a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models Logo
EWSMTwoFermionsLEP2_Hollik Class Reference

A class for the cross sections and forward-backward asymmetries of \(e^+e^-\to f\bar{f}\) at LEP-II. More...

#include <EWSMTwoFermionsLEP2_Hollik.h>

Detailed Description

A class for the cross sections and forward-backward asymmetries of \(e^+e^-\to f\bar{f}\) at LEP-II.

Author
HEPfit Collaboration

The formulae used in the current class are referred to Hollik's pape, Fortschr. Phys 38 (1990), 3, 165, and calculated in the 't Hooft-Feynman gauge.

Definition at line 25 of file EWSMTwoFermionsLEP2_Hollik.h.

Public Member Functions

double AFB_l (const QCD::lepton l, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
 
double AFB_q (const QCD::quark q, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
 
 EWSMTwoFermionsLEP2_Hollik (const StandardModel &SM_i)
 Constructor. More...
 
double sigma_l (const QCD::lepton l, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
 
double sigma_l_old (const QCD::lepton l, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bQED) const
 
double sigma_q (const QCD::quark q, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
 
double sigma_q_old (const QCD::quark q, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bQED) const
 
void TEST (const double s, const double Mw) const
 

Private Member Functions

gslpp::complex A_e (const int j, const double s, const double Mw, const bool bWEAK) const
 
gslpp::complex A_l (const int j, const QCD::lepton l, const double s, const double Mw, const bool bWEAK) const
 
gslpp::complex A_q (const int j, const QCD::quark q, const double s, const double Mw, const bool bWEAK) const
 
double al (const QCD::lepton l, const double Mw) const
 
double aq (const QCD::quark q, const double Mw) const
 
gslpp::complex B0bar_Hollik (const double s, const double m1, const double m2) const
 
gslpp::complex B1bar_Hollik (const double s, const double m1, const double m2) const
 
gslpp::complex B1barPrime_Hollik (const double s, const double m1, const double m2) const
 
double Bf (const double s, const double mf) const
 
gslpp::complex C0_Hollik (const double s, const double M, const double Mprime) const
 
double C11A (const double s, const double mf, const double Qf) const
 
double C11V (const double s, const double mf, const double Qf) const
 
gslpp::complex C12A (const double s, const double mf, const double Qf) const
 
gslpp::complex C12V (const double s, const double GammaZ, const double mf, const double Qf) const
 
gslpp::complex C1plus_Hollik (const double s, const double M, const double Mprime) const
 
double C22A (const double s, const double mf, const double Qf) const
 
double C22V (const double s, const double GammaZ, const double mf, const double Qf) const
 
gslpp::complex C2minus_Hollik (const double s, const double M, const double Mprime) const
 
gslpp::complex C2plus_Hollik (const double s, const double M, const double Mprime) const
 
gslpp::complex C2zero_Hollik (const double s, const double M, const double Mprime) const
 
gslpp::complex chi (const int j, const double s, const double Mw, const bool bDP) const
 
gslpp::complex chi_gamma (const double mu, const double s, const double Mw, const bool bDP) const
 
gslpp::complex chi_gammaZ (const double mu, const double s, const double Mw, const bool bDP) const
 
gslpp::complex chi_Z (const double mu, const double s, const double Mw, const bool bDP) const
 
double delta () const
 
gslpp::complex deltaZL_fin (const double s, const double Mw) const
 
gslpp::complex FAgamma_l (const QCD::lepton l, const double s, const double Mw) const
 
gslpp::complex FAgamma_q (const QCD::quark q, const double s, const double Mw) const
 
gslpp::complex FAZ_l (const QCD::lepton l, const double s, const double Mw) const
 
gslpp::complex FAZ_q (const QCD::quark q, const double s, const double Mw) const
 
gslpp::complex Fb (const double s, const double Mw) const
 
gslpp::complex Fc (const double s, const double Mw) const
 
gslpp::complex Fd (const double s, const double Mw) const
 
gslpp::complex Fe (const double s, const double Mw) const
 
gslpp::complex Ff (const double s, const double Mw) const
 
gslpp::complex Fg (const double s, const double Mw) const
 
gslpp::complex FL_d (const double s, const double Mw) const
 
gslpp::complex FL_l (const QCD::lepton l, const double s, const double Mw) const
 
gslpp::complex FL_q (const QCD::quark q, const double s, const double Mw) const
 
gslpp::complex FL_u (const double s, const double Mw) const
 
gslpp::complex FVgamma_l (const QCD::lepton l, const double s, const double Mw) const
 
gslpp::complex FVgamma_q (const QCD::quark q, const double s, const double Mw) const
 
gslpp::complex FVZ_l (const QCD::lepton l, const double s, const double Mw) const
 
gslpp::complex FVZ_q (const QCD::quark q, const double s, const double Mw) const
 
double G1_l (const QCD::lepton l, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
 
double G1_q (const QCD::quark q, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
 
double G2_l (const QCD::lepton l, const double s, const double Mw, const bool bDP) const
 
double G2_q (const QCD::quark q, const double s, const double Mw, const bool bDP) const
 
double G3_l (const QCD::lepton l, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
 
double G3_q (const QCD::quark q, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
 
double gamma_delta (const double s, const double mf, const double Qf) const
 
gslpp::complex gamma_delta_int (const double s, const double GammaZ, const double mf, const double Qf) const
 
double gamma_delta_res (const double s, const double GammaZ, const double mf, const double Qf) const
 
double gamma_fin (const double s, const double mf, const double Qf) const
 
double gamma_tail (const double s, const double GammaZ) const
 
gslpp::complex Gb (const double s, const double Mw) const
 
gslpp::complex Gc (const double s, const double Mw) const
 
gslpp::complex Gd (const double s, const double Mw) const
 
gslpp::complex Ge (const double s, const double Mw) const
 
gslpp::complex Gf (const double s, const double Mw) const
 
gslpp::complex Gg (const double s, const double Mw) const
 
gslpp::complex GL_d (const double s, const double Mw) const
 
gslpp::complex GL_l (const QCD::lepton l, const double s, const double Mw) const
 
gslpp::complex GL_q (const QCD::quark q, const double s, const double Mw) const
 
gslpp::complex GL_u (const double s, const double Mw) const
 
gslpp::complex Lambda2 (const double s, const double M) const
 
gslpp::complex Lambda3 (const double s, const double M) const
 
double sigma_f_old (const double s, const double Mw, const double GammaZ, const double mf, const double Qf, const double I3f, const double Ncf, const bool bDP=true, const bool bQED=true) const
 
gslpp::complex Sigma_hat_gg (const double mu, const double s, const double Mw) const
 
gslpp::complex Sigma_hat_gZ (const double mu, const double s, const double Mw) const
 
gslpp::complex Sigma_hat_ZZ (const double mu, const double s, const double Mw) const
 
gslpp::complex V_e (const int j, const double s, const double Mw, const bool bWEAK) const
 
gslpp::complex V_l (const int j, const QCD::lepton l, const double s, const double Mw, const bool bWEAK) const
 
gslpp::complex V_q (const int j, const QCD::quark q, const double s, const double Mw, const bool bWEAK) const
 
double vl (const QCD::lepton l, const double Mw) const
 
double vq (const QCD::quark q, const double Mw) const
 

Private Attributes

bool bUseHollik
 
const EWSMOneLoopEW_HV myOneLoopEW_HV
 
const Polylogarithms Polylog
 
const PVfunctions PV
 
const StandardModelSM
 

Constructor & Destructor Documentation

◆ EWSMTwoFermionsLEP2_Hollik()

EWSMTwoFermionsLEP2_Hollik::EWSMTwoFermionsLEP2_Hollik ( const StandardModel SM_i)

Constructor.

Parameters
[in]SM_ia reference to an object of type StandardModel

Definition at line 12 of file EWSMTwoFermionsLEP2_Hollik.cpp.

13: SM(SM_i), myOneLoopEW_HV(SM_i), PV(true)
14{
15 bUseHollik = false;
16 //bUseHollik = true; // for test (use the self-energies in Hollik's paper)
17}

Member Function Documentation

◆ A_e()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::A_e ( const int  j,
const double  s,
const double  Mw,
const bool  bWEAK 
) const
private

Definition at line 786 of file EWSMTwoFermionsLEP2_Hollik.cpp.

788{
789 switch (j) {
790 case 1:
791 case 3:
792 case 6:
793 return 0.0;
794 case 2:
795 case 4:
796 case 8:
797 return al(SM.ELECTRON, Mw);
798 case 5:
799 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
800 return FAgamma_l(SM.ELECTRON, s, Mw);
801 case 7:
802 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
803 return FAZ_l(SM.ELECTRON, s, Mw);
804 case 9:
805 return ( 2.0 * vl(SM.ELECTRON, Mw) * al(SM.ELECTRON, Mw));
806 case 10:
807 return ( vl(SM.ELECTRON, Mw) * vl(SM.ELECTRON, Mw)
808 + al(SM.ELECTRON, Mw) * al(SM.ELECTRON, Mw));
809 case 11:
810 return ( 1.0 / 4.0 / (1.0 - Mw * Mw / SM.getMz() / SM.getMz()));
811 default:
812 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::A_e()");
813 }
814}
double vl(const QCD::lepton l, const double Mw) const
gslpp::complex FAgamma_l(const QCD::lepton l, const double s, const double Mw) const
double al(const QCD::lepton l, const double Mw) const
gslpp::complex FAZ_l(const QCD::lepton l, const double s, const double Mw) const
An observable class for the -boson mass.
Definition: Mw.h:22
@ ELECTRON
Definition: QCD.h:312
const double getMz() const
A get method to access the mass of the boson .
Test Observable.

◆ A_l()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::A_l ( const int  j,
const QCD::lepton  l,
const double  s,
const double  Mw,
const bool  bWEAK 
) const
private

Definition at line 876 of file EWSMTwoFermionsLEP2_Hollik.cpp.

879{
880 switch (j) {
881 case 1:
882 case 4:
883 case 5:
884 return 0.0;
885 case 2:
886 case 3:
887 case 7:
888 return al(l, Mw);
889 case 6:
890 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
891 return FAgamma_l(l, s, Mw);
892 case 8:
893 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
894 return FAZ_l(l, s, Mw);
895 case 9:
896 return ( 2.0 * vl(l, Mw) * al(l, Mw));
897 case 10:
898 return ( vl(l, Mw) * vl(l, Mw) + al(l, Mw) * al(l, Mw));
899 case 11:
900 return ( 1.0 / 4.0 / (1.0 - Mw * Mw / SM.getMz() / SM.getMz()));
901 default:
902 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::A_l()");
903 }
904}

◆ A_q()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::A_q ( const int  j,
const QCD::quark  q,
const double  s,
const double  Mw,
const bool  bWEAK 
) const
private

Definition at line 906 of file EWSMTwoFermionsLEP2_Hollik.cpp.

909{
910 switch (j) {
911 case 1:
912 case 4:
913 case 5:
914 return 0.0;
915 case 2:
916 case 3:
917 case 7:
918 return aq(q, Mw);
919 case 6:
920 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
921 return FAgamma_q(q, s, Mw);
922 case 8:
923 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
924 return FAZ_q(q, s, Mw);
925 case 9:
926 return ( 2.0 * vq(q, Mw) * aq(q, Mw));
927 case 10:
928 return ( vq(q, Mw) * vq(q, Mw) + aq(q, Mw) * aq(q, Mw));
929 case 11:
930 return ( 1.0 / 4.0 / (1.0 - Mw * Mw / SM.getMz() / SM.getMz()));
931 default:
932 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::A_q()");
933 }
934}
double aq(const QCD::quark q, const double Mw) const
gslpp::complex FAgamma_q(const QCD::quark q, const double s, const double Mw) const
double vq(const QCD::quark q, const double Mw) const
gslpp::complex FAZ_q(const QCD::quark q, const double s, const double Mw) const

◆ AFB_l()

double EWSMTwoFermionsLEP2_Hollik::AFB_l ( const QCD::lepton  l,
const double  s,
const double  Mw,
const double  GammaZ,
const bool  bDP,
const bool  bWEAK,
const bool  bQED 
) const
Parameters
[in]lname of a lepton
[in]sinvariant mass squared of the initial-state e^+ e^- pair
[in]Mwthe W-boson mass
[in]GammaZthe Z-boson decay width (used in the Born approximation/in the QED corrections)
[in]bDPwith/without dressed gauge-boson propagators
[in]bWEAKwith/without weak corrections
[in]bQEDwith/without QED corrections
Returns
the forward-backward asymmetry for e^+ e^- -> l lbar

Definition at line 48 of file EWSMTwoFermionsLEP2_Hollik.cpp.

51{
52 double mf = myOneLoopEW_HV.ml(l);
53 double betaf = sqrt(1.0 - 4.0 * mf * mf / s);
54
55 return ( 3.0 / 4.0 * betaf * G3_l(l, s, Mw, GammaZ, bDP, bWEAK, bQED)
56 / (G1_l(l, s, Mw, GammaZ, bDP, bWEAK, bQED)
57 + 2.0 * mf * mf / s * G2_l(l, s, Mw, bDP)));
58}
double ml(const QCD::lepton l) const
double G3_l(const QCD::lepton l, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
double G2_l(const QCD::lepton l, const double s, const double Mw, const bool bDP) const
double G1_l(const QCD::lepton l, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
An observable class for the total decay width of the boson.
Definition: GammaZ.h:32

◆ AFB_q()

double EWSMTwoFermionsLEP2_Hollik::AFB_q ( const QCD::quark  q,
const double  s,
const double  Mw,
const double  GammaZ,
const bool  bDP,
const bool  bWEAK,
const bool  bQED 
) const
Parameters
[in]qname of a quark
[in]sinvariant mass squared of the initial-state e^+ e^- pair
[in]Mwthe W-boson mass
[in]GammaZthe Z-boson decay width (used in the Born approximation/in the QED corrections)
[in]bDPwith/without dressed gauge-boson propagators
[in]bWEAKwith/without weak corrections
[in]bQEDwith/without QED corrections
Returns
the forward-backward asymmetry for e^+ e^- -> q qbar

Definition at line 60 of file EWSMTwoFermionsLEP2_Hollik.cpp.

63{
64 double mf = myOneLoopEW_HV.mq(q, sqrt(s));
65 double betaf = sqrt(1.0 - 4.0 * mf * mf / s);
66
67 return ( 3.0 / 4.0 * betaf * G3_q(q, s, Mw, GammaZ, bDP, bWEAK, bQED)
68 / (G1_q(q, s, Mw, GammaZ, bDP, bWEAK, bQED)
69 + 2.0 * mf * mf / s * G2_q(q, s, Mw, bDP)));
70}
double mq(const QCD::quark q, const double mu, const orders order=FULLNLO) const
double G3_q(const QCD::quark q, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
double G1_q(const QCD::quark q, const double s, const double Mw, const double GammaZ, const bool bDP, const bool bWEAK, const bool bQED) const
double G2_q(const QCD::quark q, const double s, const double Mw, const bool bDP) const

◆ al()

double EWSMTwoFermionsLEP2_Hollik::al ( const QCD::lepton  l,
const double  Mw 
) const
private
Parameters
[in]lname of lepton
[in]Mwthe W-boson mass
Returns
the tree-level axial-vector coupling for Z->l lbar

Definition at line 304 of file EWSMTwoFermionsLEP2_Hollik.cpp.

305{
306 double cW = Mw / SM.getMz(), sW = sqrt(1.0 - cW * cW);
307 return ( -SM.getLeptons(l).getIsospin() / (2.0 * sW * cW));
308}
double getIsospin() const
A get method to access the particle isospin.
Definition: Particle.h:115
const Particle & getLeptons(const QCD::lepton p) const
A get method to retrieve the member object of a lepton.

◆ aq()

double EWSMTwoFermionsLEP2_Hollik::aq ( const QCD::quark  q,
const double  Mw 
) const
private
Parameters
[in]qname of quark
[in]Mwthe W-boson mass
Returns
the tree-level axial-vector coupling for Z->q qbar

Definition at line 310 of file EWSMTwoFermionsLEP2_Hollik.cpp.

311{
312 double cW = Mw / SM.getMz(), sW = sqrt(1.0 - cW * cW);
313 return ( -SM.getQuarks(q).getIsospin() / (2.0 * sW * cW));
314}
const Particle & getQuarks(const QCD::quark q) const
A get method to access a quark as an object of the type Particle.
Definition: QCD.h:536

◆ B0bar_Hollik()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::B0bar_Hollik ( const double  s,
const double  m1,
const double  m2 
) const
private

Definition at line 1266 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1268{
1269 double mu = sqrt(s); // The result is independent of the renormalization scale.
1270 return ( PV.B0(mu*mu, s, m1*m1, m2 * m2) + log(m1 * m2 / mu / mu));
1271}
gslpp::complex B0(const double mu2, const double p2, const double m02, const double m12) const
.
Definition: PVfunctions.cpp:41

◆ B1bar_Hollik()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::B1bar_Hollik ( const double  s,
const double  m1,
const double  m2 
) const
private

Definition at line 1273 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1275{
1276 double mu = sqrt(s); // The result is independent of the renormalization scale.
1277 return ( PV.B1(mu*mu, s, m1*m1, m2 * m2) - log(m1 * m2 / mu / mu) / 2.0);
1278}
gslpp::complex B1(const double mu2, const double p2, const double m02, const double m12) const
.

◆ B1barPrime_Hollik()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::B1barPrime_Hollik ( const double  s,
const double  m1,
const double  m2 
) const
private

Definition at line 1280 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1282{
1283 double mu = sqrt(s); // The result is independent of the renormalization scale.
1284 return ( PV.B1p(mu*mu, s, m1*m1, m2 * m2));
1285}
gslpp::complex B1p(const double mu2, const double p2, const double m02, const double m12) const
.

◆ Bf()

double EWSMTwoFermionsLEP2_Hollik::Bf ( const double  s,
const double  mf 
) const
private

Definition at line 1172 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1173{
1174 return ( log(s / mf / mf) - 1.0);
1175
1176}

◆ C0_Hollik()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::C0_Hollik ( const double  s,
const double  M,
const double  Mprime 
) const
private

Definition at line 1287 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1289{
1290 return ( -PV.C0(s, M*M, Mprime*Mprime, M * M));
1291}
gslpp::complex C0(const double p2, const double m02, const double m12, const double m22) const
.

◆ C11A()

double EWSMTwoFermionsLEP2_Hollik::C11A ( const double  s,
const double  mf,
const double  Qf 
) const
private

Definition at line 1235 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1236{
1237 return 0.0;
1238}

◆ C11V()

double EWSMTwoFermionsLEP2_Hollik::C11V ( const double  s,
const double  mf,
const double  Qf 
) const
private

Definition at line 1230 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1231{
1232 return ( gamma_delta(s, mf, Qf) + gamma_fin(s, mf, Qf));
1233}
double gamma_fin(const double s, const double mf, const double Qf) const
double gamma_delta(const double s, const double mf, const double Qf) const

◆ C12A()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::C12A ( const double  s,
const double  mf,
const double  Qf 
) const
private

Definition at line 1246 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1247{
1248 return gslpp::complex(0.0, 0.0, false);
1249}

◆ C12V()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::C12V ( const double  s,
const double  GammaZ,
const double  mf,
const double  Qf 
) const
private

Definition at line 1240 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1242{
1243 return ( gamma_delta_int(s, GammaZ, mf, Qf).conjugate() + gamma_fin(s, mf, Qf));
1244}
gslpp::complex gamma_delta_int(const double s, const double GammaZ, const double mf, const double Qf) const

◆ C1plus_Hollik()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::C1plus_Hollik ( const double  s,
const double  M,
const double  Mprime 
) const
private

Definition at line 1293 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1295{
1296 double mb = myOneLoopEW_HV.mq(QCD::BOTTOM, sqrt(s));
1297 if (s == 4.0 * mb * mb)
1298 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::C1plus()");
1299
1300 return ( (log(Mprime / M) + B0bar_Hollik(s, M, M)
1301 - B0bar_Hollik(mb*mb, M, Mprime)
1302 + (Mprime * Mprime - M * M + mb * mb) * C0_Hollik(s, M, Mprime))
1303 / (4.0 * mb * mb - s));
1304}
gslpp::complex C0_Hollik(const double s, const double M, const double Mprime) const
gslpp::complex B0bar_Hollik(const double s, const double m1, const double m2) const
@ BOTTOM
Definition: QCD.h:329

◆ C22A()

double EWSMTwoFermionsLEP2_Hollik::C22A ( const double  s,
const double  mf,
const double  Qf 
) const
private

Definition at line 1257 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1258{
1259 return 0.0;
1260}

◆ C22V()

double EWSMTwoFermionsLEP2_Hollik::C22V ( const double  s,
const double  GammaZ,
const double  mf,
const double  Qf 
) const
private

Definition at line 1251 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1253{
1254 return ( gamma_delta_res(s, GammaZ, mf, Qf) + gamma_tail(s, GammaZ) + gamma_fin(s, mf, Qf));
1255}
double gamma_tail(const double s, const double GammaZ) const
double gamma_delta_res(const double s, const double GammaZ, const double mf, const double Qf) const

◆ C2minus_Hollik()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::C2minus_Hollik ( const double  s,
const double  M,
const double  Mprime 
) const
private

Definition at line 1328 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1330{
1331 if (s == 0.0)
1332 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::C1plus()");
1333
1334 double mb = myOneLoopEW_HV.mq(QCD::BOTTOM, sqrt(s));
1335 return ( (-(B1bar_Hollik(mb*mb, Mprime, M) - 1.0 / 4.0) / 2.0
1336 - C2zero_Hollik(s, M, Mprime)) / s);
1337}
gslpp::complex C2zero_Hollik(const double s, const double M, const double Mprime) const
gslpp::complex B1bar_Hollik(const double s, const double m1, const double m2) const

◆ C2plus_Hollik()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::C2plus_Hollik ( const double  s,
const double  M,
const double  Mprime 
) const
private

Definition at line 1315 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1317{
1318 double mb = myOneLoopEW_HV.mq(QCD::BOTTOM, sqrt(s));
1319 if (s == 4.0 * mb * mb)
1320 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::C2plus()");
1321
1322 return ( (B0bar_Hollik(s, M, M) / 2.0
1323 + (B1bar_Hollik(mb*mb, Mprime, M) - 1.0 / 4.0) / 2.0
1324 + (Mprime * Mprime - M * M + mb * mb) * C1plus_Hollik(s, M, Mprime)
1325 - C2zero_Hollik(s, M, Mprime)) / (4.0 * mb * mb - s));
1326}
gslpp::complex C1plus_Hollik(const double s, const double M, const double Mprime) const

◆ C2zero_Hollik()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::C2zero_Hollik ( const double  s,
const double  M,
const double  Mprime 
) const
private

Definition at line 1306 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1308{
1309 double mb = myOneLoopEW_HV.mq(QCD::BOTTOM, sqrt(s));
1310 return ( (B0bar_Hollik(s, M, M) + 1.0) / 4.0
1311 + (M * M - Mprime * Mprime - mb * mb) / 2.0 * C1plus_Hollik(s, M, Mprime)
1312 + Mprime * Mprime / 2.0 * C0_Hollik(s, M, Mprime));
1313}

◆ chi()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::chi ( const int  j,
const double  s,
const double  Mw,
const bool  bDP 
) const
private

Definition at line 936 of file EWSMTwoFermionsLEP2_Hollik.cpp.

938{
939 double mu = Mw; // The result is independent of the renormalization scale.
940
941 switch (j) {
942 case 1:
943 return chi_gamma(mu, s, Mw, bDP);
944 case 2:
945 return chi_Z(mu, s, Mw, bDP);
946 case 3:
947 return chi_gammaZ(mu, s, Mw, bDP);
948 case 4:
949 return chi_gammaZ(mu, s, Mw, bDP);
950 case 5:
951 return chi_gamma(mu, s, Mw, bDP);
952 case 6:
953 return chi_gamma(mu, s, Mw, bDP);
954 case 7:
955 return chi_Z(mu, s, Mw, bDP);
956 case 8:
957 return chi_Z(mu, s, Mw, bDP);
958 case 9:
959 // box contribution. add codes!!!
960 case 10:
961 // box contribution. add codes!!!
962 case 11:
963 // box contribution. add codes!!!
964 default:
965 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::chi()");
966 }
967}
gslpp::complex chi_Z(const double mu, const double s, const double Mw, const bool bDP) const
gslpp::complex chi_gammaZ(const double mu, const double s, const double Mw, const bool bDP) const
gslpp::complex chi_gamma(const double mu, const double s, const double Mw, const bool bDP) const

◆ chi_gamma()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::chi_gamma ( const double  mu,
const double  s,
const double  Mw,
const bool  bDP 
) const
private

Definition at line 340 of file EWSMTwoFermionsLEP2_Hollik.cpp.

342{
343 gslpp::complex chi;
344 if (bDP)
345 chi = s / (s + Sigma_hat_gg(mu, s, Mw));
346 else
347 chi = 1.0;
348
349 return chi;
350}
gslpp::complex chi(const int j, const double s, const double Mw, const bool bDP) const
gslpp::complex Sigma_hat_gg(const double mu, const double s, const double Mw) const

◆ chi_gammaZ()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::chi_gammaZ ( const double  mu,
const double  s,
const double  Mw,
const bool  bDP 
) const
private

Definition at line 352 of file EWSMTwoFermionsLEP2_Hollik.cpp.

354{
355 gslpp::complex chi;
356 if (bDP) {
357 // O(alpha) approximation
358 chi = Sigma_hat_gZ(mu, s, Mw) / s * chi_Z(mu, s, Mw, bDP);
359 } else
360 chi = 0.0;
361
362 return chi;
363}
gslpp::complex Sigma_hat_gZ(const double mu, const double s, const double Mw) const

◆ chi_Z()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::chi_Z ( const double  mu,
const double  s,
const double  Mw,
const bool  bDP 
) const
private

Definition at line 320 of file EWSMTwoFermionsLEP2_Hollik.cpp.

322{
323 gslpp::complex chi;
324 if (bDP) {
325 double Mz = SM.getMz();
326 chi = s / (s - Mz * Mz + Sigma_hat_ZZ(mu, s, Mw));
327 } else {
328 double Mw2 = Mw*Mw;
329 double Mz = SM.getMz(), Mz2 = Mz*Mz;
330 double cW2 = Mw2 / Mz2;
331 double sW2 = 1.0 - cW2;
332 double GammaZ_tree = 7.0 * SM.getAle() * Mz / 16.0 / sW2 / cW2;
333 gslpp::complex denom = gslpp::complex(s - Mz*Mz, Mz*GammaZ_tree, false);
334 chi = s / denom;
335 }
336
337 return chi;
338}
gslpp::complex Sigma_hat_ZZ(const double mu, const double s, const double Mw) const
const double getAle() const
A get method to retrieve the fine-structure constant .

◆ delta()

double EWSMTwoFermionsLEP2_Hollik::delta ( ) const
private

Definition at line 1166 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1167{
1168 return ( 1.0 - 0.85 * 0.85); // sqrt{s'} > 0.85*sqrt{s}
1169
1170}

◆ deltaZL_fin()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::deltaZL_fin ( const double  s,
const double  Mw 
) const
private

Definition at line 529 of file EWSMTwoFermionsLEP2_Hollik.cpp.

530{
531 double sW2 = 1.0 - Mw * Mw / SM.getMz() / SM.getMz();
532 double mb = myOneLoopEW_HV.mq(QCD::BOTTOM, sqrt(s));
533 double mt = myOneLoopEW_HV.mq(QCD::TOP, sqrt(s));
534
535 return ( (2.0 + mt * mt / Mw / Mw) / (2.0 * sW2)
536 * (B1bar_Hollik(mb*mb, mt, Mw)
537 + mb * mb * B1barPrime_Hollik(mb*mb, mt, Mw)));
538}
gslpp::complex B1barPrime_Hollik(const double s, const double m1, const double m2) const
@ TOP
Definition: QCD.h:328

◆ FAgamma_l()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FAgamma_l ( const QCD::lepton  l,
const double  s,
const double  Mw 
) const
private

Definition at line 617 of file EWSMTwoFermionsLEP2_Hollik.cpp.

619{
620 double Q_l = SM.getLeptons(l).getCharge();
621 double v_l = vl(l, Mw), a_l = al(l, Mw);
622
623 return ( SM.getAle() / (4.0 * M_PI)
624 * (2.0 * Q_l * v_l * a_l * Lambda2(s, SM.getMz()) + GL_l(l, s, Mw)));
625}
gslpp::complex Lambda2(const double s, const double M) const
gslpp::complex GL_l(const QCD::lepton l, const double s, const double Mw) const
double getCharge() const
A get method to access the particle charge.
Definition: Particle.h:97

◆ FAgamma_q()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FAgamma_q ( const QCD::quark  q,
const double  s,
const double  Mw 
) const
private

Definition at line 637 of file EWSMTwoFermionsLEP2_Hollik.cpp.

639{
640 double Q_q = SM.getQuarks(q).getCharge();
641 double v_q = vq(q, Mw), a_q = aq(q, Mw);
642
643 return ( SM.getAle() / (4.0 * M_PI)
644 * (2.0 * Q_q * v_q * a_q * Lambda2(s, SM.getMz()) + GL_q(q, s, Mw)));
645}
gslpp::complex GL_q(const QCD::quark q, const double s, const double Mw) const

◆ FAZ_l()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FAZ_l ( const QCD::lepton  l,
const double  s,
const double  Mw 
) const
private

Definition at line 394 of file EWSMTwoFermionsLEP2_Hollik.cpp.

396{
397 double cW = Mw / SM.getMz(), cW2 = cW*cW;
398 double sW2 = 1.0 - cW2, sW = sqrt(sW2);
399 double v_l = vl(l, Mw), a_l = al(l, Mw);
400
401 switch (l) {
405 return ( -SM.getAle() / (16.0 * M_PI * sW * cW)
406 * (Lambda2(s, SM.getMz()) / (4.0 * cW2 * sW2)
407 + Lambda2(s, Mw)*(2.0 * sW2 - 1.0) / (2.0 * sW2)
408 + Lambda3(s, Mw)*3.0 * cW2 / sW2));
412 return ( SM.getAle() / (4.0 * M_PI)
413 * (a_l * (3.0 * v_l * v_l + a_l * a_l) * Lambda2(s, SM.getMz()) + FL_l(l, s, Mw)));
414 default:
415 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::FL_q()");
416 }
417}
gslpp::complex FL_l(const QCD::lepton l, const double s, const double Mw) const
gslpp::complex Lambda3(const double s, const double M) const
@ NEUTRINO_2
Definition: QCD.h:313
@ NEUTRINO_1
Definition: QCD.h:311
@ MU
Definition: QCD.h:314
@ NEUTRINO_3
Definition: QCD.h:315
@ TAU
Definition: QCD.h:316

◆ FAZ_q()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FAZ_q ( const QCD::quark  q,
const double  s,
const double  Mw 
) const
private

Definition at line 428 of file EWSMTwoFermionsLEP2_Hollik.cpp.

430{
431 double v_q = vq(q, Mw), a_q = aq(q, Mw);
432
433 return ( SM.getAle() / (4.0 * M_PI)
434 * (a_q * (3.0 * v_q * v_q + a_q * a_q) * Lambda2(s, SM.getMz()) + FL_q(q, s, Mw)));
435}
gslpp::complex FL_q(const QCD::quark q, const double s, const double Mw) const

◆ Fb()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Fb ( const double  s,
const double  Mw 
) const
private

Definition at line 540 of file EWSMTwoFermionsLEP2_Hollik.cpp.

541{
542 double sW2 = 1.0 - Mw * Mw / SM.getMz() / SM.getMz();
543 double mt = myOneLoopEW_HV.mq(QCD::TOP, sqrt(s));
544 double vt = vq(QCD::TOP, Mw);
545 double at = aq(QCD::TOP, Mw);
546
547 return ( (vt + at) / (4.0 * sW2)
548 * (-3.0 / 2.0 + 2.0 * log(Mw / mt) + 4.0 * C2zero_Hollik(s, mt, Mw)
549 - 2.0 * s * (C2plus_Hollik(s, mt, Mw) - C2minus_Hollik(s, mt, Mw))
550 + 4.0 * s * C1plus_Hollik(s, mt, Mw) - 2.0 * s * C0_Hollik(s, mt, Mw))
551 - (vt - at) / (4.0 * sW2)*2.0 * mt * mt * C0_Hollik(s, mt, Mw));
552}
gslpp::complex C2plus_Hollik(const double s, const double M, const double Mprime) const
gslpp::complex C2minus_Hollik(const double s, const double M, const double Mprime) const

◆ Fc()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Fc ( const double  s,
const double  Mw 
) const
private

Definition at line 554 of file EWSMTwoFermionsLEP2_Hollik.cpp.

555{
556 double cW = Mw / SM.getMz();
557 double sW2 = 1.0 - cW*cW, sW = sqrt(sW2), sW3 = sW2*sW;
558 double mt = myOneLoopEW_HV.mq(QCD::TOP, sqrt(s));
559
560 return ( cW / (4.0 * sW3)
561 * (-3.0 / 2.0 + 12.0 * C2zero_Hollik(s, Mw, mt)
562 - 2.0 * s * (C2plus_Hollik(s, Mw, mt) - C2minus_Hollik(s, Mw, mt))
563 + 4.0 * s * C1plus_Hollik(s, Mw, mt)));
564}

◆ Fd()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Fd ( const double  s,
const double  Mw 
) const
private

Definition at line 566 of file EWSMTwoFermionsLEP2_Hollik.cpp.

567{
568 double sW2 = 1.0 - Mw * Mw / SM.getMz() / SM.getMz();
569 double mt = myOneLoopEW_HV.mq(QCD::TOP, sqrt(s));
570 double vt = vq(QCD::TOP, Mw);
571 double at = aq(QCD::TOP, Mw);
572
573 return ( (vt - at) / (4.0 * sW2) * mt * mt / Mw / Mw
574 * (-3.0 / 4.0 + log(Mw / mt) + 2.0 * C2zero_Hollik(s, mt, Mw)
575 - s * (C2plus_Hollik(s, mt, Mw) - C2minus_Hollik(s, mt, Mw)))
576 - (vt + at) / (4.0 * sW2) * mt * mt / Mw / Mw * mt * mt * C0_Hollik(s, mt, Mw));
577}

◆ Fe()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Fe ( const double  s,
const double  Mw 
) const
private

Definition at line 579 of file EWSMTwoFermionsLEP2_Hollik.cpp.

580{
581 double cW2 = Mw * Mw / SM.getMz() / SM.getMz(), cW = sqrt(cW2);
582 double sW2 = 1.0 - cW2, sW = sqrt(sW2), sW3 = sW2*sW;
583 double mt = myOneLoopEW_HV.mq(QCD::TOP, sqrt(s));
584
585 return ( -(sW2 - sW2) / (8.0 * sW3 * cW) * mt * mt / Mw / Mw
586 * (-1.0 / 4.0 - 2.0 * C2zero_Hollik(s, Mw, mt)));
587}

◆ Ff()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Ff ( const double  s,
const double  Mw 
) const
private

Definition at line 589 of file EWSMTwoFermionsLEP2_Hollik.cpp.

590{
591 double cW = Mw / SM.getMz();
592 double sW2 = 1.0 - cW*cW, sW = sqrt(sW2);
593 double mt = myOneLoopEW_HV.mq(QCD::TOP, sqrt(s));
594
595 return ( mt * mt / (4.0 * sW * cW) * C0_Hollik(s, Mw, mt));
596}

◆ Fg()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Fg ( const double  s,
const double  Mw 
) const
private

Definition at line 598 of file EWSMTwoFermionsLEP2_Hollik.cpp.

599{
600 return ( Ff(s, Mw));
601}
gslpp::complex Ff(const double s, const double Mw) const

◆ FL_d()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FL_d ( const double  s,
const double  Mw 
) const
private

Definition at line 484 of file EWSMTwoFermionsLEP2_Hollik.cpp.

485{
486 double cW = Mw / SM.getMz();
487 double sW2 = 1.0 - cW*cW, sW = sqrt(sW2), sW3 = sW2*sW;
488
489 return ( -(1.0 - 4.0 / 3.0 * sW2) / (8.0 * sW3 * cW) * Lambda2(s, Mw)
490 + 3.0 * cW / (4.0 * sW3) * Lambda3(s, Mw));
491}

◆ FL_l()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FL_l ( const QCD::lepton  l,
const double  s,
const double  Mw 
) const
private

Definition at line 437 of file EWSMTwoFermionsLEP2_Hollik.cpp.

439{
442 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::FL_l()");
443
444 double cW = Mw / SM.getMz();
445 double sW2 = 1.0 - cW*cW, sW = sqrt(sW2), sW3 = sW2*sW;
446
447 return ( -1.0 / (8.0 * sW3 * cW) * Lambda2(s, Mw)
448 + 3.0 * cW / (4.0 * sW3) * Lambda3(s, Mw));
449}

◆ FL_q()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FL_q ( const QCD::quark  q,
const double  s,
const double  Mw 
) const
private

Definition at line 451 of file EWSMTwoFermionsLEP2_Hollik.cpp.

453{
454 switch (q) {
455 case QCD::UP:
456 case QCD::CHARM:
457 return FL_u(s, Mw);
458 case QCD::DOWN:
459 case QCD::STRANGE:
460 return FL_d(s, Mw);
461 case QCD::BOTTOM:
462 {
463 double cW = Mw / SM.getMz();
464 double sW2 = 1.0 - cW*cW, sW = sqrt(sW2);
465 return ( Fb(s, Mw) + Fc(s, Mw) + Fd(s, Mw)
466 + Fe(s, Mw) + Ff(s, Mw) + Fg(s, Mw)
467 - (2.0 / 3.0 * sW2 - 1.0) / (4.0 * sW * cW) * deltaZL_fin(s, Mw));
468 }
469 case QCD::TOP:
470 default:
471 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::FL_q()");
472 }
473}
gslpp::complex deltaZL_fin(const double s, const double Mw) const
gslpp::complex Fd(const double s, const double Mw) const
gslpp::complex Fe(const double s, const double Mw) const
gslpp::complex FL_d(const double s, const double Mw) const
gslpp::complex FL_u(const double s, const double Mw) const
gslpp::complex Fg(const double s, const double Mw) const
gslpp::complex Fc(const double s, const double Mw) const
gslpp::complex Fb(const double s, const double Mw) const
@ UP
Definition: QCD.h:324
@ DOWN
Definition: QCD.h:325
@ STRANGE
Definition: QCD.h:327
@ CHARM
Definition: QCD.h:326

◆ FL_u()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FL_u ( const double  s,
const double  Mw 
) const
private

Definition at line 475 of file EWSMTwoFermionsLEP2_Hollik.cpp.

476{
477 double cW = Mw / SM.getMz();
478 double sW2 = 1.0 - cW*cW, sW = sqrt(sW2), sW3 = sW2*sW;
479
480 return ( (1.0 - 2.0 / 3.0 * sW2) / (8.0 * sW3 * cW) * Lambda2(s, Mw)
481 - 3.0 * cW / (4.0 * sW3) * Lambda3(s, Mw));
482}

◆ FVgamma_l()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FVgamma_l ( const QCD::lepton  l,
const double  s,
const double  Mw 
) const
private

Definition at line 607 of file EWSMTwoFermionsLEP2_Hollik.cpp.

609{
610 double Q_l = SM.getLeptons(l).getCharge();
611 double v_l = vl(l, Mw), a_l = al(l, Mw);
612
613 return ( SM.getAle() / (4.0 * M_PI)
614 * (Q_l * (v_l * v_l + a_l * a_l) * Lambda2(s, SM.getMz()) + GL_l(l, s, Mw)));
615}

◆ FVgamma_q()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FVgamma_q ( const QCD::quark  q,
const double  s,
const double  Mw 
) const
private

Definition at line 627 of file EWSMTwoFermionsLEP2_Hollik.cpp.

629{
630 double Q_q = SM.getQuarks(q).getCharge();
631 double v_q = vq(q, Mw), a_q = aq(q, Mw);
632
633 return ( SM.getAle() / (4.0 * M_PI)
634 * (Q_q * (v_q * v_q + a_q * a_q) * Lambda2(s, SM.getMz()) + GL_q(q, s, Mw)));
635}

◆ FVZ_l()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FVZ_l ( const QCD::lepton  l,
const double  s,
const double  Mw 
) const
private

Definition at line 369 of file EWSMTwoFermionsLEP2_Hollik.cpp.

371{
372 double cW = Mw / SM.getMz(), cW2 = cW*cW;
373 double sW2 = 1.0 - cW2, sW = sqrt(sW2);
374 double v_l = vl(l, Mw), a_l = al(l, Mw);
375
376 switch (l) {
380 return ( -SM.getAle() / (16.0 * M_PI * sW * cW)
381 * (Lambda2(s, SM.getMz()) / (4.0 * cW2 * sW2)
382 + Lambda2(s, Mw)*(2.0 * sW2 - 1.0) / (2.0 * sW2)
383 + Lambda3(s, Mw)*3.0 * cW2 / sW2));
387 return ( SM.getAle() / (4.0 * M_PI)
388 * (v_l * (v_l * v_l + 3.0 * a_l * a_l) * Lambda2(s, SM.getMz()) + FL_l(l, s, Mw)));
389 default:
390 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::FL_q()");
391 }
392}

◆ FVZ_q()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::FVZ_q ( const QCD::quark  q,
const double  s,
const double  Mw 
) const
private

Definition at line 419 of file EWSMTwoFermionsLEP2_Hollik.cpp.

421{
422 double v_q = vq(q, Mw), a_q = aq(q, Mw);
423
424 return ( SM.getAle() / (4.0 * M_PI)
425 * (v_q * (v_q * v_q + 3.0 * a_q * a_q) * Lambda2(s, SM.getMz()) + FL_q(q, s, Mw)));
426}

◆ G1_l()

double EWSMTwoFermionsLEP2_Hollik::G1_l ( const QCD::lepton  l,
const double  s,
const double  Mw,
const double  GammaZ,
const bool  bDP,
const bool  bWEAK,
const bool  bQED 
) const
private

Definition at line 969 of file EWSMTwoFermionsLEP2_Hollik.cpp.

973{
974 int j, k;
975 double G1 = 0.0;
976 for (j = 1; j <= 8; j++) {
977 for (k = 1; k <= 8; k++) {
978 G1 += ((V_e(j, s, Mw, bWEAK) * V_e(k, s, Mw, bWEAK).conjugate()
979 + A_e(j, s, Mw, bWEAK) * A_e(k, s, Mw, bWEAK).conjugate())
980 * (V_l(j, l, s, Mw, bWEAK) * V_l(k, l, s, Mw, bWEAK).conjugate()
981 + A_l(j, l, s, Mw, bWEAK) * A_l(k, l, s, Mw, bWEAK).conjugate())
982 * chi(j, s, Mw, bDP) * chi(k, s, Mw, bDP).conjugate()).real();
983 }
984 }
985
986 // QED corrections
987 if (bQED) {
988 double Qe = SM.getLeptons(SM.ELECTRON).getCharge();
989 double Qf = SM.getLeptons(l).getCharge();
990 double mf = myOneLoopEW_HV.ml(l);
991 ;
992 double ve = vl(SM.ELECTRON, Mw), ae = al(SM.ELECTRON, Mw);
993 double vf = vl(l, Mw), af = al(l, Mw);
994 double ve2 = ve*ve, ae2 = ae*ae, vf2 = vf*vf, af2 = af*af;
995 gslpp::complex chi1 = chi(1, s, Mw, bDP);
996 gslpp::complex chi2 = chi(2, s, Mw, bDP);
997
998 G1 += Qf * Qf * C11V(s, mf, Qf) * chi1.abs2()
999 + 2.0 * Qe * Qf * ((ve * vf * C12V(s, GammaZ, mf, Qf) + ae * af * C12A(s, mf, Qf))
1000 * chi1 * chi2.conjugate()).real()
1001 + ((ve2 + ae2)*(vf2 + af2) * C22V(s, GammaZ, mf, Qf)
1002 + 4.0 * ve * ae * vf * af * C22A(s, mf, Qf)) * chi2.abs2();
1003 }
1004
1005 return G1;
1006}
double C11V(const double s, const double mf, const double Qf) const
gslpp::complex C12V(const double s, const double GammaZ, const double mf, const double Qf) const
double C22A(const double s, const double mf, const double Qf) const
gslpp::complex A_e(const int j, const double s, const double Mw, const bool bWEAK) const
double C22V(const double s, const double GammaZ, const double mf, const double Qf) const
gslpp::complex V_e(const int j, const double s, const double Mw, const bool bWEAK) const
gslpp::complex A_l(const int j, const QCD::lepton l, const double s, const double Mw, const bool bWEAK) const
gslpp::complex V_l(const int j, const QCD::lepton l, const double s, const double Mw, const bool bWEAK) const
gslpp::complex C12A(const double s, const double mf, const double Qf) const

◆ G1_q()

double EWSMTwoFermionsLEP2_Hollik::G1_q ( const QCD::quark  q,
const double  s,
const double  Mw,
const double  GammaZ,
const bool  bDP,
const bool  bWEAK,
const bool  bQED 
) const
private

Definition at line 1008 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1012{
1013 int j, k;
1014 double G1 = 0.0;
1015 for (j = 1; j <= 8; j++) {
1016 for (k = 1; k <= 8; k++) {
1017 G1 += ((V_e(j, s, Mw, bWEAK) * V_e(k, s, Mw, bWEAK).conjugate()
1018 + A_e(j, s, Mw, bWEAK) * A_e(k, s, Mw, bWEAK).conjugate())
1019 * (V_q(j, q, s, Mw, bWEAK) * V_q(k, q, s, Mw, bWEAK).conjugate()
1020 + A_q(j, q, s, Mw, bWEAK) * A_q(k, q, s, Mw, bWEAK).conjugate())
1021 * chi(j, s, Mw, bDP) * chi(k, s, Mw, bDP).conjugate()).real();
1022 }
1023 }
1024
1025 // QED corrections
1026 if (bQED) {
1027 double Qe = SM.getLeptons(SM.ELECTRON).getCharge();
1028 double Qf = SM.getQuarks(q).getCharge();
1029 double mf = myOneLoopEW_HV.mq(q, sqrt(s));
1030 ;
1031 double ve = vl(SM.ELECTRON, Mw), ae = al(SM.ELECTRON, Mw);
1032 double vf = vq(q, Mw), af = aq(q, Mw);
1033 double ve2 = ve*ve, ae2 = ae*ae, vf2 = vf*vf, af2 = af*af;
1034 gslpp::complex chi1 = chi(1, s, Mw, bDP);
1035 gslpp::complex chi2 = chi(2, s, Mw, bDP);
1036
1037 G1 += Qf * Qf * C11V(s, mf, Qf) * chi1.abs2()
1038 + 2.0 * Qe * Qf * ((ve * vf * C12V(s, GammaZ, mf, Qf) + ae * af * C12A(s, mf, Qf))
1039 * chi1 * chi2.conjugate()).real()
1040 + ((ve2 + ae2)*(vf2 + af2) * C22V(s, GammaZ, mf, Qf)
1041 + 4.0 * ve * ae * vf * af * C22A(s, mf, Qf)) * chi2.abs2();
1042 }
1043
1044 return G1;
1045}
gslpp::complex V_q(const int j, const QCD::quark q, const double s, const double Mw, const bool bWEAK) const
gslpp::complex A_q(const int j, const QCD::quark q, const double s, const double Mw, const bool bWEAK) const

◆ G2_l()

double EWSMTwoFermionsLEP2_Hollik::G2_l ( const QCD::lepton  l,
const double  s,
const double  Mw,
const bool  bDP 
) const
private

Definition at line 1047 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1050{
1051 double Qe = SM.getLeptons(SM.ELECTRON).getCharge();
1052 double Qf = SM.getLeptons(l).getCharge();
1053 double ve = vl(SM.ELECTRON, Mw);
1054 double ae = al(SM.ELECTRON, Mw);
1055 double vf = vl(l, Mw);
1056 double Qe2 = Qe*Qe, Qf2 = Qf*Qf;
1057 double ve2 = ve*ve, ae2 = ae*ae, vf2 = vf*vf;
1058 gslpp::complex chi1 = chi(1, s, Mw, bDP);
1059 gslpp::complex chi2 = chi(2, s, Mw, bDP);
1060
1061 return ( Qe2 * Qf2 * chi1.abs2()
1062 + 2.0 * ve * vf * Qe * Qf * (chi2 * chi1.conjugate()).real()
1063 + (ve2 + ae2) * vf2 * chi2.abs2());
1064}

◆ G2_q()

double EWSMTwoFermionsLEP2_Hollik::G2_q ( const QCD::quark  q,
const double  s,
const double  Mw,
const bool  bDP 
) const
private

Definition at line 1066 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1068{
1069 double Qe = SM.getLeptons(SM.ELECTRON).getCharge();
1070 double Qf = SM.getQuarks(q).getCharge();
1071 double ve = vl(SM.ELECTRON, Mw);
1072 double ae = al(SM.ELECTRON, Mw);
1073 double vf = vq(q, Mw);
1074 double Qe2 = Qe*Qe, Qf2 = Qf*Qf;
1075 double ve2 = ve*ve, ae2 = ae*ae, vf2 = vf*vf;
1076 gslpp::complex chi1 = chi(1, s, Mw, bDP);
1077 gslpp::complex chi2 = chi(2, s, Mw, bDP);
1078
1079 return ( Qe2 * Qf2 * chi1.abs2()
1080 + 2.0 * ve * vf * Qe * Qf * (chi2 * chi1.conjugate()).real()
1081 + (ve2 + ae2) * vf2 * chi2.abs2());
1082}

◆ G3_l()

double EWSMTwoFermionsLEP2_Hollik::G3_l ( const QCD::lepton  l,
const double  s,
const double  Mw,
const double  GammaZ,
const bool  bDP,
const bool  bWEAK,
const bool  bQED 
) const
private

Definition at line 1084 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1088{
1089 int j, k;
1090 double G3 = 0.0;
1091 for (j = 1; j <= 8; j++) {
1092 for (k = 1; k <= 8; k++) {
1093 G3 += ((V_e(j, s, Mw, bWEAK) * A_e(k, s, Mw, bWEAK).conjugate()
1094 + A_e(j, s, Mw, bWEAK) * V_e(k, s, Mw, bWEAK).conjugate())
1095 * (V_l(j, l, s, Mw, bWEAK) * A_l(k, l, s, Mw, bWEAK).conjugate()
1096 + A_l(j, l, s, Mw, bWEAK) * V_l(k, l, s, Mw, bWEAK).conjugate())
1097 * chi(j, s, Mw, bDP) * chi(k, s, Mw, bDP).conjugate()).real();
1098 }
1099 }
1100
1101 // QED corrections
1102 if (bQED) {
1103 double Qe = SM.getLeptons(SM.ELECTRON).getCharge();
1104 double Qf = SM.getLeptons(l).getCharge();
1105 double mf = myOneLoopEW_HV.ml(l);
1106 ;
1107 double ve = vl(SM.ELECTRON, Mw), ae = al(SM.ELECTRON, Mw);
1108 double vf = vl(l, Mw), af = al(l, Mw);
1109 double ve2 = ve*ve, ae2 = ae*ae, vf2 = vf*vf, af2 = af*af;
1110 gslpp::complex chi1 = chi(1, s, Mw, bDP);
1111 gslpp::complex chi2 = chi(2, s, Mw, bDP);
1112
1113 G3 += Qf * Qf * C11A(s, mf, Qf) * chi1.abs2()
1114 + 2.0 * Qe * Qf * ((ae * af * C12V(s, GammaZ, mf, Qf) + ve * vf * C12A(s, mf, Qf))
1115 * chi1 * chi2.conjugate()).real()
1116 + (4.0 * ve * ae * vf * af * C22V(s, GammaZ, mf, Qf)
1117 + (ve2 + ae2)*(vf2 + af2) * C22A(s, mf, Qf)) * chi2.abs2();
1118 }
1119
1120 return G3;
1121}
double C11A(const double s, const double mf, const double Qf) const

◆ G3_q()

double EWSMTwoFermionsLEP2_Hollik::G3_q ( const QCD::quark  q,
const double  s,
const double  Mw,
const double  GammaZ,
const bool  bDP,
const bool  bWEAK,
const bool  bQED 
) const
private

Definition at line 1123 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1127{
1128 int j, k;
1129 double G3 = 0.0;
1130 for (j = 1; j <= 8; j++) {
1131 for (k = 1; k <= 8; k++) {
1132 G3 += ((V_e(j, s, Mw, bWEAK) * A_e(k, s, Mw, bWEAK).conjugate()
1133 + A_e(j, s, Mw, bWEAK) * V_e(k, s, Mw, bWEAK).conjugate())
1134 * (V_q(j, q, s, Mw, bWEAK) * A_q(k, q, s, Mw, bWEAK).conjugate()
1135 + A_q(j, q, s, Mw, bWEAK) * V_q(k, q, s, Mw, bWEAK).conjugate())
1136 * chi(j, s, Mw, bDP) * chi(k, s, Mw, bDP).conjugate()).real();
1137 }
1138 }
1139
1140 // QED corrections
1141 if (bQED) {
1142 double Qe = SM.getLeptons(SM.ELECTRON).getCharge();
1143 double Qf = SM.getQuarks(q).getCharge();
1144 double mf = myOneLoopEW_HV.mq(q, sqrt(s));
1145 ;
1146 double ve = vl(SM.ELECTRON, Mw), ae = al(SM.ELECTRON, Mw);
1147 double vf = vq(q, Mw), af = aq(q, Mw);
1148 double ve2 = ve*ve, ae2 = ae*ae, vf2 = vf*vf, af2 = af*af;
1149 gslpp::complex chi1 = chi(1, s, Mw, bDP);
1150 gslpp::complex chi2 = chi(2, s, Mw, bDP);
1151
1152 G3 += Qf * Qf * C11A(s, mf, Qf) * chi1.abs2()
1153 + 2.0 * Qe * Qf * ((ae * af * C12V(s, GammaZ, mf, Qf) + ve * vf * C12A(s, mf, Qf))
1154 * chi1 * chi2.conjugate()).real()
1155 + (4.0 * ve * ae * vf * af * C22V(s, GammaZ, mf, Qf)
1156 + (ve2 + ae2)*(vf2 + af2) * C22A(s, mf, Qf)) * chi2.abs2();
1157 }
1158
1159 return G3;
1160}

◆ gamma_delta()

double EWSMTwoFermionsLEP2_Hollik::gamma_delta ( const double  s,
const double  mf,
const double  Qf 
) const
private

Definition at line 1178 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1179{
1180 double me = SM.getLeptons(SM.ELECTRON).getMass();
1181
1182 return ( 2.0 * SM.getAle() / M_PI
1183 * (Bf(s, me) + Qf * Qf * Bf(s, mf)) * log(delta()));
1184}
double Bf(const double s, const double mf) const
const double & getMass() const
A get method to access the particle mass.
Definition: Particle.h:61

◆ gamma_delta_int()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::gamma_delta_int ( const double  s,
const double  GammaZ,
const double  mf,
const double  Qf 
) const
private

Definition at line 1186 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1188{
1189 double me = SM.getLeptons(SM.ELECTRON).getMass();
1190 double Mz = SM.getMz();
1191 gslpp::complex M2 = gslpp::complex(Mz*Mz, -Mz*GammaZ, false);
1192 double d = delta();
1193
1194 return ( 2.0 * SM.getAle() / M_PI
1195 * (Bf(s, me) * log(d * (s - M2) / (s - s * d - M2)) + Qf * Qf * Bf(s, mf) * log(d)));
1196}

◆ gamma_delta_res()

double EWSMTwoFermionsLEP2_Hollik::gamma_delta_res ( const double  s,
const double  GammaZ,
const double  mf,
const double  Qf 
) const
private

Definition at line 1198 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1200{
1201 double me = SM.getLeptons(SM.ELECTRON).getMass();
1202 double Mz = SM.getMz();
1203 gslpp::complex M2 = gslpp::complex(Mz*Mz, -Mz*GammaZ, false);
1204 double d = delta();
1205
1206 return ( 2.0 * SM.getAle() / M_PI
1207 * (Bf(s, me) * log((d * (s - M2) / (s - s * d - M2)).abs())
1208 + Qf * Qf * Bf(s, mf) * log(d)));
1209}

◆ gamma_fin()

double EWSMTwoFermionsLEP2_Hollik::gamma_fin ( const double  s,
const double  mf,
const double  Qf 
) const
private

Definition at line 1222 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1223{
1224 double me = SM.getLeptons(SM.ELECTRON).getMass();
1225
1226 return ( 3.0 * SM.getAle() / 2.0 / M_PI * (Bf(s, me) + Qf * Qf * Bf(s, mf))
1227 + SM.getAle() / M_PI * (1 + Qf * Qf)*(M_PI * M_PI / 3.0 - 1.0 / 2.0));
1228}

◆ gamma_tail()

double EWSMTwoFermionsLEP2_Hollik::gamma_tail ( const double  s,
const double  GammaZ 
) const
private

Definition at line 1211 of file EWSMTwoFermionsLEP2_Hollik.cpp.

1212{
1213 double me = SM.getLeptons(SM.ELECTRON).getMass();
1214 double Mz = SM.getMz();
1215 double d = delta();
1216
1217 return ( 2.0 * SM.getAle() / M_PI
1218 * Bf(s, me)*(s - Mz * Mz) / Mz / GammaZ
1219 * (atan((Mz * Mz - s + s * d) / Mz / GammaZ) - atan((Mz * Mz - s) / Mz / GammaZ)));
1220}

◆ Gb()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Gb ( const double  s,
const double  Mw 
) const
private

Definition at line 696 of file EWSMTwoFermionsLEP2_Hollik.cpp.

697{
698 double sW2 = 1.0 - Mw * Mw / SM.getMz() / SM.getMz();
699 double mt = myOneLoopEW_HV.mq(QCD::TOP, sqrt(s));
700
701 return ( 1 / (6.0 * sW2)
702 * (-3.0 / 2.0 + 2.0 * log(Mw / mt) + 4.0 * C2zero_Hollik(s, mt, Mw)
703 - 2.0 * s * (C2plus_Hollik(s, mt, Mw) - C2minus_Hollik(s, mt, Mw))
704 + 4.0 * s * C1plus_Hollik(s, mt, Mw) - 2.0 * s * C0_Hollik(s, mt, Mw)
705 - 2.0 * mt * mt * C0_Hollik(s, mt, Mw)));
706}

◆ Gc()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Gc ( const double  s,
const double  Mw 
) const
private

Definition at line 708 of file EWSMTwoFermionsLEP2_Hollik.cpp.

709{
710 double sW2 = 1.0 - Mw * Mw / SM.getMz() / SM.getMz();
711 double mt = myOneLoopEW_HV.mq(QCD::TOP, sqrt(s));
712
713 return ( -1.0 / (4.0 * sW2)
714 * (-3.0 / 2.0 + 12.0 * C2zero_Hollik(s, Mw, mt)
715 - 2.0 * s * (C2plus_Hollik(s, Mw, mt) - C2minus_Hollik(s, Mw, mt))
716 + 4.0 * s * C1plus_Hollik(s, Mw, mt)));
717}

◆ Gd()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Gd ( const double  s,
const double  Mw 
) const
private

Definition at line 719 of file EWSMTwoFermionsLEP2_Hollik.cpp.

720{
721 double sW2 = 1.0 - Mw * Mw / SM.getMz() / SM.getMz();
722 double mt = myOneLoopEW_HV.mq(QCD::TOP, sqrt(s));
723
724 return ( 1.0 / (6.0 * sW2) * mt * mt / Mw / Mw
725 * (-3.0 / 4.0 + log(Mw / mt) + 2.0 * C2zero_Hollik(s, mt, Mw)
726 - s * (C2plus_Hollik(s, mt, Mw) - C2minus_Hollik(s, mt, Mw))
727 - mt * mt * C0_Hollik(s, mt, Mw)));
728}

◆ Ge()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Ge ( const double  s,
const double  Mw 
) const
private

Definition at line 730 of file EWSMTwoFermionsLEP2_Hollik.cpp.

731{
732 double sW2 = 1.0 - Mw * Mw / SM.getMz() / SM.getMz();
733 double mt = myOneLoopEW_HV.mq(QCD::TOP, sqrt(s));
734
735 return ( -1.0 / (4.0 * sW2) * mt * mt / Mw / Mw
736 * (-1.0 / 4.0 + 2.0 * C2zero_Hollik(s, Mw, mt)));
737}

◆ Gf()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Gf ( const double  s,
const double  Mw 
) const
private

Definition at line 739 of file EWSMTwoFermionsLEP2_Hollik.cpp.

740{
741 double sW2 = 1.0 - Mw * Mw / SM.getMz() / SM.getMz();
742 double mt = myOneLoopEW_HV.mq(QCD::TOP, sqrt(s));
743
744 return ( mt * mt / (4.0 * sW2) * C0_Hollik(s, Mw, mt));
745}

◆ Gg()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Gg ( const double  s,
const double  Mw 
) const
private

Definition at line 747 of file EWSMTwoFermionsLEP2_Hollik.cpp.

748{
749 return ( Gf(s, Mw));
750}
gslpp::complex Gf(const double s, const double Mw) const

◆ GL_d()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::GL_d ( const double  s,
const double  Mw 
) const
private

Definition at line 688 of file EWSMTwoFermionsLEP2_Hollik.cpp.

689{
690 double cW = Mw / SM.getMz();
691 double sW2 = 1.0 - cW*cW;
692
693 return ( Lambda2(s, Mw) / (6.0 * sW2) - 3.0 / (4.0 * sW2) * Lambda3(s, Mw));
694}

◆ GL_l()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::GL_l ( const QCD::lepton  l,
const double  s,
const double  Mw 
) const
private

Definition at line 647 of file EWSMTwoFermionsLEP2_Hollik.cpp.

649{
652 return gslpp::complex(0.0, 0.0, false);
653
654 double cW = Mw / SM.getMz();
655 double sW2 = 1.0 - cW*cW;
656
657 return ( -3.0 / (4.0 * sW2) * Lambda3(s, Mw));
658}

◆ GL_q()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::GL_q ( const QCD::quark  q,
const double  s,
const double  Mw 
) const
private

Definition at line 660 of file EWSMTwoFermionsLEP2_Hollik.cpp.

662{
663 switch (q) {
664 case QCD::UP:
665 case QCD::CHARM:
666 return GL_u(s, Mw);
667 case QCD::DOWN:
668 case QCD::STRANGE:
669 return GL_d(s, Mw);
670 case QCD::BOTTOM:
671 return ( Gb(s, Mw) + Gc(s, Mw) + Gd(s, Mw)
672 + Ge(s, Mw) + Gf(s, Mw) + Gg(s, Mw)
673 - 1.0 / 6.0 * deltaZL_fin(s, Mw));
674 case QCD::TOP:
675 default:
676 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::GL_q()");
677 }
678}
gslpp::complex Ge(const double s, const double Mw) const
gslpp::complex Gc(const double s, const double Mw) const
gslpp::complex Gb(const double s, const double Mw) const
gslpp::complex Gd(const double s, const double Mw) const
gslpp::complex GL_u(const double s, const double Mw) const
gslpp::complex GL_d(const double s, const double Mw) const
gslpp::complex Gg(const double s, const double Mw) const

◆ GL_u()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::GL_u ( const double  s,
const double  Mw 
) const
private

Definition at line 680 of file EWSMTwoFermionsLEP2_Hollik.cpp.

681{
682 double cW = Mw / SM.getMz();
683 double sW2 = 1.0 - cW*cW;
684
685 return ( -Lambda2(s, Mw) / (12.0 * sW2) + 3.0 / (4.0 * sW2) * Lambda3(s, Mw));
686}

◆ Lambda2()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Lambda2 ( const double  s,
const double  M 
) const
private

Definition at line 493 of file EWSMTwoFermionsLEP2_Hollik.cpp.

494{
495 if (s <= 0.0)
496 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::Lambda2()");
497
498 double w = M * M / s;
499 double real = -7.0 / 2.0 - 2.0 * w - (2.0 * w + 3.0) * log(w)
500 + 2.0 * (1.0 + w)*(1.0 + w)
501 *(log(w) * log((1.0 + w) / w) - Polylog.Li2(-1.0 / w).real());
502 double imag = -M_PI * (3.0 + 2.0 * w - 2.0 * (1.0 + w)*(1.0 + w) * log((1.0 + w) / w));
503 return gslpp::complex(real, imag, false);
504}
gslpp::complex Li2(const double x) const
The dilogarithm with a real argument, .

◆ Lambda3()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Lambda3 ( const double  s,
const double  M 
) const
private

Definition at line 506 of file EWSMTwoFermionsLEP2_Hollik.cpp.

507{
508 if (s <= 0.0)
509 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::Lambda3()");
510
511 double w = M * M / s;
512 if (s < 4.0 * M * M) {
513 double sqrt_tmp = sqrt(4.0 * w - 1.0);
514 double atan_tmp = atan(1.0 / sqrt_tmp);
515 return ( 5.0 / 6.0 - 2.0 * w / 3.0 + 2.0 / 3.0 * (2.0 * w + 1.0) * sqrt_tmp * atan_tmp
516 - 8.0 / 3.0 * w * (w + 2.0) * atan_tmp * atan_tmp);
517 } else {
518 double sqrt_tmp = sqrt(1.0 - 4.0 * w);
519 gslpp::complex log_tmp;
520 if (sqrt_tmp > 1.0)
521 log_tmp = log((sqrt_tmp - 1.0) / (sqrt_tmp + 1.0));
522 else
523 log_tmp = gslpp::complex(log(-(sqrt_tmp - 1.0) / (sqrt_tmp + 1.0)), M_PI, false);
524 return ( 5.0 / 6.0 - 2.0 * w / 3.0 - (2.0 * w + 1.0) / 3.0 * sqrt_tmp * log_tmp
525 + 2.0 / 3.0 * w * (w + 2.0) * log_tmp * log_tmp);
526 }
527}

◆ sigma_f_old()

double EWSMTwoFermionsLEP2_Hollik::sigma_f_old ( const double  s,
const double  Mw,
const double  GammaZ,
const double  mf,
const double  Qf,
const double  I3f,
const double  Ncf,
const bool  bDP = true,
const bool  bQED = true 
) const
private

Definition at line 97 of file EWSMTwoFermionsLEP2_Hollik.cpp.

101{
102 double betaf = sqrt(1.0 - 4.0 * mf * mf / s);
103 double Qe = SM.getLeptons(SM.ELECTRON).getCharge();
104 double I3e = SM.getLeptons(SM.ELECTRON).getIsospin();
105 double Mz = SM.getMz();
106 double cW2 = Mw * Mw / Mz / Mz, cW = sqrt(cW2);
107 double sW2 = 1.0 - cW2, sW = sqrt(sW2);
108 double ve = -(I3e - 2.0 * Qe * sW2) / (2.0 * sW * cW);
109 double ae = -I3e / (2.0 * sW * cW);
110 double vf = -(I3f - 2.0 * Qf * sW2) / (2.0 * sW * cW);
111 double af = -I3f / (2.0 * sW * cW);
112 double Qe2 = Qe*Qe, Qf2 = Qf*Qf; //, betaf2 = betaf*betaf;
113 double ve2 = ve*ve, ae2 = ae*ae, vf2 = vf*vf, af2 = af*af;
114
115 double mu = sqrt(s); // The renormalized self-energies are independent of the scale.
116 gslpp::complex chiG = chi_gamma(mu, s, Mw, bDP);
117 gslpp::complex chiZ = chi_Z(mu, s, Mw, bDP);
118 gslpp::complex chiGZ = chi_gammaZ(mu, s, Mw, bDP);
119
120 double G1 = Qe2 * Qf2 * chiG.abs2()
121 + 2.0 * ve * vf * Qe * Qf * (chiZ * chiG.conjugate()).real()
122 //+ (ve2 + ae2)*(vf2 + betaf2*af2)*chiZ.abs2() // with betaf2
123 + (ve2 + ae2)*(vf2 + af2) * chiZ.abs2() // without betaf2
124 + (Qe2 * (vf2 + af2) + 2.0 * ve * vf * Qe * Qf + (ve2 + ae2) * Qf2) * chiGZ.abs2()
125 + 2.0 * (vf * Qe2 * Qf + ve * Qe * Qf2)*(chiG * chiGZ.conjugate()).real()
126 + 2.0 * (ve * (vf2 + af2) * Qe + (ve2 + ae2) * vf * Qf)*(chiZ * chiGZ.conjugate()).real();
127 double G2 = Qe2 * Qf2 * chiG.abs2()
128 + 2.0 * ve * vf * Qe * Qf * (chiZ * chiG.conjugate()).real()
129 + (ve2 + ae2) * vf2 * chiZ.abs2();
130
131 // QED corrections
132 if (bQED) {
133 G1 += Qf * Qf * C11V(s, mf, Qf) * chiG.abs2()
134 + 2.0 * Qe * Qf * ((ve * vf * C12V(s, GammaZ, mf, Qf) + ae * af * C12A(s, mf, Qf))
135 * chiG * chiGZ.conjugate()).real()
136 + ((ve2 + ae2)*(vf2 + af2) * C22V(s, GammaZ, mf, Qf)
137 + 4.0 * ve * ae * vf * af * C22A(s, mf, Qf)) * chiZ.abs2();
138 }
139
140 return ( 4.0 * M_PI * SM.getAle() * SM.getAle() / (3.0 * s) * Ncf * betaf * (G1 + 2.0 * mf * mf / s * G2));
141}

◆ Sigma_hat_gg()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Sigma_hat_gg ( const double  mu,
const double  s,
const double  Mw 
) const
private

Definition at line 260 of file EWSMTwoFermionsLEP2_Hollik.cpp.

262{
263 // Bosonic contributions to self-energies
264 gslpp::complex Sigma_gg_s, Pi_gg_0;
265 if (!bUseHollik) {
266 Sigma_gg_s = myOneLoopEW_HV.SigmaGammaGamma_bos(mu, s, Mw);
267 Pi_gg_0 = myOneLoopEW_HV.PiGammaGamma_bos(mu, 0.0, Mw);
268 } else {
269 //-- TEST (use the self-energies in Hollik's paper) --
271 Pi_gg_0 = myOneLoopEW_HV.PiGammaGamma_bos_Hollik(mu, 0.0, Mw);
272 }
273
274 // Fermionic contributions to self-energies
275 double muForMq = sqrt(s); // renormalization scale for the running quark mass
276 Sigma_gg_s += myOneLoopEW_HV.SigmaGammaGamma_fer(mu, muForMq, s);
277 Pi_gg_0 += myOneLoopEW_HV.PiGammaGamma_fer(mu, muForMq, 0.0);
278
279 // Refactoring
280 Sigma_gg_s *= SM.getAle() / 4.0 / M_PI;
281 Pi_gg_0 *= SM.getAle() / 4.0 / M_PI;
282
283 return ( Sigma_gg_s - s * Pi_gg_0);
284}
gslpp::complex SigmaGammaGamma_fer(const double mu, const double muForMq, const double s) const
gslpp::complex SigmaGammaGamma_bos(const double mu, const double s, const double Mw) const
gslpp::complex PiGammaGamma_fer(const double mu, const double muForMq, const double s) const
gslpp::complex PiGammaGamma_bos_Hollik(const double mu, const double s, const double Mw) const
gslpp::complex SigmaGammaGamma_bos_Hollik(const double mu, const double s, const double Mw) const
gslpp::complex PiGammaGamma_bos(const double mu, const double s, const double Mw) const

◆ Sigma_hat_gZ()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Sigma_hat_gZ ( const double  mu,
const double  s,
const double  Mw 
) const
private

Definition at line 216 of file EWSMTwoFermionsLEP2_Hollik.cpp.

218{
219 double Mw2 = Mw*Mw;
220 double Mz = SM.getMz(), Mz2 = Mz*Mz;
221 double cW2 = Mw2 / Mz2, cW = sqrt(cW2);
222 double sW2 = 1.0 - cW2, sW = sqrt(sW2);
223
224 // Bosonic contributions to self-energies
225 gslpp::complex Sigma_WW_Mw2, Sigma_ZZ_Mz2, Sigma_Zg_s, Sigma_Zg_0;
226 if (!bUseHollik) {
227 Sigma_WW_Mw2 = myOneLoopEW_HV.SigmaWW_bos(mu, Mw2, Mw);
228 Sigma_ZZ_Mz2 = myOneLoopEW_HV.SigmaZZ_bos(mu, Mz2, Mw);
229 Sigma_Zg_s = myOneLoopEW_HV.SigmaZgamma_bos(mu, s, Mw);
230 Sigma_Zg_0 = myOneLoopEW_HV.SigmaZgamma_bos(mu, 0.0, Mw);
231 } else {
232 //-- TEST (use the self-energies in Hollik's paper) --
233 Sigma_WW_Mw2 = myOneLoopEW_HV.SigmaWW_bos_Hollik(mu, Mw2, Mw);
234 Sigma_ZZ_Mz2 = myOneLoopEW_HV.SigmaZZ_bos_Hollik(mu, Mz2, Mw);
235 Sigma_Zg_s = myOneLoopEW_HV.SigmaZgamma_bos_Hollik(mu, s, Mw);
236 Sigma_Zg_0 = myOneLoopEW_HV.SigmaZgamma_bos_Hollik(mu, 0.0, Mw);
237 }
238
239 // Fermionic contributions to self-energies
240 double muForMq = sqrt(s); // renormalization scale for the running quark mass
241 Sigma_WW_Mw2 += myOneLoopEW_HV.SigmaWW_fer(mu, muForMq, Mw2);
242 Sigma_ZZ_Mz2 += myOneLoopEW_HV.SigmaZZ_fer(mu, muForMq, Mz2, Mw);
243 Sigma_Zg_s += myOneLoopEW_HV.SigmaZgamma_fer(mu, muForMq, s, Mw);
244 Sigma_Zg_0 += myOneLoopEW_HV.SigmaZgamma_fer(mu, muForMq, 0.0, Mw);
245
246 // Refactoring
247 Sigma_WW_Mw2 *= SM.getAle() / 4.0 / M_PI / sW2;
248 Sigma_ZZ_Mz2 *= SM.getAle() / 4.0 / M_PI / sW2 / cW2;
249 Sigma_Zg_s *= SM.getAle() / 4.0 / M_PI / sW / cW;
250 Sigma_Zg_0 *= SM.getAle() / 4.0 / M_PI / sW / cW;
251
252 // Counter terms for the mass renormalization
253 double deltaMw2 = Sigma_WW_Mw2.real();
254 double deltaMz2 = Sigma_ZZ_Mz2.real();
255
256 return ( Sigma_Zg_s - Sigma_Zg_0
257 + s * (cW / sW * (deltaMz2 / Mz2 - deltaMw2 / Mw2) + 2.0 * Sigma_Zg_0 / Mz2));
258}
gslpp::complex SigmaZgamma_bos(const double mu, const double s, const double Mw) const
gslpp::complex SigmaZgamma_fer(const double mu, const double muForMq, const double s, const double Mw) const
gslpp::complex SigmaZgamma_bos_Hollik(const double mu, const double s, const double Mw) const
gslpp::complex SigmaWW_bos(const double mu, const double s, const double Mw) const
gslpp::complex SigmaZZ_fer(const double mu, const double muForMq, const double s, const double Mw) const
gslpp::complex SigmaWW_fer(const double mu, const double muForMq, const double s) const
gslpp::complex SigmaWW_bos_Hollik(const double mu, const double s, const double Mw) const
gslpp::complex SigmaZZ_bos_Hollik(const double mu, const double s, const double Mw) const
gslpp::complex SigmaZZ_bos(const double mu, const double s, const double Mw) const

◆ Sigma_hat_ZZ()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::Sigma_hat_ZZ ( const double  mu,
const double  s,
const double  Mw 
) const
private

Definition at line 165 of file EWSMTwoFermionsLEP2_Hollik.cpp.

167{
168 double Mw2 = Mw*Mw;
169 double Mz = SM.getMz(), Mz2 = Mz*Mz;
170 double cW2 = Mw2 / Mz2, cW = sqrt(cW2);
171 double sW2 = 1.0 - cW2, sW = sqrt(sW2);
172
173 // Bosonic contributions to self-energies
174 gslpp::complex Sigma_WW_Mw2, Sigma_ZZ_s, Sigma_ZZ_Mz2, Sigma_Zg_0, Pi_gg_0;
175 if (!bUseHollik) {
176 Sigma_WW_Mw2 = myOneLoopEW_HV.SigmaWW_bos(mu, Mw2, Mw);
177 Sigma_ZZ_s = myOneLoopEW_HV.SigmaZZ_bos(mu, s, Mw);
178 Sigma_ZZ_Mz2 = myOneLoopEW_HV.SigmaZZ_bos(mu, Mz2, Mw);
179 Sigma_Zg_0 = myOneLoopEW_HV.SigmaZgamma_bos(mu, 0.0, Mw);
180 Pi_gg_0 = myOneLoopEW_HV.PiGammaGamma_bos(mu, 0.0, Mw);
181 } else {
182 //-- TEST (use the self-energies in Hollik's paper) --
183 Sigma_WW_Mw2 = myOneLoopEW_HV.SigmaWW_bos_Hollik(mu, Mw2, Mw);
184 Sigma_ZZ_s = myOneLoopEW_HV.SigmaZZ_bos_Hollik(mu, s, Mw);
185 Sigma_ZZ_Mz2 = myOneLoopEW_HV.SigmaZZ_bos_Hollik(mu, Mz2, Mw);
186 Sigma_Zg_0 = myOneLoopEW_HV.SigmaZgamma_bos_Hollik(mu, 0.0, Mw);
187 Pi_gg_0 = myOneLoopEW_HV.PiGammaGamma_bos_Hollik(mu, 0.0, Mw);
188 }
189
190 // Fermionic contributions to self-energies
191 double muForMq = sqrt(s); // renormalization scale for the running quark mass
192 Sigma_WW_Mw2 += myOneLoopEW_HV.SigmaWW_fer(mu, muForMq, Mw2);
193 Sigma_ZZ_s += myOneLoopEW_HV.SigmaZZ_fer(mu, muForMq, s, Mw);
194 Sigma_ZZ_Mz2 += myOneLoopEW_HV.SigmaZZ_fer(mu, muForMq, Mz2, Mw);
195 Sigma_Zg_0 += myOneLoopEW_HV.SigmaZgamma_fer(mu, muForMq, 0.0, Mw);
196 Pi_gg_0 += myOneLoopEW_HV.PiGammaGamma_fer(mu, muForMq, 0.0);
197
198 // Refactoring
199 Sigma_WW_Mw2 *= SM.getAle() / 4.0 / M_PI / sW2;
200 Sigma_ZZ_s *= SM.getAle() / 4.0 / M_PI / sW2 / cW2;
201 Sigma_ZZ_Mz2 *= SM.getAle() / 4.0 / M_PI / sW2 / cW2;
202 Sigma_Zg_0 *= SM.getAle() / 4.0 / M_PI / sW / cW;
203 Pi_gg_0 *= SM.getAle() / 4.0 / M_PI;
204
205 // Counter terms for the mass renormalization
206 double deltaMw2 = Sigma_WW_Mw2.real();
207 double deltaMz2 = Sigma_ZZ_Mz2.real();
208
209 // Counter terms for the wave-function renormalization
210 gslpp::complex deltaZz = -Pi_gg_0 + (cW2 - sW2) / sW2 * (deltaMz2 / Mz2 - deltaMw2 / Mw2
211 + 2.0 * sW / cW * Sigma_Zg_0 / Mz2);
212
213 return ( Sigma_ZZ_s + (s - Mz2) * deltaZz - deltaMz2);
214}

◆ sigma_l()

double EWSMTwoFermionsLEP2_Hollik::sigma_l ( const QCD::lepton  l,
const double  s,
const double  Mw,
const double  GammaZ,
const bool  bDP,
const bool  bWEAK,
const bool  bQED 
) const
Parameters
[in]lname of a lepton
[in]sinvariant mass squared of the initial-state e^+ e^- pair
[in]Mwthe W-boson mass
[in]GammaZthe Z-boson decay width (used in the Born approximation/in the QED corrections)
[in]bDPwith/without dressed gauge-boson propagators
[in]bWEAKwith/without weak corrections
[in]bQEDwith/without QED corrections
Returns
the total cross section for e^+ e^- -> l lbar in GeV^{-2}

Definition at line 22 of file EWSMTwoFermionsLEP2_Hollik.cpp.

25{
26 double Ncf = 1.0;
27 double mf = myOneLoopEW_HV.ml(l);
28 double betaf = sqrt(1.0 - 4.0 * mf * mf / s);
29
30 return ( 4.0 * M_PI * SM.getAle() * SM.getAle() / (3.0 * s) * Ncf * betaf
31 * (G1_l(l, s, Mw, GammaZ, bDP, bWEAK, bQED)
32 + 2.0 * mf * mf / s * G2_l(l, s, Mw, bDP)));
33}

◆ sigma_l_old()

double EWSMTwoFermionsLEP2_Hollik::sigma_l_old ( const QCD::lepton  l,
const double  s,
const double  Mw,
const double  GammaZ,
const bool  bDP,
const bool  bQED 
) const
Parameters
[in]lname of a lepton
[in]sinvariant mass squared of the initial-state e^+ e^- pair
[in]Mwthe W-boson mass
[in]GammaZthe Z-boson decay width
[in]bDPwith/without dressed gauge-boson propagators
[in]bQEDwith/without QED corrections
Returns
the total cross section for e^+ e^- -> l lbar in GeV^{-2}

Definition at line 75 of file EWSMTwoFermionsLEP2_Hollik.cpp.

78{
79 double mf = SM.getLeptons(l).getMass();
80 double Qf = SM.getLeptons(l).getCharge();
81 double I3f = SM.getLeptons(l).getIsospin();
82
83 return sigma_f_old(s, Mw, GammaZ, mf, Qf, I3f, 1.0, bDP, bQED);
84}
double sigma_f_old(const double s, const double Mw, const double GammaZ, const double mf, const double Qf, const double I3f, const double Ncf, const bool bDP=true, const bool bQED=true) const

◆ sigma_q()

double EWSMTwoFermionsLEP2_Hollik::sigma_q ( const QCD::quark  q,
const double  s,
const double  Mw,
const double  GammaZ,
const bool  bDP,
const bool  bWEAK,
const bool  bQED 
) const
Parameters
[in]qname of a quark
[in]sinvariant mass squared of the initial-state e^+ e^- pair
[in]Mwthe W-boson mass
[in]GammaZthe Z-boson decay width (used in the Born approximation/in the QED corrections)
[in]bDPwith/without dressed gauge-boson propagators
[in]bWEAKwith/without weak corrections
[in]bQEDwith/without QED corrections
Returns
the total cross section for e^+ e^- -> q qbar in GeV^{-2}

Definition at line 35 of file EWSMTwoFermionsLEP2_Hollik.cpp.

38{
39 double Ncf = 3.0;
40 double mf = myOneLoopEW_HV.mq(q, sqrt(s));
41 double betaf = sqrt(1.0 - 4.0 * mf * mf / s);
42
43 return ( 4.0 * M_PI * SM.getAle() * SM.getAle() / (3.0 * s) * Ncf * betaf
44 * (G1_q(q, s, Mw, GammaZ, bDP, bWEAK, bQED)
45 + 2.0 * mf * mf / s * G2_q(q, s, Mw, bDP)));
46}

◆ sigma_q_old()

double EWSMTwoFermionsLEP2_Hollik::sigma_q_old ( const QCD::quark  q,
const double  s,
const double  Mw,
const double  GammaZ,
const bool  bDP,
const bool  bQED 
) const
Parameters
[in]qname of a quark
[in]sinvariant mass squared of the initial-state e^+ e^- pair
[in]sinvariant mass squared of the initial-state e^+ e^- pair
[in]Mwthe W-boson mass
[in]GammaZthe Z-boson decay width
[in]bDPwith/without dressed gauge-boson propagators
[in]bQEDwith/without QED corrections
Returns
the total cross section for e^+ e^- -> q qbar in GeV^{-2}

Definition at line 86 of file EWSMTwoFermionsLEP2_Hollik.cpp.

89{
90 double mf = myOneLoopEW_HV.mq(q, sqrt(s));
91 double Qf = SM.getQuarks(q).getCharge();
92 double I3f = SM.getQuarks(q).getIsospin();
93
94 return sigma_f_old(s, Mw, GammaZ, mf, Qf, I3f, 3.0, bDP, bQED);
95}

◆ TEST()

void EWSMTwoFermionsLEP2_Hollik::TEST ( const double  s,
const double  Mw 
) const

Definition at line 146 of file EWSMTwoFermionsLEP2_Hollik.cpp.

147{
148 //-----------------------------------
149 // Test for renormalization scale dependence of the renormalized self-energies
150 std::cout << "TEST1 (mu=Mz) : "
151 << Sigma_hat_ZZ(SM.getMz(), s, Mw) << " "
152 << Sigma_hat_gZ(SM.getMz(), s, Mw) << " "
153 << Sigma_hat_gg(SM.getMz(), s, Mw) << std::endl;
154 std::cout << "TEST2 (mu=2*Mz) : "
155 << Sigma_hat_ZZ(2.0 * SM.getMz(), s, Mw) << " "
156 << Sigma_hat_gZ(2.0 * SM.getMz(), s, Mw) << " "
157 << Sigma_hat_gg(2.0 * SM.getMz(), s, Mw) << std::endl;
158 //-----------------------------------
159}

◆ V_e()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::V_e ( const int  j,
const double  s,
const double  Mw,
const bool  bWEAK 
) const
private

Definition at line 756 of file EWSMTwoFermionsLEP2_Hollik.cpp.

758{
759 switch (j) {
760 case 1:
761 case 3:
762 case 6:
764 case 2:
765 case 4:
766 case 8:
767 return vl(SM.ELECTRON, Mw);
768 case 5:
769 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
770 return FVgamma_l(SM.ELECTRON, s, Mw);
771 case 7:
772 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
773 return FVZ_l(SM.ELECTRON, s, Mw);
774 case 9:
775 return ( vl(SM.ELECTRON, Mw) * vl(SM.ELECTRON, Mw)
776 + al(SM.ELECTRON, Mw) * al(SM.ELECTRON, Mw));
777 case 10:
778 return ( 2.0 * vl(SM.ELECTRON, Mw) * al(SM.ELECTRON, Mw));
779 case 11:
780 return ( 1.0 / 4.0 / (1.0 - Mw * Mw / SM.getMz() / SM.getMz()));
781 default:
782 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::V_e()");
783 }
784}
gslpp::complex FVZ_l(const QCD::lepton l, const double s, const double Mw) const
gslpp::complex FVgamma_l(const QCD::lepton l, const double s, const double Mw) const

◆ V_l()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::V_l ( const int  j,
const QCD::lepton  l,
const double  s,
const double  Mw,
const bool  bWEAK 
) const
private

Definition at line 816 of file EWSMTwoFermionsLEP2_Hollik.cpp.

819{
820 switch (j) {
821 case 1:
822 case 4:
823 case 5:
824 return SM.getLeptons(l).getCharge();
825 case 2:
826 case 3:
827 case 7:
828 return vl(l, Mw);
829 case 6:
830 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
831 return FVgamma_l(l, s, Mw);
832 case 8:
833 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
834 return FVZ_l(l, s, Mw);
835 case 9:
836 return ( vl(l, Mw) * vl(l, Mw) + al(l, Mw) * al(l, Mw));
837 case 10:
838 return ( 2.0 * vl(l, Mw) * al(l, Mw));
839 case 11:
840 return ( 1.0 / 4.0 / (1.0 - Mw * Mw / SM.getMz() / SM.getMz()));
841 default:
842 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::V_l()");
843 }
844}

◆ V_q()

gslpp::complex EWSMTwoFermionsLEP2_Hollik::V_q ( const int  j,
const QCD::quark  q,
const double  s,
const double  Mw,
const bool  bWEAK 
) const
private

Definition at line 846 of file EWSMTwoFermionsLEP2_Hollik.cpp.

849{
850 switch (j) {
851 case 1:
852 case 4:
853 case 5:
854 return SM.getQuarks(q).getCharge();
855 case 2:
856 case 3:
857 case 7:
858 return vq(q, Mw);
859 case 6:
860 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
861 return FVgamma_q(q, s, Mw);
862 case 8:
863 if (!bWEAK) return gslpp::complex(0.0, 0.0, false);
864 return FVZ_q(q, s, Mw);
865 case 9:
866 return ( vq(q, Mw) * vq(q, Mw) + aq(q, Mw) * aq(q, Mw));
867 case 10:
868 return ( 2.0 * vq(q, Mw) * aq(q, Mw));
869 case 11:
870 return ( 1.0 / 4.0 / (1.0 - Mw * Mw / SM.getMz() / SM.getMz()));
871 default:
872 throw std::runtime_error("Error in EWSMTwoFermionsLEP2_Hollik::V_q()");
873 }
874}
gslpp::complex FVZ_q(const QCD::quark q, const double s, const double Mw) const
gslpp::complex FVgamma_q(const QCD::quark q, const double s, const double Mw) const

◆ vl()

double EWSMTwoFermionsLEP2_Hollik::vl ( const QCD::lepton  l,
const double  Mw 
) const
private
Parameters
[in]lname of lepton
[in]Mwthe W-boson mass
Returns
the tree-level vector coupling for Z->l lbar

Definition at line 290 of file EWSMTwoFermionsLEP2_Hollik.cpp.

291{
292 double cW = Mw / SM.getMz(), sW2 = 1.0 - cW*cW, sW = sqrt(sW2);
293 return ( -(SM.getLeptons(l).getIsospin()
294 - 2.0 * SM.getLeptons(l).getCharge() * sW2) / (2.0 * sW * cW));
295}

◆ vq()

double EWSMTwoFermionsLEP2_Hollik::vq ( const QCD::quark  q,
const double  Mw 
) const
private
Parameters
[in]qname of quark
[in]Mwthe W-boson mass
Returns
the tree-level vector coupling for Z->q qbar

Definition at line 297 of file EWSMTwoFermionsLEP2_Hollik.cpp.

298{
299 double cW = Mw / SM.getMz(), sW2 = 1.0 - cW*cW, sW = sqrt(sW2);
300 return ( -(SM.getQuarks(q).getIsospin()
301 - 2.0 * SM.getQuarks(q).getCharge() * sW2) / (2.0 * sW * cW));
302}

Member Data Documentation

◆ bUseHollik

bool EWSMTwoFermionsLEP2_Hollik::bUseHollik
private

Definition at line 136 of file EWSMTwoFermionsLEP2_Hollik.h.

◆ myOneLoopEW_HV

const EWSMOneLoopEW_HV EWSMTwoFermionsLEP2_Hollik::myOneLoopEW_HV
private

Definition at line 132 of file EWSMTwoFermionsLEP2_Hollik.h.

◆ Polylog

const Polylogarithms EWSMTwoFermionsLEP2_Hollik::Polylog
private

Definition at line 133 of file EWSMTwoFermionsLEP2_Hollik.h.

◆ PV

const PVfunctions EWSMTwoFermionsLEP2_Hollik::PV
private

Definition at line 134 of file EWSMTwoFermionsLEP2_Hollik.h.

◆ SM

const StandardModel& EWSMTwoFermionsLEP2_Hollik::SM
private

Definition at line 131 of file EWSMTwoFermionsLEP2_Hollik.h.


The documentation for this class was generated from the following files: