A class for \(O(\alpha)\) one-loop corrections to the EW precision observables. More...
#include <EWSMOneLoopEW.h>
A class for \(O(\alpha)\) one-loop corrections to the EW precision observables.
This class handles one-loop EW contributions of \(O(\alpha)\) to the following quantities, which are relevant to the EW precision observables:
See also the description of EWSM class for their definitions.
The above quantities are computed with the help of the auxiliary member functions defined in the current class. It is noted that gauge-dependent quantities in the current class are given in the Unitary gauge. For example, the functions SigmabarWW_bos(), SigmabarWW_bos(), etc. represent the self-energies of the gauge bosons. The following table shows the comparisons of the definitions of the self-energies in the current class to those in [Bardin:1999ak] and [Hollik:1988ii] :
Current class | Bardin & Passarino [Bardin:1999ak] | Hollik [Hollik:1988ii] |
\(\displaystyle\Sigma_{WW}(s)=\frac{\alpha}{4\pi s_W^2 } \overline{\Sigma}_{WW}(s)\) | \(\displaystyle\frac{\alpha}{4\pi s_W^2 } \Sigma_{WW}(s)\) | \(\displaystyle\Sigma^W(s)\) |
\(\displaystyle\Sigma_{ZZ}(s)=\frac{\alpha}{4\pi s_W^2 c_W^2 } \overline{\Sigma}_{ZZ}(s)\) | \(\displaystyle\frac{\alpha}{4\pi s_W^2 c_W^2 } \Sigma_{ZZ}(s)\) | \(\displaystyle\Sigma^Z(s)\) |
\(\displaystyle\Pi_{\gamma\gamma}(s)=\frac{\alpha}{4\pi}\,\overline{\Pi}_{\gamma\gamma}(s)\) | \(\displaystyle\frac{\alpha}{4\pi}\,\left[ -\Pi_{\gamma\gamma}(s) \right]\) | \(\displaystyle\Pi^\gamma(s)=\frac{\partial\Sigma^\gamma(s)}{\partial s}\) |
\(\displaystyle\Pi_{Z\gamma}(s) = \frac{\alpha}{4\pi s_W c_W}\overline{\Pi}_{Z\gamma}(s)\) | \(\displaystyle\frac{\alpha}{4\pi s_W c_W}\left[ - \Pi_{ZA}(s)\right]\) | |
\(\displaystyle\overline{\Sigma}^{\prime}_{WW}(s) = \frac{\partial\,\overline{\Sigma}_{WW}(s)}{\partial s}\) | \(\displaystyle- \frac{\alpha}{4\pi s_W^2 } {\cal W}(s)\) | |
\(\displaystyle\overline{\Sigma}^{\prime}_{ZZ}(s) =\frac{\partial\,\overline{\Sigma}_{ZZ}(s)}{\partial s}\) | \(\displaystyle- \frac{\alpha}{4\pi s_W^2 c_W^2 } c_W^2 {\cal Z}(s)\) |
These self-energies are decomposed into the sum of bosonic and fermionic contributions:
\begin{align*} \overline{\Sigma}_{WW}(s) = \overline{\Sigma}^{\rm bos}_{WW}(s) + \overline{\Sigma}^{\rm fer}_{WW}(s)\,, \\ \overline{\Sigma}_{ZZ}(s) = \overline{\Sigma}^{\rm bos}_{ZZ}(s) + \overline{\Sigma}^{\rm fer}_{ZZ}(s)\,, \\ \overline{\Pi}_{\gamma\gamma}(s) = \overline{\Pi}_{\gamma\gamma}^{\rm bos}(s) + \overline{\Pi}_{\gamma\gamma}^{\rm fer}(s)\,, \\ \overline{\Pi}_{Z\gamma}(s) = \overline{\Pi}_{Z\gamma}^{\rm bos}(s) + \overline{\Pi}_{Z\gamma}^{\rm fer}(s)\,. \end{align*}
Most of the formulae used in the current class have been copied or derived from from those in Bardin and Passarino's book [Bardin:1999ak] as well as from [Sirlin:1980nh], [Marciano:1980pb], [Bardin:1981sv], [Akhundov:1985fc], [Bardin:1986fi] and [Bardin:1989di].
Definition at line 105 of file EWSMOneLoopEW.h.
Public Member Functions | |
double | DeltaAlpha_l (const double s) const |
Leptonic contribution of \(O(\alpha)\) to the electromagnetic coupling \(\alpha(s)\), denoted as \(\Delta\alpha_{\mathrm{lept}}^{\alpha}\). More... | |
double | DeltaAlpha_t (const double s) const |
Top-quark contribution of \(O(\alpha)\) to the electromagnetic coupling \(\alpha(s)\), denoted as \(\Delta\alpha_{\mathrm{top}}^{\alpha}\). More... | |
gslpp::complex | deltaKappa_rem_f (const Particle f, const double Mw_i) const |
Remainder contribution of \(O(\alpha)\) to the effective couplings \(\kappa_Z^f\), denoted as \(\delta\kappa_{\mathrm{rem}}^{f,\, \alpha}\). More... | |
gslpp::complex | deltaKappa_rem_tmp (const double deltaf, const gslpp::complex uf, const double Mw_i) const |
Remainder contribution of \(O(\alpha)\) to the effective couplings \(\kappa_Z^f\), denoted as \(\delta\kappa_{\rm rem}^{f,\,\alpha}\). More... | |
double | DeltaR_rem (const double Mw_i) const |
Remainder contribution of \(O(\alpha)\) to \(\Delta r\), denoted as \(\Delta r_{\rm rem}^{\alpha}\). More... | |
double | DeltaRbar_rem (const double Mw_i) const |
\(\Delta \bar{r}_{\rm rem}^{\alpha}\). More... | |
double | DeltaRho (const double Mw_i) const |
Leading one-loop contribution of \(O(\alpha)\) to \(\Delta\rho\), denoted as \(\Delta\rho^{\alpha}\). More... | |
gslpp::complex | deltaRho_rem_f (const Particle f, const double Mw_i) const |
Remainder contribution of \(O(\alpha)\) to the effective couplings \(\rho_Z^f\), denoted as \(\delta\rho_{\mathrm{rem}}^{f,\, \alpha}\). More... | |
gslpp::complex | deltaRho_rem_tmp (const gslpp::complex u_f, const double Mw_i) const |
Remainder contribution of \(O(\alpha)\) to the effective couplings \(\rho_Z^f\), denoted as \(\delta\rho_{\rm rem}^{f,\alpha}\). More... | |
double | DeltaRhobar (const double mu, const double Mw_i) const |
\(\Delta\overline{\rho}\). More... | |
double | DeltaRhobarW (const double mu, const double Mw_i) const |
\(\Delta\overline{\rho}_W\). More... | |
EWSMOneLoopEW (const EWSMcache &cache_i) | |
Constructor. More... | |
gslpp::complex | FbarWa_0 (const double s) const |
The form factor \(\overline{\mathcal{F}}_{Wa}^0\). More... | |
gslpp::complex | FbarWa_t (const double s, const double Mw_i) const |
The form factor \(\overline{\mathcal{F}}_{Wa}^t\). More... | |
gslpp::complex | FW (const double s, const Particle f, const double Mw_i) const |
The unified form factor \(\mathcal{F}_W\) for \(Z\to f\bar{f}\). More... | |
gslpp::complex | FWa_0 (const double s, const double Mw_i) const |
The form factor \(\mathcal{F}_{Wa}^0\). More... | |
gslpp::complex | FWa_t (const double s, const double Mw_i) const |
The form factor \(\mathcal{F}_{Wa}^t\). More... | |
gslpp::complex | FWn_0 (const double s, const double Mw_i) const |
The form factor \(\mathcal{F}_{Wn}^0\). More... | |
gslpp::complex | FWn_t (const double s, const double Mw_i) const |
The form factor \(\mathcal{F}_{Wn}^t\). More... | |
gslpp::complex | FZ (const double s, const double Mw_i) const |
The unified form factor \(\mathcal{F}_Z\). More... | |
gslpp::complex | FZa_0 (const double s, const double Mw_i) const |
The form factor \(\mathcal{F}_{Za}^0\). More... | |
gslpp::complex | PibarGammaGamma_bos (const double mu, const double s, const double Mw_i) const |
The bosonic contribution to the self-energy of the photon in the Unitary gauge, \(\overline{\Pi}^{\mathrm{bos}}_{\gamma\gamma}(s)\). More... | |
gslpp::complex | PibarGammaGamma_fer (const double mu, const double s) const |
The fermionic contribution to the self-energy of the photon in the Unitary gauge, \(\overline{\Pi}^{\mathrm{fer}}_{\gamma\gamma}(s)\). More... | |
gslpp::complex | PibarGammaGamma_fer (const double mu, const double s, const Particle f) const |
The fermionic contribution to the self-energy of the photon in the Unitary gauge, associated with loops of a lepton or quark. \(\overline{\Pi}^{\mathrm{fer},f}_{\gamma\gamma}(s)\). More... | |
gslpp::complex | PibarZgamma_bos (const double mu, const double s, const double Mw_i) const |
The bosonic contribution to the self-energy of the \(Z\)- \(\gamma\) mixing in the Unitary gauge, \(\overline{\Pi}^{\mathrm{bos}}_{Z\gamma}(s)\). More... | |
gslpp::complex | PibarZgamma_fer (const double mu, const double s, const double Mw_i) const |
The fermionic contribution to the self-energy of the \(Z\)- \(\gamma\) mixing in the Unitary gauge, \(\overline{\Pi}^{\mathrm{fer}}_{Z\gamma}(s)\). More... | |
double | rho_GammaW (const Particle fi, const Particle fj, const double Mw_i) const |
EW radiative corrections to the width of \(W \to f_i \bar{f}_j\), denoted as \(\rho^W_{ij}\). More... | |
double | rho_GammaW_tmp (const double Qi, const double Qj, const double Mw_i) const |
EW radiative corrections to the widths of \(W \to f_i \bar{f}_j\), denoted as \(\rho^W_{ij}\). More... | |
gslpp::complex | SigmabarPrime_WW_bos_Mw2 (const double mu, const double Mw_i) const |
The derivative of the bosonic contribution to the self-energy of the \(W\) boson for \(s=M_W^2\) in the Unitary gauge, \(\overline{\Sigma}^{\prime,\mathrm{bos}}_{WW}(M_W^2)\). More... | |
gslpp::complex | SigmabarPrime_WW_fer_Mw2 (const double mu, const double Mw_i) const |
The derivative of the fermionic contribution to the self-energy of the \(W\) boson for \(s=M_W^2\) in the Unitary gauge, \(\overline{\Sigma}^{\prime,\mathrm{fer}}_{WW}(M_W^2)\). More... | |
gslpp::complex | SigmabarPrime_ZZ_bos_Mz2 (const double mu, const double Mw_i) const |
The derivative of the bosonic contribution to the self-energy of the \(Z\) boson for \(s=M_Z^2\) in the Unitary gauge, \(\overline{\Sigma}^{\prime,\mathrm{bos}}_{ZZ}(M_Z^2)\). More... | |
gslpp::complex | SigmabarPrime_ZZ_fer_Mz2 (const double mu, const double Mw_i) const |
The derivative of the fermionic contribution to the self-energy of the \(Z\) boson for \(s=M_Z^2\) in the Unitary gauge, \(\overline{\Sigma}^{\prime,\mathrm{fer}}_{ZZ}(M_Z^2)\). More... | |
gslpp::complex | SigmabarWW_bos (const double mu, const double s, const double Mw_i) const |
The bosonic contribution to the self-energy of the \(W\) boson in the Unitary gauge, \(\overline{\Sigma}^{\mathrm{bos}}_{WW}(s)\). More... | |
gslpp::complex | SigmabarWW_fer (const double mu, const double s, const double Mw_i) const |
The fermionic contribution to the self-energy of the \(W\) boson in the Unitary gauge, \(\overline{\Sigma}^{\mathrm{fer}}_{WW}(s)\). More... | |
gslpp::complex | SigmabarZZ_bos (const double mu, const double s, const double Mw_i) const |
The bosonic contribution to the self-energy of the \(Z\) boson in the Unitary gauge, \(\overline{\Sigma}^{\mathrm{bos}}_{ZZ}(s)\). More... | |
gslpp::complex | SigmabarZZ_fer (const double mu, const double s, const double Mw_i) const |
The fermionic contribution to the self-energy of the \(Z\) boson in the Unitary gauge, \(\overline{\Sigma}^{\mathrm{fer}}_{ZZ}(s)\). More... | |
double | TEST_DeltaRhobar_bos (const double Mw_i) const |
A test function. More... | |
double | TEST_DeltaRhobarW_bos (const double Mw_i) const |
A test function. More... | |
gslpp::complex | TEST_FWn (const double s, const double mf, const double Mw_i) const |
A test function for \(\mathcal{F}_{Wn}\) with a finite fermion mass. More... | |
Private Attributes | |
const EWSMcache & | cache |
A reference to an object of type EWSMcache. More... | |
EWSMOneLoopEW::EWSMOneLoopEW | ( | const EWSMcache & | cache_i | ) |
Constructor.
[in] | cache_i | a reference to an object of type EWSMcache |
Definition at line 11 of file EWSMOneLoopEW.cpp.
double EWSMOneLoopEW::DeltaAlpha_l | ( | const double | s | ) | const |
Leptonic contribution of \(O(\alpha)\) to the electromagnetic coupling \(\alpha(s)\), denoted as \(\Delta\alpha_{\mathrm{lept}}^{\alpha}\).
This function uses the function PiGammaGamma_fer_l() for the fermionic contribution to the photon self-energy.
[in] | s | invariant mass squared |
Definition at line 19 of file EWSMOneLoopEW.cpp.
double EWSMOneLoopEW::DeltaAlpha_t | ( | const double | s | ) | const |
Top-quark contribution of \(O(\alpha)\) to the electromagnetic coupling \(\alpha(s)\), denoted as \(\Delta\alpha_{\mathrm{top}}^{\alpha}\).
A simple numerical formula presented in [Kuhn:1998ze] has been employed.
[in] | s | invariant mass squared |
Definition at line 35 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::deltaKappa_rem_f | ( | const Particle | f, |
const double | Mw_i | ||
) | const |
Remainder contribution of \(O(\alpha)\) to the effective couplings \(\kappa_Z^f\), denoted as \(\delta\kappa_{\mathrm{rem}}^{f,\, \alpha}\).
This function handles the remainder contribution \(\delta\kappa_{\mathrm{rem}}^{f,\, \alpha}\) for \(Z\to f\bar{f}\).
[in] | f | a lepton or quark |
[in] | Mw_i | the \(W\)-boson mass |
Definition at line 143 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::deltaKappa_rem_tmp | ( | const double | deltaf, |
const gslpp::complex | uf, | ||
const double | Mw_i | ||
) | const |
Remainder contribution of \(O(\alpha)\) to the effective couplings \(\kappa_Z^f\), denoted as \(\delta\kappa_{\rm rem}^{f,\,\alpha}\).
This function represents \(\delta\kappa_{\rm rem}^{f,\,\alpha}\), given in terms of the flavour-dependent quantities \(\delta_f\) and \(u_f\):
\[ \delta\kappa_{\rm rem}^{f,\alpha} = \frac{\alpha}{4\pi s_W^2} \left[ \overline{\Pi}_{Z\gamma}(M_Z^2)\big|_{\mu=M_Z} + \frac{\delta_f^2}{4 c_W^2}{\cal F}_Z(M_Z^2) - u_f + \left( \frac{1}{12 c_W^2} + \frac{4}{3} \right)\ln c_W^2 \right] \]
where \(\delta_f\) and \(u_f\) are defined as
\begin{align} \delta_f &= v_f - a_f = -2Q_f s_W^2\,, \\ u_f &= \frac{3v_f^2+a_f^2}{4 c_W^2}{\cal F}_Z(M_Z^2) + {\cal F}_W(M_Z^2) \end{align}
with the so-called unified form factors \({\cal F}_Z(M_Z^2)\) and \({\cal F}_W(M_Z^2)\).
[in] | deltaf | the quantity \(\delta_f\) |
[in] | uf | the quantity \(u_f\) |
[in] | Mw_i | the \(W\)-boson mass |
Definition at line 124 of file EWSMOneLoopEW.cpp.
double EWSMOneLoopEW::DeltaR_rem | ( | const double | Mw_i | ) | const |
Remainder contribution of \(O(\alpha)\) to \(\Delta r\), denoted as \(\Delta r_{\rm rem}^{\alpha}\).
The \(O(\alpha)\) remainder contribution \(\Delta r_{\mathrm{rem}}^{\alpha}\) is given by
\[ \Delta r_{\rm rem}^\alpha = \frac{\alpha}{4\pi s_W^2} \bigg[ - \frac{2}{3} s_W^2 + s_W^2\overline{\Pi}_{\gamma\gamma}^{t}(0)\big|_{\mu=M_Z} + s_W^2{\rm Re}\Big[\overline{\Pi}_{\gamma\gamma}^{\ell+5q}(M_Z^2)\big|_{\mu=M_Z}\Big] + \Delta\overline{\rho}_W\big|_{\mu=M_Z} + \left( 4 - \frac{25}{4}c_W^2 + \frac{3}{4} c_W^4 + \frac{9 c_W^2}{4 s_W^2} \right)\ln c_W^2 + \frac{11}{2} - \frac{5}{8} c_W^2 (1 + c_W^2) \bigg]. \]
[in] | Mw_i | the \(W\)-boson mass |
Definition at line 49 of file EWSMOneLoopEW.cpp.
double EWSMOneLoopEW::DeltaRbar_rem | ( | const double | Mw_i | ) | const |
\(\Delta \bar{r}_{\rm rem}^{\alpha}\).
The quantity \(\Delta \bar{r}_{\rm rem}^{\alpha}\), which contributes to \(\rho_Z^f\) and \(\kappa_Z^f\), is given by
\[ \Delta \bar{r}_{\rm rem}^{\alpha} = \bigg[ \Delta r_{\rm rem}^\alpha - \frac{\alpha}{4\pi} \overline{\Pi}_{\gamma\gamma}^{t}(0)\big|_{\mu=M_Z} - \frac{\alpha}{4\pi} {\rm Re}\left[ \overline{\Pi}_{\gamma\gamma}^{\ell+5q}(M_Z^2)\big|_{\mu=M_Z} \right] \bigg], \]
where the definition of \(\Delta r_{\rm rem}^\alpha\) is given in DeltaR_rem().
[in] | Mw_i | the \(W\)-boson mass |
Definition at line 73 of file EWSMOneLoopEW.cpp.
double EWSMOneLoopEW::DeltaRho | ( | const double | Mw_i | ) | const |
Leading one-loop contribution of \(O(\alpha)\) to \(\Delta\rho\), denoted as \(\Delta\rho^{\alpha}\).
The leading one-loop contribution is written in terms of the quantity \(\Delta\overline{\rho}\):
\[ \Delta\rho^{\alpha} = - \frac{\alpha}{4\pi s_W^2}\Delta\overline{\rho}\big|_{\mu=M_Z}, \]
where \(\Delta\overline{\rho}\) is renormalized at the scale \(M_Z\), and computed with the function DeltaRhobar().
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 43 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::deltaRho_rem_f | ( | const Particle | f, |
const double | Mw_i | ||
) | const |
Remainder contribution of \(O(\alpha)\) to the effective couplings \(\rho_Z^f\), denoted as \(\delta\rho_{\mathrm{rem}}^{f,\, \alpha}\).
This function handles the remainder contribution \(\delta\rho_{\mathrm{rem}}^{f,\, \alpha}\) for \(Z\to f\bar{f}\).
[in] | f | a lepton or quark |
[in] | Mw_i | the \(W\)-boson mass |
Definition at line 113 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::deltaRho_rem_tmp | ( | const gslpp::complex | u_f, |
const double | Mw_i | ||
) | const |
Remainder contribution of \(O(\alpha)\) to the effective couplings \(\rho_Z^f\), denoted as \(\delta\rho_{\rm rem}^{f,\alpha}\).
This function represents \(\delta\rho_{\rm rem}^{f,\alpha}\), given in terms of the flavour-dependent quantity \(u_f\):
\[ \delta\rho_{\rm rem}^{f,\alpha} = \frac{\alpha}{4\pi s_W^2} \left\{ - \frac{1}{ c_W^2} {\rm Re}\big[\overline{\Sigma}^{\prime}_{ZZ}(M_Z^2)\big|_{\mu=M_Z} \big] - \Delta\overline{\rho}_W\big|_{\mu=M_Z} + 2u_f - \left[ \frac{1}{6 c_W^2} - \frac{1}{3} + \frac{3}{4} c_W^2 (1+ c_W^2) + \frac{9 c_W^2}{4 s_W^2} \right]\ln c_W^2 - \frac{11}{2} + \frac{5}{8} c_W^2(1+ c_W^2) \right\}, \]
where \(u_f\) is defined as
\[ u_f = \frac{3v_f^2+a_f^2}{4 c_W^2}{\cal F}_Z(M_Z^2) + {\cal F}_W(M_Z^2) \]
with the so-called unified form factors \({\cal F}_Z(M_Z^2)\) and \({\cal F}_W(M_Z^2)\).
[in] | u_f | the quantity \(u_f\) |
[in] | Mw_i | the \(W\)-boson mass |
Definition at line 91 of file EWSMOneLoopEW.cpp.
double EWSMOneLoopEW::DeltaRhobar | ( | const double | mu, |
const double | Mw_i | ||
) | const |
\(\Delta\overline{\rho}\).
The quantity \(\Delta\overline{\rho}\), which is associated with \(\Delta\rho\) as explained in the description of DeltaRho(), is defined as
\[ \Delta\overline{\rho}\big|_{\mu} = \frac{1}{M_W^2}\left[ {\rm Re}\,\overline{\Sigma}_{WW}(M_W^2)\big|_{\mu} - {\rm Re}\,\overline{\Sigma}_{ZZ}(M_Z^2)\big|_{\mu} \right], \]
where \(\mu\) denotes the renormalization scale.
[in] | mu | renormalization scale \(\mu\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 803 of file EWSMOneLoopEW.cpp.
double EWSMOneLoopEW::DeltaRhobarW | ( | const double | mu, |
const double | Mw_i | ||
) | const |
\(\Delta\overline{\rho}_W\).
The quantity \(\Delta\overline{\rho}_W\) is defined as
\[ \Delta\overline{\rho}_W\big|_{\mu} = \frac{1}{M_W^2}\left[ \overline{\Sigma}_{WW}(0)\big|_{\mu} - {\rm Re}\,\overline{\Sigma}_{WW}(M_W^2)\big|_{\mu} \right], \]
where \(\mu\) denotes the renormalization scale.
[in] | mu | renormalization scale \(\mu\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 812 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::FbarWa_0 | ( | const double | s | ) | const |
The form factor \(\overline{\mathcal{F}}_{Wa}^0\).
The form factor \(\overline{\mathcal{F}}_{Wa}^0\), associated with abelian-type diagrams of \(Z\to f\bar{f}\) with a virtual \(W\) boson, is given in the chiral limit by
\[ \overline{{\cal F}}_{Wa}^0(s) = 0\,. \]
See [Bardin:1999ak].
[in] | s | momentum squared \(s\) |
Definition at line 932 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::FbarWa_t | ( | const double | s, |
const double | Mw_i | ||
) | const |
The form factor \(\overline{\mathcal{F}}_{Wa}^t\).
The form factor \(\overline{\mathcal{F}}_{Wa}^t\), associated with abelian-type diagrams of \(Z\to f\bar{f}\) with a virtual \(W\) boson and the heavy top quark, is given by
\[ \overline{{\cal F}}_{Wa}^t(s) = - w_t \Bigg\{ \left[ R_W + 2 - w_t(2 - w_t)R_W \right] M_W^2C_0(s;M_t,M_W,M_t) - \left( \frac{1}{2} - R_W + w_t R_W \right) \left[ - B_0(s;M_t,M_t)\big|_{\mu=M_W} + 1 \right] + w_t R_W \ln w_t \Bigg\}\,, \]
where the definitions of the symbols can be read from the codes below.
See [Bardin:1999ak].
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 1000 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::FW | ( | const double | s, |
const Particle | f, | ||
const double | Mw_i | ||
) | const |
The unified form factor \(\mathcal{F}_W\) for \(Z\to f\bar{f}\).
The so-called unified form factor \(\mathcal{F}_W\), associated with radiative corrections to the \(Z\to f\bar{f}\) vertex with a virtual \(W\) boson as well as with virtual \(W\) bosons, is given by
\[ {\cal F}_W(s) = c_W^2 {\cal F}_{Wn}^0(s) - \frac{1}{2}\sigma_{l'}^a {\cal F}_{Wa}^0(s) - \frac{1}{2}\overline{{\cal F}}_{Wa}^0(s)\,, \]
where the suprescripts "0" denote the chiral limit, \(\sigma_{f'}^a = |v_{f'} + a_{f'}| = 1 - 2|Q_{f'}|s_W^2 = 2c_W^2 - 1 + 2|Q_{f}| s_W^2\) with \(f'\) being the partner of \(f\) in the \(SU(2)_L\) doublet, and \({\cal F}_{Wn}^0(s)\), \({\cal F}_{Wa}^0(s)\) and \(\overline{{\cal F}}_{Wa}^0(s)\) correspond to the functions FWn_0(), FWa_0() and FbarWa_0(), respectively.
See [Bardin:1999ak].
[in] | s | momentum squared \(s\) |
[in] | f | a lepton or quark |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 1070 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::FWa_0 | ( | const double | s, |
const double | Mw_i | ||
) | const |
The form factor \(\mathcal{F}_{Wa}^0\).
The form factor \(\mathcal{F}_{Wa}^0\), associated with abelian-type diagrams of \(Z\to f\bar{f}\) with a virtual \(W\) boson, is given in the chiral limit by
\[ {\cal F}_{Wa}^0(s) = 2(R_W + 1)^2 s\, C_0(s;0,(\widetilde{M}_W^2)^{1/2},0) - (2R_W+3) \ln\left(-\frac{\widetilde{M}_W^2}{s}\right) - 2R_W - \frac{7}{2}\,, \]
where \(\widetilde{M}_W^2 \equiv M_W^2 - i\, M_W\Gamma_W\approx M_W^2-i\epsilon\), and the definitions of the other symbols can be read from the codes below.
See [Bardin:1999ak].
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 909 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::FWa_t | ( | const double | s, |
const double | Mw_i | ||
) | const |
The form factor \(\mathcal{F}_{Wa}^t\).
The form factor \(\mathcal{F}_{Wa}^t\), associated with abelian-type diagrams of \(Z\to f\bar{f}\) with a virtual \(W\) boson and the heavy top quark, is given by
\begin{align} {\cal F}_{Wa}^t(s) &= 2(R_W +1)^2 s \left[ C_0(s;M_t,M_W,M_t) - C_0(s;0,(\widetilde{M}_W^2)^{1/2},0) \right] + (2R_W + 3) \left[ - B_0(s;M_t,M_t)\big|_{\mu=M_W} + \ln\left(-\frac{\widetilde{M}_W^2}{s}\right) + 2 \right] \\ &\quad - w_t \Bigg\{ \left( 3R_W +2-w_t - w_t^2 R_W \right) M_W^2 C_0(s;M_t,M_W,M_t) + \left( R_W + \frac{1}{2} + w_t R_W \right) \left[ 1 - B_0(s;M_t,M_t)\big|_{\mu=M_W} \right] \\ &\qquad\qquad - \left( 2 R_W + \frac{1}{2} - \frac{2}{w_t - 1} + \frac{3}{2}\frac{1}{(w_t - 1)^2} + w_t R_W \right) \ln w_t + \frac{3}{2}\frac{1}{w_t - 1} + \frac{3}{4} \Bigg\}\,, \end{align}
where \(\widetilde{M}_W^2 \equiv M_W^2 - i\, M_W\Gamma_W\approx M_W^2-i\epsilon\), and the definitions of the other symbols can be read from the codes below.
See [Bardin:1999ak].
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 962 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::FWn_0 | ( | const double | s, |
const double | Mw_i | ||
) | const |
The form factor \(\mathcal{F}_{Wn}^0\).
The form factor \(\mathcal{F}_{Wn}^0\), associated with nonabelian-type diagrams of \(Z\to f\bar{f}\) with virtual \(W\) bosons, is given in the chiral limit by
\[ {\cal F}_{Wn}^0(s) = - 2 (R_W + 2) M_W^2 C_0(s;M_W,0,M_W) - \left( 2R_W + \frac{7}{3} - \frac{3}{2R_W} - \frac{1}{12R_W^2} \right) B_0(s; M_W, M_W)\big|_{\mu=M_W} + 2R_W + \frac{9}{2} - \frac{11}{18R_W} + \frac{1}{18R_W^2}\,, \]
where the definitions of the symbols can be read from the codes below.
See [Bardin:1999ak].
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 937 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::FWn_t | ( | const double | s, |
const double | Mw_i | ||
) | const |
The form factor \(\mathcal{F}_{Wn}^t\).
The form factor \(\mathcal{F}_{Wn}^t\), associated with nonabelian-type diagrams of \(Z\to f\bar{f}\) with virtual \(W\) bosons and the heavy top quark, is given by
\begin{align} {\cal F}_{Wn}^t(s) &= -2 (R_W +2) M_W^2 \left[ C_0(s;M_W,M_t,M_W) - C_0(s;M_W,0,M_W) \right] \\ &\quad + w_t \Bigg\{ \Bigg[ 3 R_W + \frac{5}{2} - \frac{2}{R_W } - w_t \left( 2 - \frac{1}{2R_W} \right) + w_t ^2 \left( \frac{1}{2} - R_W \right) \Bigg] M_W^2 C_0(s;M_W,M_t,M_W) \\ &\qquad\qquad +\left[ R_W + 1 - \frac{1}{4 R_W} - w_t \left( \frac{1}{2} - R_W \right) \right] \left[ B_0(s;M_W,M_W)\big|_{\mu=M_W} - 1 \right] \\ &\qquad\qquad + \left[ 2 R_W + \frac{1}{2} - \frac{2}{w_t - 1} + \frac{3}{2}\frac{1}{(w_t - 1)^2} - w_t \left( \frac{1}{2} - R_W \right) \right] \ln w_t - \frac{3}{2}\frac{1}{w_t -1} + \frac{1}{4} - \frac{1}{2 R_W} \Bigg\}\,, \end{align}
where the definitions of the symbols can be read from the codes below.
See [Bardin:1999ak].
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 1029 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::FZ | ( | const double | s, |
const double | Mw_i | ||
) | const |
The unified form factor \(\mathcal{F}_Z\).
The so-called unified form factor \(\mathcal{F}_Z\), associated with radiative corrections to the \(Z\to f\bar{f}\) vertex with a virtual \(Z\) boson, is given by
\[ {\cal F}_Z(s) = {\cal F}_{Za}^0(s)\,, \]
where \({\cal F}_{Za}^0(s)\) corresponds to the function FZa_0().
See [Bardin:1999ak].
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 1065 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::FZa_0 | ( | const double | s, |
const double | Mw_i | ||
) | const |
The form factor \(\mathcal{F}_{Za}^0\).
The form factor \(\mathcal{F}_{Za}^0\), associated with abelian-type diagrams of \(Z\to f\bar{f}\) with a virtual \(Z\) boson, is given in the chiral limit by
\[ {\cal F}_{Za}^0(s) = 2(R_Z + 1)^2 s\, C_0(s;0,(\widetilde{M}_Z^2)^{1/2},0) - (2R_Z+3) \ln\left(-\frac{\widetilde{M}_Z^2}{s}\right) - 2R_Z - \frac{7}{2}\,, \]
where \(\widetilde{M}_Z^2 \equiv M_Z^2 - i\, M_Z\Gamma_Z\approx M_Z^2-i\epsilon\), and the definitions of the other symbols can be read from the codes below.
See [Bardin:1999ak].
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 883 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::PibarGammaGamma_bos | ( | const double | mu, |
const double | s, | ||
const double | Mw_i | ||
) | const |
The bosonic contribution to the self-energy of the photon in the Unitary gauge, \(\overline{\Pi}^{\mathrm{bos}}_{\gamma\gamma}(s)\).
This function represents the \(O(\alpha)\) bosonic contribution to \(\overline{\Pi}_{\gamma\gamma}(s)\), whose definition is given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 452 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::PibarGammaGamma_fer | ( | const double | mu, |
const double | s | ||
) | const |
The fermionic contribution to the self-energy of the photon in the Unitary gauge, \(\overline{\Pi}^{\mathrm{fer}}_{\gamma\gamma}(s)\).
This function represents the \(O(\alpha)\) fermionic contribution to \(\overline{\Pi}_{\gamma\gamma}(s)\), whose definition is given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | s | momentum squared \(s\) |
Definition at line 524 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::PibarGammaGamma_fer | ( | const double | mu, |
const double | s, | ||
const Particle | f | ||
) | const |
The fermionic contribution to the self-energy of the photon in the Unitary gauge, associated with loops of a lepton or quark. \(\overline{\Pi}^{\mathrm{fer},f}_{\gamma\gamma}(s)\).
This function represents the \(O(\alpha)\) fermionic contribution to \(\overline{\Pi}_{\gamma\gamma}(s)\), whose definition is given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | s | momentum squared \(s\) |
[in] | f | a lepton or quark |
Definition at line 485 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::PibarZgamma_bos | ( | const double | mu, |
const double | s, | ||
const double | Mw_i | ||
) | const |
The bosonic contribution to the self-energy of the \(Z\)- \(\gamma\) mixing in the Unitary gauge, \(\overline{\Pi}^{\mathrm{bos}}_{Z\gamma}(s)\).
This function represents the \(O(\alpha)\) bosonic contribution to \(\overline{\Pi}_{Z\gamma}(s)\), whose definition is given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 534 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::PibarZgamma_fer | ( | const double | mu, |
const double | s, | ||
const double | Mw_i | ||
) | const |
The fermionic contribution to the self-energy of the \(Z\)- \(\gamma\) mixing in the Unitary gauge, \(\overline{\Pi}^{\mathrm{fer}}_{Z\gamma}(s)\).
This function represents the \(O(\alpha)\) fermionic contribution to \(\overline{\Pi}_{Z\gamma}(s)\), whose definition is given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 541 of file EWSMOneLoopEW.cpp.
EW radiative corrections to the width of \(W \to f_i \bar{f}_j\), denoted as \(\rho^W_{ij}\).
[in] | fi | a lepton or quark |
[in] | fj | a lepton or quark |
[in] | Mw_i | the \(W\)-boson mass |
Definition at line 190 of file EWSMOneLoopEW.cpp.
double EWSMOneLoopEW::rho_GammaW_tmp | ( | const double | Qi, |
const double | Qj, | ||
const double | Mw_i | ||
) | const |
EW radiative corrections to the widths of \(W \to f_i \bar{f}_j\), denoted as \(\rho^W_{ij}\).
The factor \(\rho^W_{ij}\) is decomposed as [Bardin:1986fi], [Bardin:1999ak]
\[ \rho^W_{ij} = 1 + \delta f^W_{ij} + \delta f^{\rm QED}_{ij}, \]
where \(\delta f^W_{ij}\) and \(\delta f^{\rm QED}_{ij}\) are given by
\begin{align} \delta f^W_{ij} &= \frac{\alpha}{4\pi s_W^2} \Bigg[ - \Delta\overline{\rho}_W \big|_{\mu=M_W} - {\rm Re}\big[\overline{\Sigma}^{\prime}_{WW}(M_W^2)\big]\big|_{\mu=M_W} + \frac{5}{8} c_W^2 (1 + c_W^2) - \frac{11}{2} - \frac{9}{4}\frac{c_W^2}{s_W^2}\ln c_W^2 \\ &\qquad\qquad\qquad + \left( -1 + \frac{1}{2\,c_W^2} + \frac{2 s_W^4}{c_W^2} Q_i Q_j \right) \left( V_1(M_W^2,M_Z^2) + \frac{3}{2} \right) + 2\,c_W^2 \left( V_2(M_W^2,M_W^2,M_Z^2) + \frac{3}{2} \right) \Bigg]\,, \\ \delta f^{\rm QED}_{ij} &= \frac{\alpha}{\pi} \left[ \frac{85}{18} - \frac{\pi^2}{3} + \frac{3}{4}\,Q_iQ_j \right]. \end{align}
The functions \(V_1\) and \(V_2\) are given in [Bardin:1981sv] :
\begin{align} V_1(M_W^2,M_Z^2) &= {\rm Re}\left[{\cal F}_{Za}^0(M_W^2)\right] - \frac{3}{2}\,, \\ V_2(M_W^2,M_W^2,M_Z^2) &= - 2(2 + c_W^2)M_Z^2\,{\rm Re}\left[C_0(M_W^2;\,M_W,0,M_Z)\right] - \left(\frac{1}{12 c_W^4} + \frac{5}{3 c_W^2} + 1 \right) {\rm Re}\left[B_0^F(M_W^2;\,M_Z,M_W)\Big|_{\mu=M_W}\right] \\ &\quad + \left( \frac{1}{12 c_W^4} + \frac{1}{c_W^2} + 1 \right)\log c_W^2 + \frac{1}{12 c_W^4} + \frac{13}{12 c_W^2} + \frac{59}{18}\,, \end{align}
where the imaginary parts have been neglected.
[in] | Qi | the electric charge of f_i |
[in] | Qj | the electric charge of f_j |
[in] | Mw_i | the \(W\)-boson mass |
Definition at line 155 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::SigmabarPrime_WW_bos_Mw2 | ( | const double | mu, |
const double | Mw_i | ||
) | const |
The derivative of the bosonic contribution to the self-energy of the \(W\) boson for \(s=M_W^2\) in the Unitary gauge, \(\overline{\Sigma}^{\prime,\mathrm{bos}}_{WW}(M_W^2)\).
See also the definition of the self-energy given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 589 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::SigmabarPrime_WW_fer_Mw2 | ( | const double | mu, |
const double | Mw_i | ||
) | const |
The derivative of the fermionic contribution to the self-energy of the \(W\) boson for \(s=M_W^2\) in the Unitary gauge, \(\overline{\Sigma}^{\prime,\mathrm{fer}}_{WW}(M_W^2)\).
See also the definition of the self-energy given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 642 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::SigmabarPrime_ZZ_bos_Mz2 | ( | const double | mu, |
const double | Mw_i | ||
) | const |
The derivative of the bosonic contribution to the self-energy of the \(Z\) boson for \(s=M_Z^2\) in the Unitary gauge, \(\overline{\Sigma}^{\prime,\mathrm{bos}}_{ZZ}(M_Z^2)\).
See also the definition of the self-energy given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 698 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::SigmabarPrime_ZZ_fer_Mz2 | ( | const double | mu, |
const double | Mw_i | ||
) | const |
The derivative of the fermionic contribution to the self-energy of the \(Z\) boson for \(s=M_Z^2\) in the Unitary gauge, \(\overline{\Sigma}^{\prime,\mathrm{fer}}_{ZZ}(M_Z^2)\).
See also the definition of the self-energy given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 746 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::SigmabarWW_bos | ( | const double | mu, |
const double | s, | ||
const double | Mw_i | ||
) | const |
The bosonic contribution to the self-energy of the \(W\) boson in the Unitary gauge, \(\overline{\Sigma}^{\mathrm{bos}}_{WW}(s)\).
This function represents the \(O(\alpha)\) bosonic contribution to \(\overline{\Sigma}_{WW}(s)\), whose definition is given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 203 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::SigmabarWW_fer | ( | const double | mu, |
const double | s, | ||
const double | Mw_i | ||
) | const |
The fermionic contribution to the self-energy of the \(W\) boson in the Unitary gauge, \(\overline{\Sigma}^{\mathrm{fer}}_{WW}(s)\).
This function represents the \(O(\alpha)\) fermionic contribution to \(\overline{\Sigma}_{WW}(s)\), whose definition is given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 287 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::SigmabarZZ_bos | ( | const double | mu, |
const double | s, | ||
const double | Mw_i | ||
) | const |
The bosonic contribution to the self-energy of the \(Z\) boson in the Unitary gauge, \(\overline{\Sigma}^{\mathrm{bos}}_{ZZ}(s)\).
This function represents the \(O(\alpha)\) bosonic contribution to \(\overline{\Sigma}_{ZZ}(s)\), whose definition is given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 348 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::SigmabarZZ_fer | ( | const double | mu, |
const double | s, | ||
const double | Mw_i | ||
) | const |
The fermionic contribution to the self-energy of the \(Z\) boson in the Unitary gauge, \(\overline{\Sigma}^{\mathrm{fer}}_{ZZ}(s)\).
This function represents the \(O(\alpha)\) fermionic contribution to \(\overline{\Sigma}_{ZZ}(s)\), whose definition is given in the detailed description of the current class.
[in] | mu | renormalization scale \(\mu\) |
[in] | s | momentum squared \(s\) |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 399 of file EWSMOneLoopEW.cpp.
double EWSMOneLoopEW::TEST_DeltaRhobar_bos | ( | const double | Mw_i | ) | const |
A test function.
\(\Delta\overline{\rho}^{\mathrm{bos}}\) is given without the use of the self-energies of the gauge bosons.
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 823 of file EWSMOneLoopEW.cpp.
double EWSMOneLoopEW::TEST_DeltaRhobarW_bos | ( | const double | Mw_i | ) | const |
A test function.
\(\Delta\overline{\rho}_W^{\mathrm{bos}}\) is given without the use of the self-energies of the gauge bosons.
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 854 of file EWSMOneLoopEW.cpp.
gslpp::complex EWSMOneLoopEW::TEST_FWn | ( | const double | s, |
const double | mf, | ||
const double | Mw_i | ||
) | const |
A test function for \(\mathcal{F}_{Wn}\) with a finite fermion mass.
[in] | s | momentum squared \(s\) |
[in] | mf | the mass of the fermion in the loop |
[in] | Mw_i | the \(W\)-boson mass \(M_W\) |
Definition at line 1121 of file EWSMOneLoopEW.cpp.
|
private |
A reference to an object of type EWSMcache.
Definition at line 846 of file EWSMOneLoopEW.h.