a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models Logo
EvolBsmm Class Reference

#include <EvolBsmm.h>

+ Inheritance diagram for EvolBsmm:

Detailed Description

Definition at line 16 of file EvolBsmm.h.

Public Member Functions

double alphatilde_e (double mu)
 
double alphatilde_s (double mu)
 
gslpp::matrix< double > AnomalousDimension (int gam, unsigned int n_u, unsigned int n_d) const
 
gslpp::matrix< double > & Df1Evol (double mu, double M, orders order, orders_qed order_qed, schemes scheme=NDR)
 
 EvolBsmm (unsigned int dim, schemes scheme, orders order, orders_qed order_qed, const StandardModel &model)
 
virtual ~EvolBsmm ()
 
- Public Member Functions inherited from RGEvolutor
gslpp::matrix< double > * Evol (orders order)
 Evolution matrix set at a fixed order of QCD coupling. More...
 
gslpp::matrix< double > * Evol (orders_qed order_qed)
 Evolution matrix set at a fixed order of Electroweak coupling. More...
 
gslpp::matrix< double > ** getEvol () const
 
double getM () const
 Retrieve the upper scale of the Wilson Coefficients. More...
 
 RGEvolutor (unsigned int dim, schemes scheme, orders order)
 constructor More...
 
 RGEvolutor (unsigned int dim, schemes scheme, orders order, orders_qed order_qed)
 constructor More...
 
void setEvol (const gslpp::matrix< double > &m, orders order_i)
 
void setEvol (const gslpp::matrix< double > &m, orders_qed order_qed_i)
 
void setEvol (unsigned int i, unsigned int j, double x, orders order_i)
 
void setEvol (unsigned int i, unsigned int j, double x, orders order_i, orders_qed order_qed)
 
void setM (double M)
 Sets the upper scale for the running of the Wilson Coefficients. More...
 
void setMu (double mu)
 Sets the lower scale for the running of the Wilson Coefficients. More...
 
void setScales (double mu, double M)
 Sets the upper and lower scale for the running of the Wilson Coefficients. More...
 
virtual ~RGEvolutor ()
 destructor More...
 
- Public Member Functions inherited from WilsonTemplate< gslpp::matrix< double > >
double getMu () const
 
orders getOrder () const
 
orders_qed getOrder_qed () const
 
schemes getScheme () const
 
unsigned int getSize () const
 
virtual void resetCoefficient ()
 
void setScheme (schemes scheme)
 
 WilsonTemplate (const WilsonTemplate< gslpp::matrix< double > > &orig)
 
 WilsonTemplate (unsigned int dim, schemes scheme_i, orders order_i, orders_qed order_qed_i=NO_QED)
 
virtual ~WilsonTemplate ()
 

Private Member Functions

gslpp::matrix< double > BuiltB (char letter, unsigned int n_u, unsigned int n_d)
 
void Df1Evol (double mu, double M, double nf, schemes scheme)
 
double F (unsigned int i, unsigned int j, int x, double mu, double M, double nf)
 
double G (unsigned int i, unsigned int p, unsigned int j, int x, int y, double mu, double M, double nf)
 
double H (unsigned int i, unsigned int p, unsigned int q, unsigned int j, int x, int y, int z, double mu, double M, double nf)
 
double R (unsigned int i, unsigned int j, int x, double mu, double M, double nf)
 

Private Attributes

double a [4][8]
 
gslpp::matrix< gslpp::complex > AA
 
double alsM
 
double alsmu
 
double b [4][8][8][8]
 
gslpp::matrix< gslpp::complex > BB
 
gslpp::matrix< gslpp::complex > CC
 
gslpp::matrix< gslpp::complex > DD
 
unsigned int dim
 
gslpp::vector< gslpp::complex > e
 
gslpp::matrix< gslpp::complex > EE
 
double eta
 
gslpp::matrix< gslpp::complex > FF
 
double logeta
 
const StandardModelmodel
 
int nd
 
int nu
 
gslpp::matrix< gslpp::complex > RR
 
gslpp::matrix< gslpp::complex > V
 
std::vector< double > vaevi
 
std::vector< double > vavi
 
std::vector< double > vbbevi
 
std::vector< double > vbbvi
 
std::vector< double > vbdvi
 
std::vector< double > vbebvi
 
std::vector< double > vbeevi
 
std::vector< double > vbevi
 
std::vector< double > vbvi
 
std::vector< double > vcvi
 
std::vector< double > vdbvi
 
std::vector< double > vdevi
 
std::vector< double > vdvi
 
std::vector< double > veavi
 
std::vector< double > vebbvi
 
std::vector< double > vebevi
 
std::vector< double > vebvi
 
std::vector< double > vedvi
 
std::vector< double > veebvi
 
std::vector< double > veevi
 
std::vector< double > vevi
 
std::vector< double > vfvi
 
gslpp::matrix< gslpp::complex > Vi
 
std::vector< double > vrvi
 

Additional Inherited Members

- Protected Member Functions inherited from WilsonTemplate< gslpp::matrix< double > >
gslpp::matrix< double > * Elem (orders order) const
 
gslpp::matrix< double > * Elem (orders_qed order_qed) const
 
void setElem (const gslpp::matrix< double > &v, orders order_i)
 
void setElem (const gslpp::matrix< double > &v, orders_qed order_qed_i)
 
- Protected Attributes inherited from RGEvolutor
double M
 
- Protected Attributes inherited from WilsonTemplate< gslpp::matrix< double > >
gslpp::matrix< double > * elem [MAXORDER_QED+1]
 
double mu
 
orders order
 
orders_qed order_qed
 
schemes scheme
 
unsigned int size
 

Constructor & Destructor Documentation

◆ EvolBsmm()

EvolBsmm::EvolBsmm ( unsigned int  dim,
schemes  scheme,
orders  order,
orders_qed  order_qed,
const StandardModel model 
)

Definition at line 12 of file EvolBsmm.cpp.

13: RGEvolutor(dim_i, scheme, order, order_qed), model(model), V(dim_i,0.), Vi(dim_i,0.),
14 AA(dim_i,0.), BB(dim_i,0.), CC(dim_i,0.), DD(dim_i,0.), EE(dim_i,0.), FF(dim_i,0.),
15 RR(dim_i,0.), e(dim_i,0.), vavi(0,0.), vbvi(0,0.), vcvi(0,0.), vdvi(0,0.),
16 vevi(0,0.), vfvi(0,0.), vrvi(0,0.),vaevi(0,0.), vbbvi(0,0.), vbdvi(0,0.), vbevi(0,0.),
17 vdbvi(0,0.), vdevi(0,0.), veavi(0,0.), vebvi(0,0.), vedvi(0,0.), veevi(0,0.), vbeevi(0,0.),
18 vebevi(0,0.), veebvi(0,0.), vbbevi(0,0.), vbebvi(0,0.), vebbvi(0,0.), dim(dim_i)
19{
20 unsigned int i = 0;
21 unsigned int j = 0;
22 unsigned int l = 0;
23 unsigned int m = 0;
24 unsigned int p = 0;
25 unsigned int q = 0;
26 int L = 1;
27 double b0 = 0.;
28
29
30 vavi.clear();
31 vbvi.clear();
32 vcvi.clear();
33 vdvi.clear();
34 vfvi.clear();
35 vevi.clear();
36 vrvi.clear();
37 vaevi.clear();
38 vbbvi.clear();
39 vbdvi.clear();
40 vbevi.clear();
41 vdbvi.clear();
42 vdevi.clear();
43 veavi.clear();
44 vebvi.clear();
45 vedvi.clear();
46 veevi.clear();
47 vbeevi.clear();
48 vebevi.clear();
49 veebvi.clear();
50 vbbevi.clear();
51 vbebvi.clear();
52 vebbvi.clear();
53
54
55
56/* define L, nu, nd */
57 if(L == 1){nd = 3; nu = 2;}
58 b0 = model.Beta0(6-L);
59
60 AnomalousDimension(10,nu,nd).transpose().eigensystem(V,e);
61
62 Vi = V.inverse();
63
64 /* magic numbers of U0 */
65 for(unsigned int i = 0; i < dim; i++){
66 a[L][i] = e(i).real()/2./b0;
67 for (unsigned int j = 0; j < dim; j++){
68 for (unsigned int k = 0; k < dim; k++){
69 b[L][i][j][k] = V(i, k).real() * Vi(k, j).real();
70 }
71 }
72 }
73
74
75
76 AA = BuiltB('A', nu, nd);
77 BB = BuiltB('B', nu, nd);
78 CC = BuiltB('C', nu, nd);
79 DD = BuiltB('D', nu, nd);
80 EE = BuiltB('E', nu, nd);
81 FF = BuiltB('F', nu, nd);
82 RR = BuiltB('R', nu, nd);
83
84 double cutoff = 0.000000001 ;
85
86 for(l = 0; l < dim; l++){
87 for(i = 0; i < dim; i++){
88 for(j = 0; j < dim; j++){
89 for(m = 0; m < dim; m++){
90
91 if(fabs(V(l, i).real() * AA(i, j).real() * Vi(j, m).real()) > cutoff){
92
93 vavi.push_back(l);
94 vavi.push_back(i);
95 vavi.push_back(j);
96 vavi.push_back(m);
97 vavi.push_back(V(l, i).real() * AA(i, j).real() * Vi(j, m).real());
98
99 }
100 if(fabs(V(l, i).real() * BB(i, j).real() * Vi(j, m).real()) > cutoff){
101
102 vbvi.push_back(l);
103 vbvi.push_back(i);
104 vbvi.push_back(j);
105 vbvi.push_back(m);
106 vbvi.push_back(V(l, i).real() * BB(i, j).real() * Vi(j, m).real());
107
108 }
109 if(fabs(V(l, i).real() * CC(i, j).real() * Vi(j, m).real()) > cutoff){
110
111 vcvi.push_back(l);
112 vcvi.push_back(i);
113 vcvi.push_back(j);
114 vcvi.push_back(m);
115 vcvi.push_back(V(l, i).real() * CC(i, j).real() * Vi(j, m).real());
116
117 }
118 if(fabs(V(l, i).real() * DD(i, j).real() * Vi(j, m).real()) > cutoff){
119
120 vdvi.push_back(l);
121 vdvi.push_back(i);
122 vdvi.push_back(j);
123 vdvi.push_back(m);
124 vdvi.push_back(V(l, i).real() * DD(i, j).real() * Vi(j, m).real());
125
126 }
127 if(fabs(V(l, i).real() * EE(i, j).real() * Vi(j, m).real()) > cutoff){
128
129 vevi.push_back(l);
130 vevi.push_back(i);
131 vevi.push_back(j);
132 vevi.push_back(m);
133 vevi.push_back(V(l, i).real() * EE(i, j).real() * Vi(j, m).real());
134
135 }
136 if(fabs(V(l, i).real() * FF(i, j).real() * Vi(j, m).real()) > cutoff){
137
138 vfvi.push_back(l);
139 vfvi.push_back(i);
140 vfvi.push_back(j);
141 vfvi.push_back(m);
142 vfvi.push_back(V(l, i).real() * FF(i, j).real() * Vi(j, m).real());
143
144 }
145 if(fabs(V(l, i).real() * RR(i, j).real() * Vi(j, m).real()) > cutoff){
146
147 vrvi.push_back(l);
148 vrvi.push_back(i);
149 vrvi.push_back(j);
150 vrvi.push_back(m);
151 vrvi.push_back(V(l, i).real() * RR(i, j).real() * Vi(j, m).real());
152
153 }
154
155 for(p = 0; p < dim; p++){
156
157 if(fabs(V(l, i).real() * AA(i, p).real() * EE(p, j).real() * Vi(j, m).real()) > cutoff){
158
159 vaevi.push_back(l);
160 vaevi.push_back(i);
161 vaevi.push_back(p);
162 vaevi.push_back(j);
163 vaevi.push_back(m);
164 vaevi.push_back(V(l, i).real() * AA(i, p).real() * EE(p, j).real() * Vi(j, m).real());
165
166 }
167 if(fabs(V(l, i).real() * BB(i, p).real() * BB(p, j).real() * Vi(j, m).real()) > cutoff){
168
169 vbbvi.push_back(l);
170 vbbvi.push_back(i);
171 vbbvi.push_back(p);
172 vbbvi.push_back(j);
173 vbbvi.push_back(m);
174 vbbvi.push_back(V(l, i).real() * BB(i, p).real() * BB(p, j).real() * Vi(j, m).real());
175
176 }
177 if(fabs(V(l, i).real() * BB(i, p).real() * DD(p, j).real() * Vi(j, m).real()) > cutoff){
178
179 vbdvi.push_back(l);
180 vbdvi.push_back(i);
181 vbdvi.push_back(p);
182 vbdvi.push_back(j);
183 vbdvi.push_back(m);
184 vbdvi.push_back(V(l, i).real() * BB(i, p).real() * DD(p, j).real() * Vi(j, m).real());
185
186 }
187 if(fabs(V(l, i).real() * BB(i, p).real() * EE(p, j).real() * Vi(j, m).real()) > cutoff){
188
189 vbevi.push_back(l);
190 vbevi.push_back(i);
191 vbevi.push_back(p);
192 vbevi.push_back(j);
193 vbevi.push_back(m);
194 vbevi.push_back(V(l, i).real() * BB(i, p).real() * EE(p, j).real() * Vi(j, m).real());
195
196 }
197 if(fabs(V(l, i).real() * DD(i, p).real() * BB(p, j).real() * Vi(j, m).real()) > cutoff){
198
199 vdbvi.push_back(l);
200 vdbvi.push_back(i);
201 vdbvi.push_back(p);
202 vdbvi.push_back(j);
203 vdbvi.push_back(m);
204 vdbvi.push_back(V(l, i).real() * DD(i, p).real() * BB(p, j).real() * Vi(j, m).real());
205
206 }
207 if(fabs(V(l, i).real() * DD(i, p).real() * EE(p, j).real() * Vi(j, m).real()) > cutoff){
208
209 vdevi.push_back(l);
210 vdevi.push_back(i);
211 vdevi.push_back(p);
212 vdevi.push_back(j);
213 vdevi.push_back(m);
214 vdevi.push_back(V(l, i).real() * DD(i, p).real() * EE(p, j).real() * Vi(j, m).real());
215
216 }
217 if(fabs(V(l, i).real() * EE(i, p).real() * AA(p, j).real() * Vi(j, m).real()) > cutoff){
218
219 veavi.push_back(l);
220 veavi.push_back(i);
221 veavi.push_back(p);
222 veavi.push_back(j);
223 veavi.push_back(m);
224 veavi.push_back(V(l, i).real() * EE(i, p).real() * AA(p, j).real() * Vi(j, m).real());
225
226 }
227 if(fabs(V(l, i).real() * EE(i, p).real() * BB(p, j).real() * Vi(j, m).real()) > cutoff){
228
229 vebvi.push_back(l);
230 vebvi.push_back(i);
231 vebvi.push_back(p);
232 vebvi.push_back(j);
233 vebvi.push_back(m);
234 vebvi.push_back(V(l, i).real() * EE(i, p).real() * BB(p, j).real() * Vi(j, m).real());
235
236 }
237 if(fabs(V(l, i).real() * EE(i, p).real() * DD(p, j).real() * Vi(j, m).real()) > cutoff){
238
239 vedvi.push_back(l);
240 vedvi.push_back(i);
241 vedvi.push_back(p);
242 vedvi.push_back(j);
243 vedvi.push_back(m);
244 vedvi.push_back(V(l, i).real() * EE(i, p).real() * DD(p, j).real() * Vi(j, m).real());
245
246 }
247 if(fabs(V(l, i).real() * EE(i, p).real() * EE(p, j).real() * Vi(j, m).real()) > cutoff){
248
249 veevi.push_back(l);
250 veevi.push_back(i);
251 veevi.push_back(p);
252 veevi.push_back(j);
253 veevi.push_back(m);
254 veevi.push_back(V(l, i).real() * EE(i, p).real() * EE(p, j).real() * Vi(j, m).real());
255
256 }
257
258 for(q = 0; q < dim; q++){
259
260 if(fabs(V(l, i).real() * BB(i, p).real() * EE(p, q).real() * EE(q, j).real() * Vi(j, m).real()) > cutoff){
261
262 vbeevi.push_back(l);
263 vbeevi.push_back(i);
264 vbeevi.push_back(p);
265 vbeevi.push_back(q);
266 vbeevi.push_back(j);
267 vbeevi.push_back(m);
268 vbeevi.push_back(V(l, i).real() * BB(i, p).real() * EE(p, q).real() * EE(q, j).real() * Vi(j, m).real());
269
270 }
271
272 if (fabs(V(l, i).real() * EE(i, p).real() * BB(p, q).real() * EE(q, j).real() * Vi(j, m).real()) > cutoff) {
273
274 vebevi.push_back(l);
275 vebevi.push_back(i);
276 vebevi.push_back(p);
277 vebevi.push_back(q);
278 vebevi.push_back(j);
279 vebevi.push_back(m);
280 vebevi.push_back(V(l, i).real() * EE(i, p).real() * BB(p, q).real() * EE(q, j).real() * Vi(j, m).real());
281
282 }
283 if (fabs(V(l, i).real() * EE(i, p).real() * EE(p, q).real() * BB(q, j).real() * Vi(j, m).real()) > cutoff) {
284
285 veebvi.push_back(l);
286 veebvi.push_back(i);
287 veebvi.push_back(p);
288 veebvi.push_back(q);
289 veebvi.push_back(j);
290 veebvi.push_back(m);
291 veebvi.push_back(V(l, i).real() * EE(i, p).real() * EE(p, q).real() * BB(q, j).real() * Vi(j, m).real());
292
293 }
294 if (fabs(V(l, i).real() * BB(i, p).real() * BB(p, q).real() * EE(q, j).real() * Vi(j, m).real()) > cutoff) {
295
296 vbbevi.push_back(l);
297 vbbevi.push_back(i);
298 vbbevi.push_back(p);
299 vbbevi.push_back(q);
300 vbbevi.push_back(j);
301 vbbevi.push_back(m);
302 vbbevi.push_back(V(l, i).real() * BB(i, p).real() * BB(p, q).real() * EE(q, j).real() * Vi(j, m).real());
303
304 }
305 if (fabs(V(l, i).real() * BB(i, p).real() * EE(p, q).real() * BB(q, j).real() * Vi(j, m).real()) > cutoff) {
306
307 vbebvi.push_back(l);
308 vbebvi.push_back(i);
309 vbebvi.push_back(p);
310 vbebvi.push_back(q);
311 vbebvi.push_back(j);
312 vbebvi.push_back(m);
313 vbebvi.push_back(V(l, i).real() * BB(i, p).real() * EE(p, q).real() * BB(q, j).real() * Vi(j, m).real());
314
315 }
316 if (fabs(V(l, i).real() * EE(i, p).real() * BB(p, q).real() * BB(q, j).real() * Vi(j, m).real()) > cutoff) {
317
318 vebbvi.push_back(l);
319 vebbvi.push_back(i);
320 vebbvi.push_back(p);
321 vebbvi.push_back(q);
322 vebbvi.push_back(j);
323 vebbvi.push_back(m);
324 vebbvi.push_back(V(l, i).real() * EE(i, p).real() * BB(p, q).real() * BB(q, j).real() * Vi(j, m).real());
325
326 }
327 }
328 }
329 }
330 }
331 }
332 }
333
334}
gslpp::matrix< gslpp::complex > CC
Definition: EvolBsmm.h:31
std::vector< double > vdevi
Definition: EvolBsmm.h:34
std::vector< double > veebvi
Definition: EvolBsmm.h:35
std::vector< double > vfvi
Definition: EvolBsmm.h:33
gslpp::matrix< double > AnomalousDimension(int gam, unsigned int n_u, unsigned int n_d) const
Definition: EvolBsmm.cpp:340
std::vector< double > vbvi
Definition: EvolBsmm.h:33
std::vector< double > vbdvi
Definition: EvolBsmm.h:34
int nd
Definition: EvolBsmm.h:27
gslpp::matrix< double > BuiltB(char letter, unsigned int n_u, unsigned int n_d)
Definition: EvolBsmm.cpp:596
gslpp::matrix< gslpp::complex > FF
Definition: EvolBsmm.h:31
std::vector< double > vdbvi
Definition: EvolBsmm.h:34
std::vector< double > vbeevi
Definition: EvolBsmm.h:34
gslpp::matrix< gslpp::complex > DD
Definition: EvolBsmm.h:31
std::vector< double > vebbvi
Definition: EvolBsmm.h:35
gslpp::matrix< gslpp::complex > EE
Definition: EvolBsmm.h:31
std::vector< double > vedvi
Definition: EvolBsmm.h:34
std::vector< double > vebvi
Definition: EvolBsmm.h:34
double a[4][8]
Definition: EvolBsmm.h:28
gslpp::matrix< gslpp::complex > Vi
Definition: EvolBsmm.h:31
std::vector< double > vbebvi
Definition: EvolBsmm.h:35
std::vector< double > vcvi
Definition: EvolBsmm.h:33
gslpp::matrix< gslpp::complex > RR
Definition: EvolBsmm.h:31
std::vector< double > vevi
Definition: EvolBsmm.h:33
int nu
Definition: EvolBsmm.h:27
gslpp::matrix< gslpp::complex > AA
Definition: EvolBsmm.h:31
std::vector< double > vaevi
Definition: EvolBsmm.h:33
std::vector< double > vbbvi
Definition: EvolBsmm.h:33
std::vector< double > vbbevi
Definition: EvolBsmm.h:35
std::vector< double > veevi
Definition: EvolBsmm.h:34
const StandardModel & model
Definition: EvolBsmm.h:29
double b[4][8][8][8]
Definition: EvolBsmm.h:28
unsigned int dim
Definition: EvolBsmm.h:36
std::vector< double > vbevi
Definition: EvolBsmm.h:34
std::vector< double > vavi
Definition: EvolBsmm.h:33
gslpp::matrix< gslpp::complex > BB
Definition: EvolBsmm.h:31
gslpp::matrix< gslpp::complex > V
Definition: EvolBsmm.h:31
std::vector< double > vebevi
Definition: EvolBsmm.h:35
gslpp::vector< gslpp::complex > e
Definition: EvolBsmm.h:32
std::vector< double > veavi
Definition: EvolBsmm.h:34
std::vector< double > vdvi
Definition: EvolBsmm.h:33
std::vector< double > vrvi
Definition: EvolBsmm.h:33
const double Beta0(const double nf) const
The coefficient for a certain number of flavours .
Definition: QCD.cpp:601
RGEvolutor(unsigned int dim, schemes scheme, orders order)
constructor
Definition: RGEvolutor.cpp:10

◆ ~EvolBsmm()

EvolBsmm::~EvolBsmm ( )
virtual

Definition at line 337 of file EvolBsmm.cpp.

338{}

Member Function Documentation

◆ alphatilde_e()

double EvolBsmm::alphatilde_e ( double  mu)

Definition at line 1120 of file EvolBsmm.cpp.

1122{ // also the running is only for nf = 5
1123
1124 //double mu_0 = 91.1876;
1125 double mu_0 = model.getMz();
1126 //double alphatilde_e = 1./(127.751 * 4. * M_PI); // alpha_e at mu_0 = 91.1876 Gev
1127 double alphatilde_e = model.alphaMz()/4./M_PI;
1128 //double alphatilde_s = 0.1184/(4.* M_PI); // alpha_s at mu_0 = 91.1876 Gev
1129 double alphatilde_s = model.getAlsMz()/4./M_PI;
1130 unsigned int nf = 5;
1131
1132 double B00S = model.Beta0(nf), B10S = model.Beta1(nf);//B20S = model.Beta2(nf),
1133 double B01S = -22./9.; //B11S = -308./27.;
1134
1135 double B00E = 80./9., B01E = 176./9., B10E = 464./27.;
1136
1137 //double b1 = B10S/(2. * B00S * B00S); //b2 = B20S/(4. * B00S * B00S * B00S) - b1 * b1 ,
1138 //double b3 = B01S/(2. * B00S * B00E);// b4 = B11S /(4. * B00S * B00S * B00E) - 2 * b1 * b3,
1139 //b5 = B01E/(2. * B00S * B00E) - b1;
1140
1141 double vs= 1. + 2. * B00S * alphatilde_s * log(mu/ mu_0);
1142 double ve= 1. - 2. * B00E * alphatilde_e * log(mu/ mu_0);
1143 //double ps= B00S * alphatilde_s /(B00S * alphatilde_s + B00E * alphatilde_e);
1144 double pe= B00E * alphatilde_e /(B00S * alphatilde_s + B00E * alphatilde_e);
1145
1146 double logve = log(ve);
1147 double logvs = log(vs);
1148 double logeos = log(ve/vs);
1149 double asovs = alphatilde_s/vs;
1150 double aeove = alphatilde_e/ve;
1151
1152 double result = 0;
1153
1154 result = aeove - pow(aeove, 2) * (logve * B10E/ B00E - logvs * B01E/B00S)
1155 + pow(aeove, 2) * (asovs) * ((logvs - vs + 1.) * B01E * B10S/(B00S * B00S)
1156 + logve * vs * pe * B01E * B10E/(B00E * B00E) +(logeos * vs * pe - logve) * B01E * B01S/(B00S * B00E));
1157 return (result);
1158}
double alphatilde_e(double mu)
Definition: EvolBsmm.cpp:1120
double alphatilde_s(double mu)
Definition: EvolBsmm.cpp:1160
const double Beta1(const double nf) const
The coefficient for a certain number of flavours .
Definition: QCD.cpp:606
const double getMz() const
A get method to access the mass of the boson .
const double getAlsMz() const
A get method to access the value of .
virtual const double alphaMz() const
The electromagnetic coupling at the -mass scale, .

◆ alphatilde_s()

double EvolBsmm::alphatilde_s ( double  mu)

Definition at line 1160 of file EvolBsmm.cpp.

1162{ // also the running is only for nf = 5
1163
1164 //double mu_0 = 91.1876;
1165 double mu_0 = model.getMz();
1166 //double alphatilde_e = 1./(127.751 * 4. * M_PI); // alpha_e at mu_0 = 91.1876 Gev
1167 double alphatilde_e = model.alphaMz()/4./M_PI;
1168 //double alphatilde_s = 0.1184/(4.* M_PI); // alpha_s at mu_0 = 91.1876 Gev
1169 double alphatilde_s = model.getAlsMz()/4./M_PI;
1170 unsigned int nf = 5;
1171
1172 double B00S = model.Beta0(nf), B10S = model.Beta1(nf), B20S = model.Beta2(nf), B30S = gsl_sf_zeta_int(3) * 352864./81. - 598391./1458,
1173 B01S = -22./9., B11S = -308./27., B02S = 4945./243.;
1174
1175 double B00E = 80./9., B01E = 176./9., B10E = 464./27.;
1176
1177 //double B00S2 = B00S * B00S;
1178 double B10soB00s = B10S / B00S;
1179 double B01soB00e = B01S/B00E;
1180
1181 //double b1 = B10soB00s/(2. * B00S), b2 = B20S/(4. * B00S2 * B00S) - b1 * b1 ,
1182 // b3 = B01soB00e/(2. * B00S ), b4 = B11S /(4. * B00S2 * B00E) - 2 * b1 * b3,
1183 // b5 = B01E/(2. * B00S * B00E) - b1;
1184
1185 double vs= 1. + 2. * B00S * alphatilde_s * log(mu/ mu_0);
1186 double ve= 1. - 2. * B00E * alphatilde_e * log(mu/ mu_0);
1187 double ps= B00S * alphatilde_s /(B00S * alphatilde_s + B00E * alphatilde_e);
1188 //double pe= B00E * alphatilde_e /(B00S * alphatilde_s + B00E * alphatilde_e);
1189
1190 double logve = log(ve);
1191 double logvs = log(vs);
1192 double logeos = log(ve/vs);
1193 double logsoe = log(vs/ve);
1194 double asovs = alphatilde_s/vs;
1195 double aeove = alphatilde_e/ve;
1196
1197 double result = 0;
1198
1199 result = asovs - pow(asovs, 2) * (logvs * B10soB00s - logve * B01soB00e)
1200 + pow(asovs, 3) * ((1. - vs) * B20S / B00S + B10soB00s * B10soB00s * (logvs * logvs - logvs
1201 + vs - 1.) + B01soB00e * B01soB00e * logve * logve + (-2. * logvs * logve
1202 + ps * ve * logve) * B01S * B10S/(B00E * B00S))
1203 + pow(asovs, 4) * (0.5 * B30S *(1. - vs * vs)/ B00S + ((2. * vs - 3.) * logvs + vs * vs
1204 - vs) * B20S * B10soB00s /(B00S) + B10soB00s * B10soB00s * B10soB00s * (- pow(logvs,3)
1205 + 5. * pow(logvs,2) / 2. + 2. * (1. - vs) * logvs - (vs - 1.) * (vs - 1.)* 0.5))
1206 + pow(asovs, 2) * (aeove) * ((ve - 1.) * B02S / B00E
1207 + ps * ve * logeos * B11S /B00S +(logve - ve + 1.) * B01soB00e * B10E/(B00E)
1208 + logvs * ps * B01S * B10soB00s/(B00S) +(logsoe * ve * ps - logvs) * B01soB00e * B01E/( B00S));
1209 return (result);
1210}
const double Beta2(const double nf) const
The coefficient for a certain number of flavours .
Definition: QCD.cpp:611

◆ AnomalousDimension()

gslpp::matrix< double > EvolBsmm::AnomalousDimension ( int  gam,
unsigned int  n_u,
unsigned int  n_d 
) const

Definition at line 340 of file EvolBsmm.cpp.

342{
343
344 /* Delta F = 1 anomalous dimension in Misiak basis,
345 ref.: ref. hep-ph/1311.1348v2, hep-ph/0512066 */
346
347 /* gamma(row, coloumn) at the LO */
348
349 unsigned int nf = n_u + n_d; /*n_u/d = active type up/down flavor d.o.f.*/
350 double zeta3 = 0;
351
352 gslpp::matrix<double> gammaDF1(dim, 0.);
353
354 zeta3 = gsl_sf_zeta_int(3);
355
356 switch(gam){
357
358 case 10:
359 if (!(nf == 3 || nf == 4 || nf == 5 || nf == 6)){
360 throw std::runtime_error("EvolBsmm::AnomalousDimension(): wrong number of flavours");
361 }
362
363 gammaDF1(0,0) = -4. ;
364 gammaDF1(0,1) = 8./3. ;
365 gammaDF1(0,3) = -2./9.;
366
367 gammaDF1(1,0) = 12.;
368 gammaDF1(1,3) = 4./3.;
369
370 gammaDF1(2,3) = -52./3.;
371 gammaDF1(2,5) = 2.;
372
373 gammaDF1(3,2) = -40./9.;
374 gammaDF1(3,3) = -100./9.;
375 gammaDF1(3,4) = 4./9.;
376 gammaDF1(3,5) = 5./6.;
377
378 gammaDF1(4,3) = -256./3.;
379 gammaDF1(4,5) = 20.;
380
381 gammaDF1(5,2) = -256./9.;
382 gammaDF1(5,3) = 56./9.;
383 gammaDF1(5,4) = 40./9.;
384 gammaDF1(5,5) = -2./3.;
385
386 break;
387 case 20:
388
389 if (!(nf == 3 || nf == 4 || nf == 5 || nf == 6)){
390 throw std::runtime_error("EvolBsmm::AnomalousDimension(): wrong number of flavours");
391 }
392
393 /* gamma(row, coloumn) at the NLO */
394
395 gammaDF1(0,0) = -355./9.;
396 gammaDF1(0,1) = -502./27.;
397 gammaDF1(0,2) = -1412./243.;
398 gammaDF1(0,3) = -1369./243.;
399 gammaDF1(0,4) = 134./243.;
400 gammaDF1(0,5) = -35./162.;
401
402 gammaDF1(1,0) = -35./3.;
403 gammaDF1(1,1) = -28./3.;
404 gammaDF1(1,2) = -416./81.;
405 gammaDF1(1,3) = 1280./81.;
406 gammaDF1(1,4) = 56./81.;
407 gammaDF1(1,5) = 35./27.;
408
409 gammaDF1(2,2) = -4468./81.;
410 gammaDF1(2,3) = -31469./81.;
411 gammaDF1(2,4) = 400./81.;
412 gammaDF1(2,5) = 3373./108.;
413
414 gammaDF1(3,2) = -8158./243.;
415 gammaDF1(3,3) = -59399./243.;
416 gammaDF1(3,4) = 269./486.;
417 gammaDF1(3,5) = 12899./648.;
418
419 gammaDF1(4,2) = -251680./81.;
420 gammaDF1(4,3) = -128648./81.;
421 gammaDF1(4,4) = 23836./81.;
422 gammaDF1(4,5) = 6106./27.;
423
424 gammaDF1(5,2) = 58640./243.;
425 gammaDF1(5,3) = -26348./243.;
426 gammaDF1(5,4) = -14324./243.;
427 gammaDF1(5,5) = -2551./162.;
428
429 break;
430
431 case 30:
432
433 if (!(nf == 3 || nf == 4 || nf == 5 || nf == 6)){
434 throw std::runtime_error("EvolBsmm::AnomalousDimension(): wrong number of flavours");
435 }
436
437 /* gamma(row, coloumn) at the NNLO */
438
439 gammaDF1(0,0) = -12773./18. + zeta3 * 1472./3.;
440 gammaDF1(0,1) = 745./9. - zeta3 *4288./9.;
441 gammaDF1(0,2) = 63187./13122. - zeta3 * 1360./81.;
442 gammaDF1(0,3) = -981796./6561. - zeta3 * 776./81.;
443 gammaDF1(0,4) = -202663./52488. + zeta3 * 124./81.;
444 gammaDF1(0,5) = -24973./69984. + zeta3 * 100./27.;
445
446 gammaDF1(1,0) = 1177./2. - zeta3 * 2144.;
447 gammaDF1(1,1) = 306. - zeta3 * 224.;
448 gammaDF1(1,2) = 110477./2187. + zeta3 * 2720./27.;
449 gammaDF1(1,3) = 133529./8748. - zeta3 * 2768./27.;
450 gammaDF1(1,4) = -42929./8748. - zeta3 * 248./27.;
451 gammaDF1(1,5) = 354319./11664. - zeta3 * 110./9.;
452
453 gammaDF1(2,2) = -3572528./2187. - zeta3 * 608./27.;
454 gammaDF1(2,3) = -58158773./8748. + zeta3 * 61424./27.;
455 gammaDF1(2,4) = 552601./4374. - zeta3 * 496./27.;
456 gammaDF1(2,5) = 6989171./11664. - zeta3 * 2821./9.;
457
458 gammaDF1(3,2) = -1651004./6561. + zeta3 * 88720./81.;
459 gammaDF1(3,3) = -155405353./52488 + zeta3 * 54272./81.;
460 gammaDF1(3,4) = 1174159./52488. - zeta3 * 9274./81.;
461 gammaDF1(3,5) = 10278809./34992. - zeta3 * 3100./27.;
462
463 gammaDF1(4,2) = -147978032./2187. + zeta3 * 87040./27.;
464 gammaDF1(4,3) = -168491372./2187. + zeta3 * 324416./27.;
465 gammaDF1(4,4) = 11213042./2187. - zeta3 * 13984./27.;
466 gammaDF1(4,5) = 17850329./2916. - zeta3 * 31420./9.;
467
468 gammaDF1(5,2) = 136797922./6561. + zeta3 * 721408./81.;
469 gammaDF1(5,3) = -72614473./13122. - zeta3 * 166432./81.;
470 gammaDF1(5,4) = -9288181./6561. - zeta3 * 95032./81.;
471 gammaDF1(5,5) = -16664027./17496. - zeta3 * 7552./27.;
472
473 break;
474 case 01:
475
476 if (!(nf == 3 || nf == 4 || nf == 5 || nf == 6)){
477 throw std::runtime_error("EvolBsmm::AnomalousDimension(): wrong number of flavours");
478 }
479
480 gammaDF1(0,0) = -8./3.;
481 gammaDF1(0,6) = -32./27.;
482
483 gammaDF1(1,1) = -8./3.;
484 gammaDF1(1,6) = -8./9.;
485
486 gammaDF1(2,6) = -16./9.;
487
488 gammaDF1(3,6) = 32./27.;
489
490 gammaDF1(4,6) = -112./9.;
491
492 gammaDF1(5,6) = 512./27.;
493
494 gammaDF1(6,6) = 8.;
495 gammaDF1(6,7) = -4.;
496
497 gammaDF1(7,6) = -4.;
498
499 break;
500 case 11:
501
502 if (!(nf == 3 || nf == 4 || nf == 5 || nf == 6)){
503 throw std::runtime_error("EvolBsmm::AnomalousDimension(): wrong number of flavours");
504 }
505
506
507 gammaDF1(0,0) = 169./9.;
508 gammaDF1(0,1) = 100./27.;
509 gammaDF1(0,3) = 254./729.;
510 gammaDF1(0,6) = -2272./729.;
511
512 gammaDF1(1,0) = 50./3.;
513 gammaDF1(1,1) = -8./3.;
514 gammaDF1(1,3) = 1076./243.;
515 gammaDF1(1,6) = 1952./243.;
516
517 gammaDF1(2,3) = 11116./243.;
518 gammaDF1(2,5) = -14./3.;
519 gammaDF1(2,6) = -6752./243.;
520
521 gammaDF1(3,2) = 280./27.;
522 gammaDF1(3,3) = 18763./729.;
523 gammaDF1(3,4) = -28./27.;
524 gammaDF1(3,5) = -35./18.;
525 gammaDF1(3,6) = -2192./729.;
526
527 gammaDF1(4,3) = 111136./243.;
528 gammaDF1(4,5) = -140./3.;
529 gammaDF1(4,6) = -84032./243.;
530
531 gammaDF1(5,2) = 2944./27.;
532 gammaDF1(5,3) = 193312./729.;
533 gammaDF1(5,4) = -280./27.;
534 gammaDF1(5,5) = -175./9.;
535 gammaDF1(5,6) = -37856./729.;
536
537 gammaDF1(6,7) = 16.;
538
539 gammaDF1(7,6) = 16.;
540
541 break;
542 case 02:
543
544 if (!(nf == 3 || nf == 4 || nf == 5 || nf == 6)){
545 throw std::runtime_error("EvolBsmm::AnomalousDimension(): wrong number of flavours");
546 }
547
548 gammaDF1(0,6)= -11680./2187.;
549 gammaDF1(0,7)= -416./81.;
550
551 gammaDF1(1,6)= -2920./729.;
552 gammaDF1(1,7)= -104./27.;
553
554 gammaDF1(2,6)= -39752./729.;
555 gammaDF1(2,7)= -136./27.;
556
557 gammaDF1(3,6)= 1024./2187.;
558 gammaDF1(3,7)= -448./81.;
559
560 gammaDF1(4,6)= -381344./729.;
561 gammaDF1(4,7)= -15616./27.;
562
563 gammaDF1(5,6)= 24832./2187.;
564 gammaDF1(5,7)= -7936./81.;
565
566
567 break;
568 case 21:
569
570 if (!(nf == 3 || nf == 4 || nf == 5 || nf == 6)){
571 throw std::runtime_error("EvolBsmm::AnomalousDimension(): wrong number of flavours");
572 }
573
574 gammaDF1(0,6)= -1359190./19683. + zeta3 * 6976./243.;
575
576 gammaDF1(1,6)= -229696./6561 - zeta3 * 3584./81.;
577
578 gammaDF1(2,6)= -1290092./6561 + zeta3 * 3200./81.;
579
580 gammaDF1(3,6)= -819971./19683. - zeta3 * 19936./243;
581
582 gammaDF1(4,6)= -16821944./6561 + zeta3 * 30464./81.;
583
584 gammaDF1(5,6)= -17787368./19683. - zeta3 * 286720./243.;
585
586
587 break;
588
589 default:
590 throw std::runtime_error("EvolBsmm::AnomalousDimension(): order not implemented");
591 }
592 return (gammaDF1);
593}

◆ BuiltB()

gslpp::matrix< double > EvolBsmm::BuiltB ( char  letter,
unsigned int  n_u,
unsigned int  n_d 
)
private

Definition at line 596 of file EvolBsmm.cpp.

598{
599
600 unsigned int nf = 5; //all the class works for nf = 5
601
602 double B00S = model.Beta0(nf), B10S = model.Beta1(nf), B20S = model.Beta2(nf),
603 B01S = -22./9., B11S = -308./27.;
604
605 double B00E = 80./9., B01E = 176./9.;
606
607 double b1 = B10S/(2. * B00S * B00S), b2 = B20S/(4. * B00S * B00S * B00S) - b1 * b1 ,
608 b3 = B01S/(2. * B00S * B00E), b4 = B11S /(4. * B00S * B00S * B00E) - 2 * b1 * b3,
609 b5 = B01E/(2. * B00S * B00E) - b1;
610
611
612
613 gslpp::matrix<double> B(dim, 0.);
614 gslpp::matrix<double> W10T(dim, 0.);
615 gslpp::matrix<double> W20T(dim, 0.);
616 gslpp::matrix<double> W30T(dim, 0.);
617 gslpp::matrix<double> W01T(dim, 0.);
618 gslpp::matrix<double> W02T(dim, 0.);
619 gslpp::matrix<double> W11T(dim, 0.);
620 gslpp::matrix<double> W21T(dim, 0.);
621
622
623 W10T = (AnomalousDimension(10, n_u, n_d).transpose())/2./B00S;
624 W20T = (AnomalousDimension(20, n_u, n_d).transpose())/4./B00S/B00S;
625 W30T = (AnomalousDimension(30, n_u, n_d).transpose())/8./B00S/B00S/B00S;
626 W01T = (AnomalousDimension(01, n_u, n_d).transpose())/2./B00E;
627 W02T = (AnomalousDimension(02, n_u, n_d).transpose())/4./B00E/B00E;
628 W11T = (AnomalousDimension(11, n_u, n_d).transpose())/4./B00S/B00E;
629 W21T = (AnomalousDimension(21, n_u, n_d).transpose())/8./B00S/B00S/B00E;
630
631
632
633 switch(letter){
634
635 case 'A':
636
637 B = Vi.real() * (W30T - b1 * W20T - b2 * W10T) * V.real();
638
639 break;
640 case 'B':
641
642 B = Vi.real() * (W20T - b1 * W10T) * V.real();
643
644 break;
645 case 'C':
646
647 B = Vi.real() * (W21T - b1 * W11T - b2 * W01T - b3 * W20T - b4 * W10T) * V.real();
648
649 break;
650 case 'D':
651
652 B = Vi.real() * (W11T - b1 * W01T - b3 * W10T) * V.real();
653
654 break;
655 case 'E':
656
657 B = Vi.real() * (W01T) * V.real();
658
659 break;
660 case 'F':
661
662 B = Vi.real() * (W02T + W11T - (b1 + b3) * W01T - b3 * W10T) * V.real();
663
664 break;
665 case 'R':
666
667 B = b5 * Vi.real() * (W01T) * V.real();
668
669 break;
670 default:
671 throw std::runtime_error("EvolBsmm::BuiltB(): order not implemented");
672 }
673 return (B);
674}

◆ Df1Evol() [1/2]

void EvolBsmm::Df1Evol ( double  mu,
double  M,
double  nf,
schemes  scheme 
)
private

Definition at line 733 of file EvolBsmm.cpp.

735{
736 unsigned int i = 0;
737 unsigned int j = 0;
738 unsigned int k = 0;
739
740 gslpp::matrix<double> resLO(dim, 0.);
741 gslpp::matrix<double> Ueos(dim, 0.), Ue(dim, 0.), Ues(dim,0.), Us(dim,0.), Ue2os(dim, 0.), Ue2os2(dim, 0.), Ue2(dim,0.), Us2(dim,0.);
742
743 int L = 6 - (int) nf;
744
745 double eta = alsM / alsmu;
746
747 double B00S = model.Beta0(nf);// B10S = model.Beta1(nf); /*inizializza i B*/
748
749 double B00E = 80./9.;// B01E = 176./9.; /*inizializza i B*/
750
751 double omega = 2. * B00S , lambda = B00E /B00S ; /* E ale dipende da mu?*/
752
753
754 for (k = 0; k < dim; k++) {
755 double etap = pow(eta, a[L][k]);
756 for (i = 0; i < dim; i++) {
757 for (j = 0; j < dim; j++) {
758 resLO(i, j) += b[L][i][j][k] * etap;
759 Ue2(i, j) = (i == j);
760 }
761 }
762 }
763
764 unsigned int ind = 0;
765 //double max = 0;
766
767 gslpp::vector<double> list(23, 0.);
768
769 list(0) = vbeevi.size()/7.;
770 list(1) = vebevi.size()/7.;
771 list(2) = veebvi.size()/7.;
772 list(3) = vbbevi.size()/7.;
773 list(4) = vbebvi.size()/7.;
774 list(5) = vebbvi.size()/7.;
775 list(6) = vaevi.size()/6.;
776 list(7) = vbbvi.size()/6.;
777 list(8) = vbdvi.size()/6.;
778 list(9) = vbevi.size()/6.;
779 list(10) = vdbvi.size()/6.;
780 list(11) = vdevi.size()/6.;
781 list(12) = veavi.size()/6.;
782 list(13) = vebvi.size()/6.;
783 list(14) = vedvi.size()/6.;
784 list(15) = veevi.size()/6.;
785 list(16) = vavi.size()/5.;
786 list(17) = vbvi.size()/5.;
787 list(18) = vcvi.size()/5.;
788 list(19) = vdvi.size()/5.;
789 list(20) = vevi.size()/5.;
790 list(21) = vfvi.size()/5.;
791 list(22) = vrvi.size()/5.;
792
793 double max = list.max();
794
795 for (ind = 0; ind < max; ind++) {
796
797 if (ind < list(0)) {
798
799 Ue2os(vbeevi[7 * ind], vbeevi[7 * ind + 5]) += vbeevi[7 * ind + 6] * H(vbeevi[7 * ind + 1], vbeevi[7 * ind + 2], vbeevi[7 * ind + 3], vbeevi[7 * ind + 4], 2, 4, 4, mu, M, nf);
800 }
801 if (ind < list(1)) {
802
803 Ue2os(vebevi[7 * ind], vebevi[7 * ind + 5]) += vebevi[7 * ind + 6] * H(vebevi[7 * ind + 1], vebevi[7 * ind + 2], vebevi[7 * ind + 3], vebevi[7 * ind + 4], 4, 2, 4, mu, M, nf);
804 }
805 if (ind < list(2)) {
806
807 Ue2os(veebvi[7 * ind], veebvi[7 * ind + 5]) += veebvi[7 * ind + 6] * H(veebvi[7 * ind + 1], veebvi[7 * ind + 2], veebvi[7 * ind + 3], veebvi[7 * ind + 4], 4, 4, 2, mu, M, nf);
808 }
809 if (ind < list(3)) {
810
811 Ues(vbbevi[7 * ind], vbbevi[7 * ind + 5]) += vbbevi[7 * ind + 6] * H(vbbevi[7 * ind + 1], vbbevi[7 * ind + 2], vbbevi[7 * ind + 3], vbbevi[7 * ind + 4], 2, 2, 4, mu, M, nf);
812 }
813 if (ind < list(4)) {
814
815 Ues(vbebvi[7 * ind], vbebvi[7 * ind + 5]) += vbebvi[7 * ind + 6] * H(vbebvi[7 * ind + 1], vbebvi[7 * ind + 2], vbebvi[7 * ind + 3], vbebvi[7 * ind + 4], 2, 4, 2, mu, M, nf);
816 }
817 if (ind < list(5)) {
818
819 Ues(vebbvi[7 * ind], vebbvi[7 * ind + 5]) += vebbvi[7 * ind + 6] * H(vebbvi[7 * ind + 1], vebbvi[7 * ind + 2], vebbvi[7 * ind + 3], vebbvi[7 * ind + 4], 4, 2, 2, mu, M, nf);
820 }
821
822
823 if (ind < list(6)) {
824
825 Ues(vaevi[6 * ind], vaevi[6 * ind + 4]) += vaevi[6 * ind + 5] * G(vaevi[6 * ind + 1], vaevi[6 * ind + 2], vaevi[6 * ind + 3], 1, 4, mu, M, nf);
826 }
827 if (ind < list(7)) {
828
829 Us2(vbbvi[6 * ind], vbbvi[6 * ind + 4]) += vbbvi[6 * ind + 5] * G(vbbvi[6 * ind + 1], vbbvi[6 * ind + 2], vbbvi[6 * ind + 3], 2, 2, mu, M, nf);
830 }
831 if (ind < list(8)) {
832
833 Ues(vbdvi[6 * ind], vbdvi[6 * ind + 4]) += vbdvi[6 * ind + 5] * G(vbdvi[6 * ind + 1], vbdvi[6 * ind + 2], vbdvi[6 * ind + 3], 2, 3, mu, M, nf);
834 }
835 if (ind < list(9)) {
836
837 Ue(vbevi[6 * ind], vbevi[6 * ind + 4]) += vbevi[6 * ind + 5] * G(vbevi[6 * ind + 1], vbevi[6 * ind + 2], vbevi[6 * ind + 3], 2, 4, mu, M, nf);
838 Ue2os(vbevi[6 * ind], vbevi[6 * ind + 4]) += vbevi[6 * ind + 5] * (-G(vbevi[6 * ind + 1], vbevi[6 * ind + 2], vbevi[6 * ind + 3], 2, 4, mu, M, nf)
839 + G(vbevi[6 * ind + 1], vbevi[6 * ind + 2], vbevi[6 * ind + 3], 2, 5, mu, M, nf));
840 }
841 if (ind < list(10)) {
842
843 Ues(vdbvi[6 * ind], vdbvi[6 * ind + 4]) += vdbvi[6 * ind + 5] * G(vdbvi[6 * ind + 1], vdbvi[6 * ind + 2], vdbvi[6 * ind + 3], 3, 2, mu, M, nf);
844 }
845 if (ind < list(11)) {
846
847 Ue2os(vdevi[6 * ind], vdevi[6 * ind + 4]) += vdevi[6 * ind + 5] * G(vdevi[6 * ind + 1], vdevi[6 * ind + 2], vdevi[6 * ind + 3], 3, 4, mu, M, nf);
848 }
849 if (ind < list(12)) {
850
851 Ues(veavi[6 * ind], veavi[6 * ind + 4]) += veavi[6 * ind + 5] * G(veavi[6 * ind + 1], veavi[6 * ind + 2], veavi[6 * ind + 3], 4, 1, mu, M, nf);
852
853 }
854 if (ind < list(13)) {
855
856 Ue(vebvi[6 * ind], vebvi[6 * ind + 4]) += vebvi[6 * ind + 5] * G(vebvi[6 * ind + 1], vebvi[6 * ind + 2], vebvi[6 * ind + 3], 4, 2, mu, M, nf);
857 Ue2os(vebvi[6 * ind], vebvi[6 * ind + 4]) += vebvi[6 * ind + 5] * (-G(vebvi[6 * ind + 1], vebvi[6 * ind + 2], vebvi[6 * ind + 3], 4, 2, mu, M, nf)
858 + G(vebvi[6 * ind + 1], vebvi[6 * ind + 2], vebvi[6 * ind + 3], 5, 2, mu, M, nf));
859 }
860 if (ind < list(14)) {
861
862 Ue2os(vedvi[6 * ind], vedvi[6 * ind + 4]) += vedvi[6 * ind + 5] * G(vedvi[6 * ind + 1], vedvi[6 * ind + 2], vedvi[6 * ind + 3], 4, 3, mu, M, nf);
863
864 }
865 if (ind < list(15)) {
866
867 Ue2os2(veevi[6 * ind], veevi[6 * ind + 4]) += (veevi[6 * ind + 5] * G(veevi[6 * ind + 1], veevi[6 * ind + 2], veevi[6 * ind + 3], 4, 4, mu, M, nf));
868
869 }
870
871
872 if (ind < list(16)) {
873
874 Us2(vavi[5 * ind], vavi[5 * ind + 3]) += (vavi[5 * ind + 4] * F(vavi[5 * ind + 1], vavi[5 * ind + 2], 1, mu, M, nf));
875 }
876
877
878 if (ind < list(17)) {
879
880 Us(vbvi[5 * ind], vbvi[5 * ind + 3]) += vbvi[5 * ind + 4] * F(vbvi[5 * ind + 1], vbvi[5 * ind + 2], 2, mu, M, nf);
881
882 }
883
884 if (ind < list(18)) {
885
886 Ues(vcvi[5 * ind], vcvi[5 * ind + 3]) += vcvi[5 * ind + 4] * F(vcvi[5 * ind + 1], vcvi[5 * ind + 2], 2, mu, M, nf);
887 }
888 if (ind < list(19)) {
889
890 Ue(vdvi[5 * ind], vdvi[5 * ind + 3]) += vdvi[5 * ind + 4] * F(vdvi[5 * ind + 1], vdvi[5 * ind + 2], 3, mu, M, nf);
891// Ue2os(vdvi[5 * ind], vdvi[5 * ind + 3]) += (lambda * lambda * omega)
892// * (-vdvi[5 * ind + 4] * F(vdvi[5 * ind + 1], vdvi[5 * ind + 2], 3, mu, M, nf));
893 Ue2os(vdvi[5 * ind], vdvi[5 * ind + 3]) += (-vdvi[5 * ind + 4] * F(vdvi[5 * ind + 1], vdvi[5 * ind + 2], 3, mu, M, nf));
894 }
895 if (ind < list(20)) {
896
897 Ueos(vevi[5 * ind], vevi[5 * ind + 3]) += vevi[5 * ind + 4] * F(vevi[5 * ind + 1], vevi[5 * ind + 2], 4, mu, M, nf);
898 Ue2os2(vevi[5 * ind], vevi[5 * ind + 3]) += (vevi[5 * ind + 4] * (F(vevi[5 * ind + 1], vevi[5 * ind + 2], 5, mu, M, nf)
899 - F(vevi[5 * ind + 1], vevi[5 * ind + 2], 4, mu, M, nf)));
900 }
901 if (ind < list(21)) {
902
903 Ue2os(vfvi[5 * ind], vfvi[5 * ind + 3]) += (vfvi[5 * ind + 4] * F(vfvi[5 * ind + 1], vfvi[5 * ind + 2], 4, mu, M, nf));
904 }
905 if (ind < list(22)) {
906
907 Ue2os(vrvi[5 * ind], vrvi[5 * ind + 3]) += vrvi[5 * ind + 4] * R(vrvi[5 * ind + 1], vrvi[5 * ind + 2], 4, mu, M, nf);
908
909 }
910
911 }
912
913
914 Us = omega * Us;
915 Us2 = omega * omega * Us2;
916 Ueos = lambda * Ueos;
917 Ue = lambda * omega * Ue;
918 Ue2os2 = lambda * lambda * Ue2os2;
919 Ues = (omega * omega * lambda) * Ues;
920 Ue2os = (omega * lambda * lambda) * Ue2os;
921
922 switch(order_qed) {
923
924
925 case NLO_QED22:
926
927 *elem[NLO_QED22] = (*elem[NLO_QED22]) * resLO + (*elem[NLO_QED11]) * Ue + (*elem[LO]) * Ue2 +
928 (*elem[NLO_QED21]) * Ueos + (*elem[NNLO]) * Ue2os2 + (*elem[NLO]) * Ue2os;
929
930 case NLO_QED12:
931
932 *elem[NLO_QED12] =(*elem[NLO_QED11]) * Ueos + (*elem[NLO]) * Ue2os2 + (*elem[LO]) * Ue2os;
933
934 case NLO_QED21:
935
936 *elem[NLO_QED21] = (*elem[NLO_QED21]) * resLO + (*elem[NLO_QED11]) * Us +
937 (*elem[NLO]) * Ue + (*elem[LO]) * Ues + (*elem[NNLO]) * Ueos;
938
939 case NLO_QED02:
940
941 *elem[NLO_QED02] = (*elem[LO]) * Ue2os2;
942
943 case NLO_QED11:
944
945 *elem[NLO_QED11] = (*elem[NLO_QED11]) * resLO + (*elem[LO]) * Ue + (*elem[NLO]) * Ueos;
946
947
948 case LO_QED:
949
950 *elem[LO_QED] = (*elem[LO]) * Ueos;
951 break;
952 default:
953 throw std::runtime_error("Error in EvolBsmm::Df1Evol");
954 }
955
956 switch(order) {
957 case NNLO:
958
959 *elem[NNLO] = (*elem[LO]) * Us2 + (*elem[NNLO]) * resLO + (*elem[NLO]) * Us;
960 case NLO:
961
962 *elem[NLO] = (*elem[LO]) * Us + (*elem[NLO]) * resLO;
963 case LO:
964
965 *elem[LO] = (*elem[LO]) * resLO;
966 break;
967 default:
968 throw std::runtime_error("Error in EvolBsmm::Df1Evol");
969 }
970}
@ NNLO
Definition: OrderScheme.h:36
@ LO
Definition: OrderScheme.h:34
@ NLO
Definition: OrderScheme.h:35
@ NLO_QED11
Definition: OrderScheme.h:59
@ NLO_QED02
Definition: OrderScheme.h:61
@ NLO_QED12
Definition: OrderScheme.h:62
@ LO_QED
Definition: OrderScheme.h:58
@ NLO_QED22
Definition: OrderScheme.h:63
@ NLO_QED21
Definition: OrderScheme.h:60
double R(unsigned int i, unsigned int j, int x, double mu, double M, double nf)
Definition: EvolBsmm.cpp:999
double G(unsigned int i, unsigned int p, unsigned int j, int x, int y, double mu, double M, double nf)
Definition: EvolBsmm.cpp:1025
double F(unsigned int i, unsigned int j, int x, double mu, double M, double nf)
Definition: EvolBsmm.cpp:972
double H(unsigned int i, unsigned int p, unsigned int q, unsigned int j, int x, int y, int z, double mu, double M, double nf)
Definition: EvolBsmm.cpp:1068
double alsM
Definition: EvolBsmm.h:37
double eta
Definition: EvolBsmm.h:40
double alsmu
Definition: EvolBsmm.h:38
double M
Definition: RGEvolutor.h:142
gslpp::matrix< double > * elem[MAXORDER_QED+1]

◆ Df1Evol() [2/2]

gslpp::matrix< double > & EvolBsmm::Df1Evol ( double  mu,
double  M,
orders  order,
orders_qed  order_qed,
schemes  scheme = NDR 
)

Definition at line 678 of file EvolBsmm.cpp.

680{
681 switch (scheme) { /* complete this method */
682 case NDR:
683 break;
684 case LRI:
685 case HV:
686 default:
687 std::stringstream out;
688 out << scheme;
689 throw std::runtime_error("EvolDF1nlep::Df1Evol(): scheme " + out.str() + " not implemented ");
690 }
691
692 if (mu == this->mu && M == this->M && scheme == this->scheme && order_qed == NO_QED)
693 return (*Evol(order));
694
695 if (mu == this->mu && M == this->M && scheme == this->scheme && order_qed != NO_QED)
696 return (*Evol(order_qed));
697
698
699 if (M < mu) {
700 std::stringstream out;
701 out << "M = " << M << " < mu = " << mu;
702 throw out.str();
703 }
704
705 setScales(mu, M); // also assign evol to identity
706 if (M != mu) {
707 double m_down = mu;
708 //double m_up = model.AboveTh(m_down);
709 //double nf = model.Nf(m_down);
710 double nf = 5; //all the process in implemented for nf = 5
713
714 eta = alsM / alsmu;
715 logeta = log(eta);
716
717 /*while (m_up < M) { //there is no thresholds
718 Df1Evol(m_down, m_up, nf, scheme);
719 //Df1threshold_nlep(m_up, nf+1.);
720 m_down = m_up;
721 m_up = model.AboveTh(m_down);
722 nf += 1.;
723 } */
724
725 Df1Evol(m_down, M, nf, scheme);
726 }
727
728 if(order_qed != NO_QED) return (*Evol(order_qed));
729 else return (*Evol(order));
730
731}
@ HV
Definition: OrderScheme.h:22
@ LRI
Definition: OrderScheme.h:23
@ NDR
Definition: OrderScheme.h:21
@ NO_QED
Definition: OrderScheme.h:57
double logeta
Definition: EvolBsmm.h:41
gslpp::matrix< double > & Df1Evol(double mu, double M, orders order, orders_qed order_qed, schemes scheme=NDR)
Definition: EvolBsmm.cpp:678
void setScales(double mu, double M)
Sets the upper and lower scale for the running of the Wilson Coefficients.
Definition: RGEvolutor.cpp:85
gslpp::matrix< double > * Evol(orders order)
Evolution matrix set at a fixed order of QCD coupling.
Definition: RGEvolutor.cpp:103

◆ F()

double EvolBsmm::F ( unsigned int  i,
unsigned int  j,
int  x,
double  mu,
double  M,
double  nf 
)
private

Definition at line 972 of file EvolBsmm.cpp.

974{
975 int value = 0;
976 int L = 6 - (int) nf;
977
978 double etai = pow(eta, a[L][i]);
979 double etajx = pow(eta, a[L][j]+ x - 3.);
980
981 double cut = 0.000000001;
982 double result = 0.;
983
984 if(fabs(a[L][j] + x - 3. - a[L][i]) < cut ) value = 0;
985 else value = 1;
986
987 switch(value) {
988 case 0:
989 result = etai * logeta;
990 break;
991 case 1:
992 result = (etajx - etai)/(a[L][j] + x - 3. - a[L][i]);
993 break;
994 }
995 return (result);
996}

◆ G()

double EvolBsmm::G ( unsigned int  i,
unsigned int  p,
unsigned int  j,
int  x,
int  y,
double  mu,
double  M,
double  nf 
)
private

Definition at line 1025 of file EvolBsmm.cpp.

1027{
1028 int value = 0;
1029 int L = 6 - (int) nf;
1030
1031 double etai = pow(eta, a[L][i]);
1032 double etapx = pow(eta, a[L][p]+ x - 3.);
1033 double etajxy = pow(eta, a[L][j]+ x - 3. + y - 3.);
1034
1035 double cut = 0.000000001;
1036 double result = 0.;
1037
1038 if(fabs(a[L][j] + y - 3. - a[L][p]) < cut && fabs(a[L][p] + x - 3. - a[L][i]) < cut ) value = 0;
1039 else if(fabs(a[L][j] + y - 3. - a[L][p]) < cut && fabs(a[L][p] + x - 3. - a[L][i]) > cut) value = 1;
1040 else if(fabs(a[L][j] + y - 3. - a[L][p]) > cut && fabs(a[L][j] + y - 3. + x - 3. - a[L][i]) < cut && fabs(a[L][p] + x - 3. - a[L][i]) < cut ) value = 2;
1041 else if(fabs(a[L][j] + y - 3. - a[L][p]) > cut && fabs(a[L][j] + y - 3. + x - 3. - a[L][i]) > cut && fabs(a[L][p] + x - 3. - a[L][i]) > cut ) value = 3;
1042 else if(fabs(a[L][j] + y - 3. - a[L][p]) > cut && fabs(a[L][j] + y - 3. + x - 3. - a[L][i]) < cut && fabs(a[L][p] + x - 3. - a[L][i]) > cut ) value = 4;
1043 else if(fabs(a[L][j] + y - 3. - a[L][p]) > cut && fabs(a[L][j] + y - 3. + x - 3. - a[L][i]) > cut && fabs(a[L][p] + x - 3. - a[L][i]) < cut ) value = 5;
1044
1045 switch(value) {
1046 case 0:
1047 result = etai * logeta * log(eta) * 0.5;
1048 break;
1049 case 1:
1050 result = ((etapx * logeta - ((etapx - etai)/(a[L][p] + x - 3. - a[L][i])))/(a[L][p] + x - 3. - a[L][i]));
1051 break;
1052 case 2:
1053 result = (etai * logeta - etai * logeta)/(a[L][j] + y - 3. - a[L][p]);
1054 break;
1055 case 3:
1056 result = (((etajxy - etai)/(a[L][j] + x - 3. + y - 3. - a[L][i])) - ((etapx - etai)/(a[L][p] + x - 3. - a[L][i])))/(a[L][j] + y - 3. - a[L][p]);
1057 break;
1058 case 4:
1059 result = (etai * logeta - ((etapx - etai)/(a[L][p] + x - 3. - a[L][i])))/(a[L][j] + y - 3. - a[L][p]);
1060 break;
1061 case 5:
1062 result = (((etajxy - etai)/(a[L][j] + x - 3. + y - 3. - a[L][i])) - etai * log(eta))/(a[L][j] + y - 3. - a[L][p]);
1063 break;
1064 }
1065 return (result);
1066}

◆ H()

double EvolBsmm::H ( unsigned int  i,
unsigned int  p,
unsigned int  q,
unsigned int  j,
int  x,
int  y,
int  z,
double  mu,
double  M,
double  nf 
)
private

Definition at line 1068 of file EvolBsmm.cpp.

1070{
1071 int value = 0;
1072 int L = 6 - (int) nf;
1073
1074 double etai = pow(eta, a[L][i]);
1075 double etapx = pow(eta, a[L][p] + x - 3.);
1076 double etaqx = pow(eta, a[L][q] + x - 3.);
1077
1078 double cut = 0.000000001;
1079 double result = 0.;
1080
1081 if(fabs(a[L][p] + x - 3. - a[L][i]) < cut && fabs(a[L][q] + y - 3. - a[L][p]) < cut && fabs(a[L][j] + z - 3. - a[L][q]) < cut) value = 0;
1082 else if(fabs(a[L][p] + x - 3. - a[L][i]) > cut && fabs(a[L][q] + y - 3. - a[L][p]) < cut && fabs(a[L][j] + z - 3. - a[L][q]) < cut) value = 1;
1083 else if((a[L][q] + x - 3. + y + 3 - a[L][i] ) < cut && fabs(a[L][j] + z - 3. - a[L][q]) < cut){
1084 if(fabs(a[L][p] + x - 3. - a[L][i]) < cut) value = 2;
1085 else value = 3;
1086 }
1087 else if((a[L][q] + x - 3. + y + 3 - a[L][i]) > cut && fabs(a[L][j] + z - 3. - a[L][q]) < cut){
1088 if(fabs(a[L][p] + x - 3. - a[L][i]) > cut) value = 4;
1089 else value = 5;
1090 }
1091 else if(fabs(a[L][j] + z - 3. - a[L][q]) > cut) value = 6;
1092
1093 switch(value) {
1094 case 0:
1095 result = etai * logeta * logeta * logeta /6.;
1096 break;
1097 case 1:
1098 result = (0.5 * etapx * logeta * logeta - ((etapx * logeta
1099 - ((etapx - etai)/(a[L][p] + x - 3. - a[L][i])))/(a[L][p] + x - 3. - a[L][i])))/(a[L][p] + x - 3. - a[L][i]);
1100 break;
1101 case 2:
1102 result = (etai * logeta * logeta * 0.5 - ((etai * logeta - etai * logeta)/(a[L][q] + y - 3. - a[L][p])))/(a[L][q] + y - 3. - a[L][p]);
1103 break;
1104 case 3:
1105 result = (etai * logeta * logeta * 0.5 - ((etai * logeta- ((etapx - etai)/(a[L][p] + x - 3. - a[L][i])) )/(a[L][q] + y - 3. - a[L][p])))/(a[L][q] + y - 3. - a[L][p]);
1106 break;
1107 case 4:
1108 result = (((etaqx * logeta - ((etaqx - etai)/(a[L][q] + x - 3. - a[L][i])))/(a[L][q] + y + 3. + x - 3. - a[L][i])) - ((etai * logeta - etai * logeta)/(a[L][q] + y - 3. - a[L][p])))/(a[L][q] + y - 3. - a[L][p]);
1109 break;
1110 case 5:
1111 result = (((etaqx * logeta - ((etaqx - etai)/(a[L][q] + x - 3. - a[L][i])))/(a[L][q] + y + 3. + x - 3. - a[L][i])) - ((etai * logeta - ((etapx - etai)/(a[L][p] + x - 3. - a[L][i])) )/(a[L][q] + y - 3. - a[L][p])))/(a[L][q] + y - 3. - a[L][p]);
1112 break;
1113 case 6:
1114 result = (G(i, p, j, x , y + z - 3., mu, M, nf) - G(i, p, q, x , y, mu, M, nf))/(a[L][j] + z - 3. - a[L][q]);
1115 break;
1116 }
1117return (result);
1118}

◆ R()

double EvolBsmm::R ( unsigned int  i,
unsigned int  j,
int  x,
double  mu,
double  M,
double  nf 
)
private

Definition at line 999 of file EvolBsmm.cpp.

1001{
1002 int value = 0;
1003 int L = 6 - (int) nf;
1004
1005 double etai = pow(eta, a[L][i]);
1006 double etajx = pow(eta, a[L][j] + x - 3.);
1007
1008 double cut = 0.000000001;
1009 double result = 0.;
1010
1011 if(fabs(a[L][j] + x - 3. - a[L][i]) < cut ) value = 0;
1012 else value = 1;
1013
1014 switch(value) {
1015 case 0:
1016 result = etai * logeta * logeta * 0.5;
1017 break;
1018 case 1:
1019 result = (etajx * logeta - ((etajx - etai)/(a[L][j] + x - 3. - a[L][i])))/(a[L][j] + x - 3. - a[L][i]);
1020 break;
1021 }
1022return (result);
1023}

Member Data Documentation

◆ a

double EvolBsmm::a[4][8]
private

Definition at line 28 of file EvolBsmm.h.

◆ AA

gslpp::matrix<gslpp::complex> EvolBsmm::AA
private

Definition at line 31 of file EvolBsmm.h.

◆ alsM

double EvolBsmm::alsM
private

Definition at line 37 of file EvolBsmm.h.

◆ alsmu

double EvolBsmm::alsmu
private

Definition at line 38 of file EvolBsmm.h.

◆ b

double EvolBsmm::b[4][8][8][8]
private

Definition at line 28 of file EvolBsmm.h.

◆ BB

gslpp::matrix<gslpp::complex> EvolBsmm::BB
private

Definition at line 31 of file EvolBsmm.h.

◆ CC

gslpp::matrix<gslpp::complex> EvolBsmm::CC
private

Definition at line 31 of file EvolBsmm.h.

◆ DD

gslpp::matrix<gslpp::complex> EvolBsmm::DD
private

Definition at line 31 of file EvolBsmm.h.

◆ dim

unsigned int EvolBsmm::dim
private

Definition at line 36 of file EvolBsmm.h.

◆ e

gslpp::vector<gslpp::complex> EvolBsmm::e
private

Definition at line 32 of file EvolBsmm.h.

◆ EE

gslpp::matrix<gslpp::complex> EvolBsmm::EE
private

Definition at line 31 of file EvolBsmm.h.

◆ eta

double EvolBsmm::eta
private

Definition at line 40 of file EvolBsmm.h.

◆ FF

gslpp::matrix<gslpp::complex> EvolBsmm::FF
private

Definition at line 31 of file EvolBsmm.h.

◆ logeta

double EvolBsmm::logeta
private

Definition at line 41 of file EvolBsmm.h.

◆ model

const StandardModel& EvolBsmm::model
private

Definition at line 29 of file EvolBsmm.h.

◆ nd

int EvolBsmm::nd
private

Definition at line 27 of file EvolBsmm.h.

◆ nu

int EvolBsmm::nu
private

Definition at line 27 of file EvolBsmm.h.

◆ RR

gslpp::matrix<gslpp::complex> EvolBsmm::RR
private

Definition at line 31 of file EvolBsmm.h.

◆ V

gslpp::matrix<gslpp::complex> EvolBsmm::V
private

Definition at line 31 of file EvolBsmm.h.

◆ vaevi

std::vector<double> EvolBsmm::vaevi
private

Definition at line 33 of file EvolBsmm.h.

◆ vavi

std::vector<double> EvolBsmm::vavi
private

Definition at line 33 of file EvolBsmm.h.

◆ vbbevi

std::vector<double> EvolBsmm::vbbevi
private

Definition at line 35 of file EvolBsmm.h.

◆ vbbvi

std::vector<double> EvolBsmm::vbbvi
private

Definition at line 33 of file EvolBsmm.h.

◆ vbdvi

std::vector<double> EvolBsmm::vbdvi
private

Definition at line 34 of file EvolBsmm.h.

◆ vbebvi

std::vector<double> EvolBsmm::vbebvi
private

Definition at line 35 of file EvolBsmm.h.

◆ vbeevi

std::vector<double> EvolBsmm::vbeevi
private

Definition at line 34 of file EvolBsmm.h.

◆ vbevi

std::vector<double> EvolBsmm::vbevi
private

Definition at line 34 of file EvolBsmm.h.

◆ vbvi

std::vector<double> EvolBsmm::vbvi
private

Definition at line 33 of file EvolBsmm.h.

◆ vcvi

std::vector<double> EvolBsmm::vcvi
private

Definition at line 33 of file EvolBsmm.h.

◆ vdbvi

std::vector<double> EvolBsmm::vdbvi
private

Definition at line 34 of file EvolBsmm.h.

◆ vdevi

std::vector<double> EvolBsmm::vdevi
private

Definition at line 34 of file EvolBsmm.h.

◆ vdvi

std::vector<double> EvolBsmm::vdvi
private

Definition at line 33 of file EvolBsmm.h.

◆ veavi

std::vector<double> EvolBsmm::veavi
private

Definition at line 34 of file EvolBsmm.h.

◆ vebbvi

std::vector<double> EvolBsmm::vebbvi
private

Definition at line 35 of file EvolBsmm.h.

◆ vebevi

std::vector<double> EvolBsmm::vebevi
private

Definition at line 35 of file EvolBsmm.h.

◆ vebvi

std::vector<double> EvolBsmm::vebvi
private

Definition at line 34 of file EvolBsmm.h.

◆ vedvi

std::vector<double> EvolBsmm::vedvi
private

Definition at line 34 of file EvolBsmm.h.

◆ veebvi

std::vector<double> EvolBsmm::veebvi
private

Definition at line 35 of file EvolBsmm.h.

◆ veevi

std::vector<double> EvolBsmm::veevi
private

Definition at line 34 of file EvolBsmm.h.

◆ vevi

std::vector<double> EvolBsmm::vevi
private

Definition at line 33 of file EvolBsmm.h.

◆ vfvi

std::vector<double> EvolBsmm::vfvi
private

Definition at line 33 of file EvolBsmm.h.

◆ Vi

gslpp::matrix<gslpp::complex> EvolBsmm::Vi
private

Definition at line 31 of file EvolBsmm.h.

◆ vrvi

std::vector<double> EvolBsmm::vrvi
private

Definition at line 33 of file EvolBsmm.h.


The documentation for this class was generated from the following files: