMParamsForEWPO]
bool FlagNoApproximateGammaZ
A boolean for the model flag NoApproximateGammaZ.
const double getIntegrand_sigmaWithISR_bottom202(double x) const
const double getIntegrand_sigmaWithISR_mu130(double x) const
const double getIntegrand_dsigmaBox_strange183(double x) const
gslpp::complex kappaZ_f_cache[12]
A cache of the value of .
const double getIntegrand_dsigmaBox_up133(double x) const
virtual const double GammaHtoss() const
The in the Standard Model.
double lambda
The CKM parameter in the Wolfenstein parameterization.
const double getIntegrand_sigmaWithISR_strange172(double x) const
virtual const double Qwn() const
The computation of the neutron weak charge: Qwn.
double als_cache[11][CacheSize]
Cache for .
const double getIntegrand_AFBnumeratorWithISR_mu189(double x) const
void ComputeDeltaR_rem(const double Mw_i, double DeltaR_rem[orders_EW_size]) const
A method to collect computed via subclasses.
const double getIntegrand_AFBnumeratorWithISR_bottom202(double x) const
const double getIntegrand_dsigmaBox_strange202(double x) const
const double getIntegrand_sigmaWithISR_mu202(double x) const
const double Integrand_AFBnumeratorWithISR_l(double x, const QCD::lepton l_flavor, const double s) const
const double getIntegrand_sigmaWithISR_up189(double x) const
const double getIntegrand_dsigmaBox_down172(double x) const
const double getIntegrand_dsigmaBox_tau161(double x) const
const double getIntegrand_sigmaWithISR_tau192(double x) const
virtual const double RZlilj(const Particle li, const Particle lj) const
The lepton universality ratio .
const double getIntegrand_dsigmaBox_strange136(double x) const
const double Als(const double mu, const orders order, const bool Nf_thr, const bool qed_flag) const
The running QCD coupling in the scheme including QED corrections.
const double getIntegrand_AFBnumeratorWithISR_charm189(double x) const
const double getIntegrand_sigmaWithISR_up136(double x) const
const double Beta_e(int nm, unsigned int nf) const
QED beta function coefficients - eq. (36) hep-ph/0512066.
const double getIntegrand_dsigmaBox_bottom192(double x) const
double Vcb
used as an input for FlagWolfenstein = FALSE
const double c02() const
The square of the cosine of the weak mixing angle defined without weak radiative corrections.
virtual const double LEP2sigmaMu(const double s) const
const double getIntegrand_dsigmaBox_mu205(double x) const
const double getIntegrand_sigmaWithISR_strange196(double x) const
const double getIntegrand_sigmaWithISR_tau136(double x) const
virtual const double R0_f(const Particle f) const
The ratio .
const double getIntegrand_dsigmaBox_up205(double x) const
const double Mw_tree() const
The tree-level mass of the boson, .
const double AlsE(double mu, orders order, bool Nf_thr) const
const double getIntegrand_AFBnumeratorWithISR_mu200(double x) const
const double getIntegrand_sigmaWithISR_up202(double x) const
bool useDeltaAlphaLepton_cache
virtual const double TauLFU_gtauge() const
The computation of the LFU ratio .
double etab
The CKM parameter in the Wolfenstein parameterization.
const double getIntegrand_sigmaWithISR_down167(double x) const
const double getIntegrand_sigmaWithISR_mu205(double x) const
virtual const double SigmaeeHee(const double sqrt_s, const double Pe, const double Pp) const
The in the Standard Model.
const double getIntegrand_sigmaWithISR_down133(double x) const
virtual const double BrHtogg() const
The Br in the Standard Model.
EWSMcache * myEWSMcache
A pointer to an object of type EWSMcache.
gslpp::complex rhoZ_f_cache[12]
A cache of the value of .
const double getIntegrand_AFBnumeratorWithISR_tau207(double x) const
const double AFB_NoISR_l(const QCD::lepton l_flavor, const double s) const
virtual const double epsilon3() const
The SM contribution to the epsilon parameter .
LeptonFlavour * myLeptonFlavour
A pointer to an object of the type LeptonFlavour.
double ale_cache[10][CacheSize]
Cache for .
const double getIntegrand_sigmaWithISR_charm136(double x) const
const double getIntegrand_dsigmaBox_down130(double x) const
virtual const double Dalpha5hMz() const
The 5-quark contribution to the running of the em constant to the pole. .
double resumRhoZ(const double DeltaRho[orders_EW_size], const double deltaRho_rem[orders_EW_size], const double DeltaRbar_rem, const bool bool_Zbb) const
A method to compute the real part of the effective coupling from , and .
gslpp::complex I_triangle_2(const double tau, const double lambda) const
Loop function entering in the calculation of the effective coupling.
virtual const double TauLFU_gtaugmu() const
The computation of the LFU ratio .
const double getIntegrand_dsigmaBox_strange192(double x) const
virtual const double N_nu() const
The number of neutrinos obtained indirectly from the measurements at the Z pole, .
const double getIntegrand_sigmaWithISR_down189(double x) const
virtual const double TauLFU_gmuge() const
The computation of the LFU ratio .
virtual const double ThetaLnuN() const
The effective neutrino nucleon LH parameter: ThetaLnuN.
const double getIntegrand_dsigmaBox_charm196(double x) const
bool checkSMparamsForEWPO()
A method to check whether the parameters relevant to the EWPO are updated.
const double getIntegrand_dsigmaBox_bottom161(double x) const
virtual const double BrHtoss() const
The Br in the Standard Model.
const double getIntegrand_sigmaWithISR_up207(double x) const
const double Alstilde5(const double mu) const
The value of at any scale with the number of flavours and full EW corrections.
const double getIntegrand_sigmaWithISR_charm196(double x) const
const double getIntegrand_AFBnumeratorWithISR_tau205(double x) const
const double getIntegrand_sigmaWithISR_mu189(double x) const
const double getIntegrand_sigmaWithISR_mu196(double x) const
const double getIntegrand_AFBnumeratorWithISR_bottom167(double x) const
const double getIntegrand_sigmaWithISR_tau202(double x) const
double Mw_inp
The mass of the boson in GeV used as input for FlagMWinput = TRUE.
const double getIntegrand_dsigmaBox_charm172(double x) const
orders_EW
An enumerated type representing perturbative orders of radiative corrections to EW precision observab...
@ EW1
One-loop of .
@ EW2QCD1
Three-loop of .
@ EW2
Two-loop of .
@ orders_EW_size
The size of this enum.
@ EW3
Three-loop of .
@ EW1QCD1
Two-loop of .
@ EW1QCD2
Three-loop of .
const double getIntegrand_dsigmaBox_charm136(double x) const
double mHl
The Higgs mass in GeV.
const double getIntegrand_sigmaWithISR_up205(double x) const
const double getIntegrand_AFBnumeratorWithISR_charm196(double x) const
gslpp::complex AH_W(const double tau) const
W loop function entering in the calculation of the effective coupling.
double SchemeToDouble(const std::string scheme) const
A method to convert a given scheme name in string form into a floating-point number with double preci...
const double getIntegrand_sigmaWithISR_bottom167(double x) const
const double getIntegrand_dsigmaBox_charm133(double x) const
const double getIntegrand_dsigmaBox_charm192(double x) const
const double getIntegrand_dsigmaBox_tau207(double x) const
double ale
The fine-structure constant .
bool flagLEP2[NUMofLEP2RCs]
const double DeltaAlphaL5q() const
The sum of the leptonic and the five-flavour hadronic corrections to the electromagnetic coupling at...
const double getIntegrand_sigmaWithISR_bottom183(double x) const
double AlsMz
The strong coupling constant at the Z-boson mass, .
double delGammaZ
The theoretical uncertainty in , denoted as , in GeV.
const double getIntegrand_AFBnumeratorWithISR_mu161(double x) const
gslpp::matrix< gslpp::complex > Ye
The Yukawa matrix of the charged leptons.
const double getIntegrand_dsigmaBox_down196(double x) const
virtual bool PostUpdate()
The post-update method for StandardModel.
const double getIntegrand_dsigmaBox_charm189(double x) const
const double sW2_ND() const
The square of the sine of the weak mixing angle in the MSbar-ND scheme (w/o decoupling $\alpha\ln(m_t...
double muw
A matching scale around the weak scale in GeV.
double RVh() const
The singlet vector corrections to the hadronic -boson width, denoted as .
bool useRhoZ_f_cache[12]
virtual const double alphaMz() const
The electromagnetic coupling at the -mass scale, .
double delR0b
The theoretical uncertainty in , denoted as .
const double getIntegrand_AFBnumeratorWithISR_bottom133(double x) const
const double DeltaAlpha() const
The total corrections to the electromagnetic coupling at the -mass scale, denoted as .
const double getIntegrand_sigmaWithISR_up161(double x) const
virtual void setParameter(const std::string name, const double &value)
A method to set the value of a parameter of StandardModel.
gslpp::complex f_triangle(const double tau) const
Loop function entering in the calculation of the effective and couplings.
const double getIntegrand_dsigmaBox_mu130(double x) const
const double getIntegrand_sigmaWithISR_mu200(double x) const
const double getIntegrand_dsigmaBox_charm207(double x) const
static const int CacheSize
Defines the depth of the cache.
const double getIntegrand_AFBnumeratorWithISR_tau189(double x) const
static const int NumSMParamsForEWPO
The number of the SM parameters that are relevant to the EW precision observables.
const double getIntegrand_sigmaWithISR_tau172(double x) const
double Vus
used as an input for FlagWolfenstein = FALSE
virtual const double GammaHtoWWstar() const
The in the Standard Model.
const double getIntegrand_AFBnumeratorWithISR_charm167(double x) const
const double getIntegrand_sigmaWithISR_mu183(double x) const
EWSMTwoLoopQCD * myTwoLoopQCD
A pointer to an object of type EWSMTwoLoopQCD.
virtual const double LEP2dsigmadcosTau(const double s, const double cos) const
virtual const double GammaHtomumu() const
The in the Standard Model.
const double getIntegrand_AFBnumeratorWithISR_tau161(double x) const
static const double GeVminus2_to_nb
bool FlagWolfenstein
A boolean for the model flag Wolfenstein.
const double getIntegrand_sigmaWithISR_down172(double x) const
virtual const double LEP2sigmaBottom(const double s) const
virtual const double getmq(const QCD::quark q, const double mu) const
The MSbar running quark mass computed at NLO.
const double getIntegrand_dsigmaBox_tau130(double x) const
virtual const double DeltaRbar() const
The SM prediction for derived from that for the -boson mass.
const double getIntegrand_dsigmaBox_strange133(double x) const
const double getIntegrand_dsigmaBox_tau205(double x) const
bool requireYe
An internal flag to control whether the charged-lepton Yukawa matrix has to be recomputed.
EWSMThreeLoopEW2QCD * myThreeLoopEW2QCD
A pointer to an object of type EWSMThreeLoopEW2QCD.
const double getIntegrand_dsigmaBox_charm200(double x) const
const double v() const
The Higgs vacuum expectation value.
const double getIntegrand_sigmaWithISR_up196(double x) const
const double getIntegrand_dsigmaBox_up196(double x) const
const double getIntegrand_sigmaWithISR_bottom189(double x) const
const double getIntegrand_AFBnumeratorWithISR_bottom183(double x) const
virtual const double LEP2dsigmadcosE(const double s, const double cos) const
virtual bool Update(const std::map< std::string, double > &DPars)
The update method for StandardModel.
const double getIntegrand_sigmaWithISR_bottom161(double x) const
gslpp::complex AHZga_f(const double tau, const double lambda) const
Fermionic loop function entering in the calculation of the effective coupling.
const double getIntegrand_sigmaWithISR_mu192(double x) const
const double getIntegrand_dsigmaBox_up189(double x) const
const double MwbarFromMw(const double Mw) const
A method to convert the -boson mass in the experimental/running-width scheme to that in the complex-p...
const double getIntegrand_AFBnumeratorWithISR_mu183(double x) const
const double getIntegrand_dsigmaBox_up136(double x) const
bool useKappaZ_f_cache[12]
const double getIntegrand_dsigmaBox_charm202(double x) const
virtual const double ThetaRnuN() const
The effective neutrino nucleon RH parameter: ThetaRnuN.
const double intMLL2eeeeus2(const double s, const double t0, const double t1) const
const double DeltaAlphaLepton(const double s) const
Leptonic contribution to the electromagnetic coupling , denoted as .
const double getIntegrand_sigmaWithISR_charm189(double x) const
const double getIntegrand_sigmaWithISR_down205(double x) const
virtual const gslpp::complex gV_f(const Particle f) const
The effective leptonic neutral-current vector coupling in the SM.
const double getIntegrand_dsigmaBox_up172(double x) const
const double getIntegrand_sigmaWithISR_up130(double x) const
const double MLR2eeff(const Particle f, const double s) const
virtual const double gAnue() const
The effective (muon) neutrino-electron axial-vector coupling: gAnue.
bool FlagCacheInStandardModel
A flag for caching (true by default).
bool SMSuccess
A boolean for the success of the Standard Model update and matching.
virtual bool InitializeModel()
A method to initialize the model.
double resumMw(const double Mw_i, const double DeltaRho[orders_EW_size], const double DeltaR_rem[orders_EW_size]) const
A method to compute the -boson mass from and .
const double getIntegrand_AFBnumeratorWithISR_charm192(double x) const
const double getIntegrand_dsigmaBox_down205(double x) const
virtual const double cW2() const
const double getIntegrand_dsigmaBox_down192(double x) const
virtual const double GammaHTot() const
The total Higgs width in the Standard Model.
virtual const double LEP2AFBbottom(const double s) const
double DeltaAlpha_cache
A cache of the value of .
virtual const double gVnue() const
The effective (muon) neutrino-electron vector coupling: gVnue.
const double AlsEWithInit(double mu, double alsi, double mu_i, const int nf_i, orders order) const
double delR0l
The theoretical uncertainty in , denoted as .
virtual const double LEP2dsigmadcosBinMu(const double s, const double cos, const double cosmin, const double cosmax) const
const double getIntegrand_sigmaWithISR_down161(double x) const
const double getIntegrand_dsigmaBox_bottom136(double x) const
An observable class for the relative deviation from the SM of the EM coupling .
A class for , the pole mass of the top quark.
Definition: masses.h:164
Test Observable.
An observable class for the leptonic effective weak mixing angle at the pole. To be used for the el...
Definition: sin2thetaEff.h:29
Test Observable.
A class for , relevant for mesons mixing in the Standard Model.
Definition: xi.h:23
orders
An enum type for orders in QCD.
Definition: OrderScheme.h:33