A class for Passarino-Veltman functions. More...
#include <PVfunctions.h>
A class for Passarino-Veltman functions.
This class handles the so-called Passarino-Veltman (PV) functions, which appear in one-loop amplitudes. The definitions of the two-point and four-point functions used in the current class are identical to those in LoopTools library [Hahn:1998yk]. The one-point and three-point functions are identical to those in LoopTools library when bExtraMinusSign is set to false. On the other hand, when bExtraMinusSign is set to true, an extra minus sign is added to them in order to match their definitions to those in [Bardin:1999ak]. If the preprocessor macro USE_LOOPTOOLS is defined in PVfunctions.h or Makefile, the functions in LoopTools library, called via LoopToolsWrapper class, are employed instead of those defined in the current class.
See, e.g., [tHooft:1978xw], [Passarino:1978jh], [VeltBook], [Denner:1991kt] and [Bardin:1999ak]
Definition at line 44 of file PVfunctions.h.
Public Member Functions | |
double | A0 (const double mu2, const double m2) const |
\(A_0(m^2)\). More... | |
gslpp::complex | B0 (const double mu2, const double p2, const double m02, const double m12) const |
\(B_0(p^2; m_0^2, m_1^2)\). More... | |
gslpp::complex | B00 (const double mu2, const double p2, const double m02, const double m12) const |
\(B_{00}(p^2; m_0^2, m_1^2)\). More... | |
gslpp::complex | B00p (const double mu2, const double p2, const double m02, const double m12) const |
\(B_{00p}(p^2; m_0^2, m_1^2)\). More... | |
gslpp::complex | B0p (const double muIR2, const double p2, const double m02, const double m12) const |
\(B_{0p}(p^2; m_0^2, m_1^2)\). More... | |
gslpp::complex | B1 (const double mu2, const double p2, const double m02, const double m12) const |
\(B_1(p^2; m_0^2, m_1^2)\). More... | |
gslpp::complex | B11 (const double mu2, const double p2, const double m02, const double m12) const |
\(B_{11}(p^2; m_0^2, m_1^2)\). More... | |
gslpp::complex | B11p (const double mu2, const double p2, const double m02, const double m12) const |
\(B_{11p}(p^2; m_0^2, m_1^2)\). More... | |
gslpp::complex | B1p (const double mu2, const double p2, const double m02, const double m12) const |
\(B_{1p}(p^2; m_0^2, m_1^2)\). More... | |
gslpp::complex | Bf (const double mu2, const double p2, const double m02, const double m12) const |
\(B_{f}(p^2; m_0^2, m_1^2)\). More... | |
gslpp::complex | Bfp (const double mu2, const double p2, const double m02, const double m12) const |
\(B_{fp}(p^2; m_0^2, m_1^2)\). More... | |
gslpp::complex | C0 (const double p1, const double p2, const double p1p22, const double m02, const double m12, const double m22) const |
\(C_{0}(p_1^2,p_2^2,(p_1+p_2)^2; m_0^2, m_1^2, m_2^2)\). More... | |
gslpp::complex | C0 (const double p2, const double m02, const double m12, const double m22) const |
\(C_{0}(0,0,p^2; m_0^2, m_1^2, m_2^2)\). More... | |
double | C11 (const double m12, const double m22, const double m32) const |
\(C_{11}(m_1^2, m_2^2, m_3^2)\). More... | |
double | C12 (const double m12, const double m22, const double m32) const |
\(C_{12}(m_1^2, m_2^2, m_3^2)\). More... | |
gslpp::complex | D0 (const double s, const double t, const double m02, const double m12, const double m22, const double m32) const |
\(D_{0}(0,0,0,0,s,t; m_0^2, m_1^2, m_2^2, m_3^2)\). More... | |
gslpp::complex | D00 (const double s, const double t, const double m02, const double m12, const double m22, const double m32) const |
\(D_{00}(0,0,0,0,s,t; m_0^2, m_1^2, m_2^2, m_3^2)\). More... | |
PVfunctions (const bool bExtraMinusSign) | |
Constructor. More... | |
Private Attributes | |
double | ExtraMinusSign |
An overall factor for the one-point and three-point functions, initialized in PVfunctions(). More... | |
LoopToolsWrapper | myLT |
An object of type LoopToolsWrapper. More... | |
Polylogarithms | myPolylog |
An object of type Polylogarithms. More... | |
PVfunctions::PVfunctions | ( | const bool | bExtraMinusSign | ) |
Constructor.
The boolean argument bExtraMinusSign controls whether an extra overall minus sign is added to the one-point and three-point functions or not. See also the detailed description of the current class.
[in] | bExtraMinusSign | a flag to control whether an extra overall minus sign is added to the one-point and three-point functions or not |
Definition at line 17 of file PVfunctions.cpp.
double PVfunctions::A0 | ( | const double | mu2, |
const double | m2 | ||
) | const |
\(A_0(m^2)\).
The scalar one-point function \(A_0(m^2)\) is defined as
\[ A_0(m^2) = \frac{(2\pi\mu)^{4-d}}{i\pi^2}\int d^dk\, \frac{1}{k^2-m^2+i\varepsilon}, \]
where the UV divergence is regularized with the dimensional regularization. When bExtraMinusSign=true is passed to the constructor, an extra overall minus sign is added to the above definition.
[in] | mu2 | the renormalization scale squared, \(\mu^2\) |
[in] | m2 | mass squared, \(m^2\) |
Definition at line 23 of file PVfunctions.cpp.
gslpp::complex PVfunctions::B0 | ( | const double | mu2, |
const double | p2, | ||
const double | m02, | ||
const double | m12 | ||
) | const |
\(B_0(p^2; m_0^2, m_1^2)\).
The scalar two-point function \(B_0(p^2; m_0^2, m_1^2)\) is defined as
\[ B_0(p^2;m_0^2,m_1^2) = \frac{(2\pi\mu)^{4-d}}{i\pi^2}\int d^dk\, \frac{1}{(k^2-m_0^2+i\varepsilon)\left[(k+p)^2-m_1^2+i\varepsilon\right]}\,, \]
where the UV divergence is regularized with the dimensional regularization.
[in] | mu2 | the renormalization scale squared, \(\mu^2\) |
[in] | p2 | momentum squared, \(p^2\) |
[in] | m02,m12 | mass squared, \(m_0^2\) and \(m_1^2\) |
Definition at line 41 of file PVfunctions.cpp.
gslpp::complex PVfunctions::B00 | ( | const double | mu2, |
const double | p2, | ||
const double | m02, | ||
const double | m12 | ||
) | const |
\(B_{00}(p^2; m_0^2, m_1^2)\).
The tensor two-point PV function \(B_{00}(p^2; m_0^2, m_1^2)\) is defined as
\[ g_{\mu\nu} B_{00}(p^2;m_0^2,m_1^2) + p_\mu p_\nu B_{11}(p^2;m_0^2,m_1^2) = \frac{(2\pi\mu)^{4-d}}{i\pi^2}\int d^dk\, \frac{k_\mu k_\nu}{(k^2-m_0^2+i\varepsilon) \left[(k+p)^2-m_1^2+i\varepsilon\right]}, \]
where the UV divergence is regularized with the dimensional regularization.
[in] | mu2 | the renormalization scale squared, \(\mu^2\) |
[in] | p2 | momentum squared, \(p^2\) |
[in] | m02,m12 | mass squared, \(m_0^2\) and \(m_1^2\) |
Definition at line 208 of file PVfunctions.cpp.
gslpp::complex PVfunctions::B00p | ( | const double | mu2, |
const double | p2, | ||
const double | m02, | ||
const double | m12 | ||
) | const |
\(B_{00p}(p^2; m_0^2, m_1^2)\).
The function \(B_{00p}(p^2; m_0^2, m_1^2)\) is defined as
\[ B_{00p}(p^2;m_0^2,m_1^2) = \frac{\partial}{\partial p^2} B_{00}(p^2;m_0^2,m_1^2)\,, \]
where the UV divergence is regularized with the dimensional regularization.
[in] | mu2 | the renormalization scale squared, \(\mu^2\) |
[in] | p2 | momentum squared, \(p^2\) |
[in] | m02,m12 | mass squared, \(m_0^2\) and \(m_1^2\) |
Definition at line 410 of file PVfunctions.cpp.
gslpp::complex PVfunctions::B0p | ( | const double | muIR2, |
const double | p2, | ||
const double | m02, | ||
const double | m12 | ||
) | const |
\(B_{0p}(p^2; m_0^2, m_1^2)\).
The function \(B_{0p}(p^2; m_0^2, m_1^2)\) is defined as
\[ B_{0p}(p^2;m_0^2,m_1^2) = \frac{\partial}{\partial p^2} B_0(p^2;m_0^2,m_1^2)\,, \]
which is UV finite, while \(B_{0p}(m^2; 0, m^2)\) is IR divergent. The IR divergence is regularized with the dimensional regularization.
[in] | muIR2 | the renormalization scale squared for the IR divergence, \(\mu_{\mathrm{IR}}^2\) |
[in] | p2 | momentum squared, \(p^2\) |
[in] | m02,m12 | mass squared, \(m_0^2\) and \(m_1^2\) |
Definition at line 276 of file PVfunctions.cpp.
gslpp::complex PVfunctions::B1 | ( | const double | mu2, |
const double | p2, | ||
const double | m02, | ||
const double | m12 | ||
) | const |
\(B_1(p^2; m_0^2, m_1^2)\).
The vector two-point PV function \(B_1(p^2; m_0^2, m_1^2)\) is defined as
\[ p_\mu B_1(p^2;m_0^2,m_1^2) = \frac{(2\pi\mu)^{4-d}}{i\pi^2}\int d^dk\, \frac{k_\mu}{(k^2-m_0^2+i\varepsilon)\left[(k+p)^2-m_1^2+i\varepsilon\right]}, \]
where the UV divergence is regularized with the dimensional regularization.
[in] | mu2 | the renormalization scale squared, \(\mu^2\) |
[in] | p2 | momentum squared, \(p^2\) |
[in] | m02,m12 | mass squared, \(m_0^2\) and \(m_1^2\) |
Definition at line 120 of file PVfunctions.cpp.
gslpp::complex PVfunctions::B11 | ( | const double | mu2, |
const double | p2, | ||
const double | m02, | ||
const double | m12 | ||
) | const |
\(B_{11}(p^2; m_0^2, m_1^2)\).
The tensor two-point PV function \(B_{11}(p^2; m_0^2, m_1^2)\) is defined as
\[ g_{\mu\nu} B_{00}(p^2;m_0^2,m_1^2) + p_\mu p_\nu B_{11}(p^2;m_0^2,m_1^2) = \frac{(2\pi\mu)^{4-d}}{i\pi^2}\int d^dk\, \frac{k_\mu k_\nu}{(k^2-m_0^2+i\varepsilon) \left[(k+p)^2-m_1^2+i\varepsilon\right]}, \]
where the UV divergence is regularized with the dimensional regularization.
[in] | mu2 | the renormalization scale squared, \(\mu^2\) |
[in] | p2 | momentum squared, \(p^2\) |
[in] | m02,m12 | mass squared, \(m_0^2\) and \(m_1^2\) |
Definition at line 162 of file PVfunctions.cpp.
gslpp::complex PVfunctions::B11p | ( | const double | mu2, |
const double | p2, | ||
const double | m02, | ||
const double | m12 | ||
) | const |
\(B_{11p}(p^2; m_0^2, m_1^2)\).
The function \(B_{11p}(p^2; m_0^2, m_1^2)\) is defined as
\[ B_{11p}(p^2;m_0^2,m_1^2) = \frac{\partial}{\partial p^2} B_{11}(p^2;m_0^2,m_1^2)\,, \]
where the UV divergence is regularized with the dimensional regularization.
[in] | mu2 | the renormalization scale squared, \(\mu^2\) |
[in] | p2 | momentum squared, \(p^2\) |
[in] | m02,m12 | mass squared, \(m_0^2\) and \(m_1^2\) |
Definition at line 381 of file PVfunctions.cpp.
gslpp::complex PVfunctions::B1p | ( | const double | mu2, |
const double | p2, | ||
const double | m02, | ||
const double | m12 | ||
) | const |
\(B_{1p}(p^2; m_0^2, m_1^2)\).
The function \(B_{1p}(p^2; m_0^2, m_1^2)\) is defined as
\[ B_{1p}(p^2;m_0^2,m_1^2) = \frac{\partial}{\partial p^2} B_1(p^2;m_0^2,m_1^2)\,, \]
where the UV divergence is regularized with the dimensional regularization.
[in] | mu2 | the renormalization scale squared, \(\mu^2\) |
[in] | p2 | momentum squared, \(p^2\) |
[in] | m02,m12 | mass squared, \(m_0^2\) and \(m_1^2\) |
Definition at line 356 of file PVfunctions.cpp.
gslpp::complex PVfunctions::Bf | ( | const double | mu2, |
const double | p2, | ||
const double | m02, | ||
const double | m12 | ||
) | const |
\(B_{f}(p^2; m_0^2, m_1^2)\).
The function \(B_{f}(p^2; m_0^2, m_1^2)\) is defined as a sum of the two PV functions:
\[ B_f(p^2;m_0^2,m_1^2) = 2 \left[ B_{11}(p^2;m_0^2,m_1^2) + B_{1}(p^2;m_0^2,m_1^2) \right], \]
where the UV divergence is regularized with the dimensional regularization.
[in] | mu2 | the renormalization scale squared, \(\mu^2\) |
[in] | p2 | momentum squared, \(p^2\) |
[in] | m02,m12 | mass squared, \(m_0^2\) and \(m_1^2\) |
Definition at line 265 of file PVfunctions.cpp.
gslpp::complex PVfunctions::Bfp | ( | const double | mu2, |
const double | p2, | ||
const double | m02, | ||
const double | m12 | ||
) | const |
\(B_{fp}(p^2; m_0^2, m_1^2)\).
The function \(B_{fp}(p^2; m_0^2, m_1^2)\) is defined as
\[ B_{fp}(p^2;m_0^2,m_1^2) = \frac{\partial}{\partial p^2} B_{f}(p^2;m_0^2,m_1^2)\,, \]
where the UV divergence is regularized with the dimensional regularization.
[in] | mu2 | the renormalization scale squared, \(\mu^2\) |
[in] | p2 | momentum squared, \(p^2\) |
[in] | m02,m12 | mass squared, \(m_0^2\) and \(m_1^2\) |
Definition at line 458 of file PVfunctions.cpp.
gslpp::complex PVfunctions::C0 | ( | const double | p1, |
const double | p2, | ||
const double | p1p22, | ||
const double | m02, | ||
const double | m12, | ||
const double | m22 | ||
) | const |
\(C_{0}(p_1^2,p_2^2,(p_1+p_2)^2; m_0^2, m_1^2, m_2^2)\).
\[ Passarino-Veltman function C0(p_1^2,p_2^2,(p_1+p_2)^2; m_0^2, m_1^2, m_2^2) as defined in LoopTools.\]
When bExtraMinusSign=true is passed to the constructor, an extra overall minus sign is added to the above definition.
[in] | p12,p22,p1p22 | momentum squared, \(p_1^2\), \(p_2^2\), \((p_1+p_2)^2\) |
[in] | m02,m12,m22 | mass squared, \(m_0^2\), \(m_1^2\) and \(m_2^2\) |
Definition at line 469 of file PVfunctions.cpp.
gslpp::complex PVfunctions::C0 | ( | const double | p2, |
const double | m02, | ||
const double | m12, | ||
const double | m22 | ||
) | const |
\(C_{0}(0,0,p^2; m_0^2, m_1^2, m_2^2)\).
The scalar three-point function \(C_{0}(p_1^2,p_2^2,(p_1+p_2)^2; m_0^2, m_1^2, m_2^2)\) is defined as
\[ C_0(p_1^2,p_2^2,(p_1+p_2)^2; m_0^2,m_1^2,m_2^2) = \frac{1}{i\pi^2}\int d^4k\, \frac{1}{(k^2-m_0^2+i\varepsilon) \left[(k+p_1)^2-m_1^2+i\varepsilon\right] \left[(k+p_1+p_2)^2-m_2^2+i\varepsilon\right]}\,, \]
The current functions handles only the special case of \(p_1^2=p_2^2=0\). When bExtraMinusSign=true is passed to the constructor, an extra overall minus sign is added to the above definition.
[in] | p2 | momentum squared, \(p^2\) |
[in] | m02,m12,m22 | mass squared, \(m_0^2\), \(m_1^2\) and \(m_2^2\) |
Definition at line 479 of file PVfunctions.cpp.
double PVfunctions::C11 | ( | const double | m12, |
const double | m22, | ||
const double | m32 | ||
) | const |
\(C_{11}(m_1^2, m_2^2, m_3^2)\).
The function \(C_{11}(m_1^2, m_2^2, m_3^2)\) is defined as
\[ C_{11}(m_1^2,m_2^2,m_3^2) = \frac{m_1^4 m_2^2 (2 m_1^2-m_2^2) \log \left(\frac{m_1^2}{m_2^2}\right) +m_1^4 m_3^2 (m_3^2-2 m_1^2) \log \left(\frac{m_1^2}{m_3^2}\right) -m_1^2 (m_1^2-m_2^2) (m_1^2-m_3^2) (m_2^2-m_3^2) +m_2^2 m_3^2 (m_2^2-2 m_1^2) (m_3^2-2 m_1^2) \log \left(\frac{m_2^2}{m_3^2}\right)} {2 (m_1^2-m_2^2)^2 (m_1^2-m_3^2)^2 (m_2^2-m_3^2)}. \]
The definition is taken from Equation (B8) in [Arganda:2005ji].
[in] | m12,m22,m32 | mass squared, \(m_1^2\), \(m_2^2\) and \(m_3^2\) |
Definition at line 613 of file PVfunctions.cpp.
double PVfunctions::C12 | ( | const double | m12, |
const double | m22, | ||
const double | m32 | ||
) | const |
\(C_{12}(m_1^2, m_2^2, m_3^2)\).
The function \(C_{12}(m_1^2, m_2^2, m_3^2)\) is defined as
\[ C_{12}(m_1^2,m_2^2,m_3^2) = \frac{m_1^4 \left(m_2^4 \log \left(\frac{m_1^2}{m_2^2}\right) +m_3^2 (m_3^2-2 m_2^2) \log \left(\frac{m_1^2}{m_3^2}\right)\right) +m_2^4 m_3^2 (2 m_1^2-m_3^2) \log \left(\frac{m_2^2}{m_3^2}\right) +m_3^2 (m_1^2-m_2^2) (m_1^2-m_3^2) (m_2^2-m_3^2)} {2 (m_1^2-m_2^2) (m_1^2-m_3^2)^2 (m_2^2-m_3^2)^2}. \]
The definition is taken from Equation (B9) in [Arganda:2005ji].
[in] | m12,m22,m32 | mass squared, \(m_1^2\), \(m_2^2\) and \(m_3^2\) |
Definition at line 647 of file PVfunctions.cpp.
gslpp::complex PVfunctions::D0 | ( | const double | s, |
const double | t, | ||
const double | m02, | ||
const double | m12, | ||
const double | m22, | ||
const double | m32 | ||
) | const |
\(D_{0}(0,0,0,0,s,t; m_0^2, m_1^2, m_2^2, m_3^2)\).
The scalar four-point function \(D_{0}(p_1^2,p_2^2,p_3^2,p_4^2,(p_1+p_2)^2,(p_2+p_3)^2; m_0^2, m_1^2, m_2^2, m_3^2)\) is defined as
\begin{eqnarray*} &&D_0(p_1^2,p_2^2,p_3^2,p_4^2,(p_1+p_2)^2,(p_2+p_3)^2; m_0^2,m_1^2,m_2^2,m_3^2) \\ &&\quad = \frac{1}{i\pi^2}\int d^4k\, \frac{1}{(k^2-m_0^2+i\varepsilon) \left[(k+p_1)^2-m_1^2+i\varepsilon\right] \left[(k+p_1+p_2)^2-m_2^2+i\varepsilon\right] \left[(k+p_1+p_2+p_3)^2-m_2^2+i\varepsilon\right]}\,, \end{eqnarray*}
where \(p_1+p_2+p_3+p_4=0\). The current functions handles only the special case of \(p_1^2=p_2^2=p_3^2=p_4^2=0\).
[in] | s,t | momentum squared, \(s\) and \(t\) |
[in] | m02,m12,m22,m32 | mass squared, \(m_0^2\), \(m_1^2\), \(m_2^2\) and \(m_3^2\) |
Definition at line 680 of file PVfunctions.cpp.
gslpp::complex PVfunctions::D00 | ( | const double | s, |
const double | t, | ||
const double | m02, | ||
const double | m12, | ||
const double | m22, | ||
const double | m32 | ||
) | const |
\(D_{00}(0,0,0,0,s,t; m_0^2, m_1^2, m_2^2, m_3^2)\).
The tensor four-point function \(D_{0}(p_1^2,p_2^2,p_3^2,p_4^2,(p_1+p_2)^2,(p_2+p_3)^2; m_0^2, m_1^2, m_2^2, m_3^2)\) is defined as
\begin{eqnarray*} &&g_{\mu\nu} D_{00}(p_1^2,p_2^2,p_3^2,p_4^2,(p_1+p_2)^2,(p_2+p_3)^2; m_0^2,m_1^2,m_2^2,m_3^2) + \sum_{i,j=1}^{3}q_{i\mu}q_{j\mu} D_{ij}(p_1^2,p_2^2,p_3^2,p_4^2,(p_1+p_2)^2,(p_2+p_3)^2; m_0^2,m_1^2,m_2^2,m_3^2) \\ &&\quad = \frac{1}{i\pi^2}\int d^4k\, \frac{k_\mu k_\nu}{(k^2-m_0^2+i\varepsilon) \left[(k+p_1)^2-m_1^2+i\varepsilon\right] \left[(k+p_1+p_2)^2-m_2^2+i\varepsilon\right] \left[(k+p_1+p_2+p_3)^2-m_2^2+i\varepsilon\right]}\,, \end{eqnarray*}
where \(q_N=\sum_{i=1}^N p_i\) and \(p_1+p_2+p_3+p_4=0\). The current functions handles only the special case of \(p_1^2=p_2^2=p_3^2=p_4^2=0\).
[in] | s,t | momentum squared, \(s\) and \(t\) |
[in] | m02,m12,m22,m32 | mass squared, \(m_0^2\), \(m_1^2\), \(m_2^2\) and \(m_3^2\) |
Definition at line 768 of file PVfunctions.cpp.
|
private |
An overall factor for the one-point and three-point functions, initialized in PVfunctions().
Definition at line 386 of file PVfunctions.h.
|
private |
An object of type LoopToolsWrapper.
Definition at line 389 of file PVfunctions.h.
|
private |
An object of type Polylogarithms.
Definition at line 387 of file PVfunctions.h.