10#include "std_make_vector.h"
11#include "gslpp_function_adapter.h"
14#include <gsl/gsl_sf.h>
15#include <boost/bind/bind.hpp>
17#include <TFitResult.h>
18using namespace boost::placeholders;
21: mySM(SM_i), myF_1(new
F_1()), myF_2(new
F_2()),
22fplus_lat_cache(3, 0.),
57 deltaTparpupdated = 0;
58 deltaTparmupdated = 0;
60 w_sigma = gsl_integration_cquad_workspace_alloc(100);
61 w_delta = gsl_integration_cquad_workspace_alloc(100);
62 w_sigmaTree = gsl_integration_cquad_workspace_alloc(100);
63 w_DTPPR = gsl_integration_cquad_workspace_alloc(100);
65 acc_Re_deltaC7_QCDF = gsl_interp_accel_alloc();
66 acc_Im_deltaC7_QCDF = gsl_interp_accel_alloc();
67 acc_Re_deltaC9_QCDF = gsl_interp_accel_alloc();
68 acc_Im_deltaC9_QCDF = gsl_interp_accel_alloc();
70 spline_Re_deltaC7_QCDF = gsl_spline_alloc(gsl_interp_cspline, GSL_INTERP_DIM_DC);
71 spline_Im_deltaC7_QCDF = gsl_spline_alloc(gsl_interp_cspline, GSL_INTERP_DIM_DC);
72 spline_Re_deltaC9_QCDF = gsl_spline_alloc(gsl_interp_cspline, GSL_INTERP_DIM_DC);
73 spline_Im_deltaC9_QCDF = gsl_spline_alloc(gsl_interp_cspline, GSL_INTERP_DIM_DC);
91 <<
"b_0_fplus" <<
"b_1_fplus" <<
"b_2_fplus" <<
"m_fit_fplus_lat"
92 <<
"b_0_fT" <<
"b_1_fT" <<
"b_2_fT" <<
"m_fit_fT_lat"
93 <<
"b_0_f0" <<
"b_1_f0" <<
"b_2_f0" <<
"m_fit_f0_lat" ;
95 <<
"b_0_fplus" <<
"b_1_fplus" <<
"b_2_fplus" <<
"m_fit_fplus_lat"
96 <<
"b_0_fT" <<
"b_1_fT" <<
"b_2_fT" <<
"m_fit_fT_lat"
97 <<
"b_1_f0" <<
"b_2_f0" <<
"m_fit_f0_lat" ;
99 <<
"b_0_fplus" <<
"b_1_fplus" <<
"b_2_fplus" <<
"m_fit_fplus_lat"
100 <<
"b_0_fT" <<
"b_1_fT" <<
"b_2_fT" <<
"m_fit_fT_lat"
101 <<
"b_1_f0" <<
"b_2_f0" ;
103 <<
"r_1_fplus" <<
"r_2_fplus" <<
"m_fit2_fplus" <<
"r_1_fT" <<
"r_2_fT" <<
"m_fit2_fT" <<
"r_2_f0" <<
"m_fit2_f0";
105 std::stringstream out;
107 throw std::runtime_error(
"MPll: pseudoscalar " + out.str() +
" not implemented");
130void MPll::updateParameters()
199 b_0_f0 = fplus_DM(0.,b_0_fplus,b_1_fplus,b_2_fplus,m_fit2_fplus_lat)*phi0_DM(0) - b_1_f0*zeta_DM(0) - b_2_f0*zeta_DM(0)*zeta_DM(0);
219 std::stringstream out;
221 throw std::runtime_error(
"MPll: pseudoscalar " + out.str() +
" not implemented");
266 Gammatau = HCUT / 0.2903;
269 C_R_nunu_e = ((*(allcoeff_nu[
LO]))(1) + (*(allcoeff_nu[
NLO]))(1) + (*(allcoeff_nu[
NLO_QED11]))(1));
274 C_L_nunu_e = ((*(allcoeff_nu[
LO]))(0) + (*(allcoeff_nu[
NLO]))(0) + (*(allcoeff_nu[
NLO_QED11]))(0));
277 C_R_nunu_mu = ((*(allcoeff_nu[
LO]))(1) + (*(allcoeff_nu[
NLO]))(1) + (*(allcoeff_nu[
NLO_QED11]))(1));
282 C_L_nunu_mu = ((*(allcoeff_nu[
LO]))(0) + (*(allcoeff_nu[
NLO]))(0) + (*(allcoeff_nu[
NLO_QED11]))(0));
285 C_R_nunu_tau = ((*(allcoeff_nu[
LO]))(1) + (*(allcoeff_nu[
NLO]))(1) + (*(allcoeff_nu[
NLO_QED11]))(1));
290 C_L_nunu_tau = ((*(allcoeff_nu[
LO]))(0) + (*(allcoeff_nu[
NLO]))(0) + (*(allcoeff_nu[
NLO_QED11]))(0));
292 C_L_nunu = sqrt(C_L_nunu_e * C_L_nunu_e + C_L_nunu_mu * C_L_nunu_mu + C_L_nunu_tau * C_L_nunu_tau);
293 C_R_nunu = sqrt(C_R_nunu_e * C_R_nunu_e + C_R_nunu_mu * C_R_nunu_mu + C_R_nunu_tau * C_R_nunu_tau);
299 C_1 = (*(allcoeff[
LO]))(0) + (*(allcoeff[
NLO]))(0);
300 C_1L_bar = (*(allcoeff[
LO]))(0) / 2.;
301 C_2 = ((*(allcoeff[
LO]))(1) + (*(allcoeff[
NLO]))(1));
302 C_2L_bar = (*(allcoeff[
LO]))(1) - (*(allcoeff[
LO]))(0) / 6.;
303 C_3 = ((*(allcoeff[
LO]))(2) + (*(allcoeff[
NLO]))(2));
304 C_4 = (*(allcoeff[
LO]))(3) + (*(allcoeff[
NLO]))(3);
305 C_5 = ((*(allcoeff[
LO]))(4) + (*(allcoeff[
NLO]))(4));
306 C_6 = ((*(allcoeff[
LO]))(5) + (*(allcoeff[
NLO]))(5));
307 C_8 = ((*(allcoeff[
LO]))(7) + (*(allcoeff[
NLO]))(7));
308 C_8L = (*(allcoeff[
LO]))(7);
309 C_S = MW /
Mb * ((*(allcoeff[
LO]))(10) + (*(allcoeff[
NLO]))(10));
310 C_P = MW /
Mb * ((*(allcoeff[
LO]))(11) + (*(allcoeff[
NLO]))(11));
311 C_9p = (*(allcoeffprime[
LO]))(8) + (*(allcoeffprime[
NLO]))(8);
312 C_10p = (*(allcoeffprime[
LO]))(9) + (*(allcoeffprime[
NLO]))(9);
313 C_Sp = MW /
Mb * ((*(allcoeffprime[
LO]))(10) + (*(allcoeffprime[
NLO]))(10));
314 C_Pp = MW /
Mb * ((*(allcoeffprime[
LO]))(11) + (*(allcoeffprime[
NLO]))(11));
322 C_7 = ((*(allcoeff[
LO]))(6) + (*(allcoeff[
NLO]))(6));
323 C_9 = ((*(allcoeff[
LO]))(8) + (*(allcoeff[
NLO]))(8));
324 C_10 = ((*(allcoeff[
LO]))(9) + (*(allcoeff[
NLO]))(9));
326 C_7p = MsoMb * ((*(allcoeffprime[
LO]))(6) + (*(allcoeffprime[
NLO]))(6));
327 C_7p -= MsoMb * (C_7 + 1. / 3. * C_3 + 4 / 9 * C_4 + 20. / 3. * C_5 + 80. / 9. * C_6);
331 C_1Lh_bar = (*(allcoeffh[
LO]))(0) / 2.;
332 C_2Lh_bar = (*(allcoeffh[
LO]))(1) - (*(allcoeff[
LO]))(0) / 6.;
333 C_8Lh = (*(allcoeffh[
LO]))(7);
338 H_0_pre = 8. / 27. + 4. / 9. * gslpp::complex::i() * M_PI;
339 H_0_WC = (C_3 + 4. / 3. * C_4 + 16. * C_5 + 64. / 3. * C_6);
340 H_c_WC = (4. / 3. * C_1 + C_2 + 6. * C_3 + 60. * C_5);
341 H_b_WC = (7. * C_3 + 4. / 3. * C_4 + 76. * C_5 + 64. / 3. * C_6);
342 fournineth = 4. / 9.;
345 ihalfMPI = gslpp::complex::i() * M_PI / 2.;
348 logMc = log(Mc2 / mu_b2);
349 logMb = log(Mb2 / mu_b2);
354 NN = ((4. *
GF *
MM *
ale * lambda_t) / (sqrt(2.)*4. * M_PI)).abs2();
363 twoMM2_MMpMP = twoMM2 * (
MM +
MP);
364 twoMM_MbpMs = twoMM * (
Mb +
Ms);
365 S_L_pre = -(MM2mMP2 / twoMM_MbpMs) * (1 + MsoMb) / (1 - MsoMb);
367 twoMboMM = 2 *
Mb /
MM;
368 sixteenM_PI2 = 16. * M_PI*M_PI;
369 ninetysixM_PI3MM3 = 96. * M_PI * M_PI * M_PI *
MM *
MM*
MM;
376 M_PI2osix = M_PI * M_PI / 6.;
378 sixMMoMb = 6. *
MM /
Mb;
384 F87_0 = -32. / 9. * log(
mu_b /
Mb) + 8. / 27. * M_PI * M_PI - 44. / 9. - 8. / 9. * gslpp::complex::i() * M_PI;
385 F87_1 = (4. / 3. * M_PI * M_PI - 40. / 3.);
386 F87_2 = (32. / 9. * M_PI * M_PI - 316. / 9.);
387 F87_3 = (200. / 27. * M_PI * M_PI - 658. / 9.);
389 F89_0 = 104. / 9. - 32. / 27. * M_PI * M_PI;
390 F89_1 = 1184. / 27. - 40. / 9. * M_PI * M_PI;
391 F89_2 = (-32. / 3. * M_PI * M_PI + 14212. / 135.);
392 F89_3 = (-560. / 27. * M_PI * M_PI + 193444. / 945.);
394 F29_0 = (256. / 243. - 32. / 81. * gslpp::complex::i() * M_PI - 128. / 9. * log(
Mc /
Mb)) * log(
mu_b /
Mb) + 512. / 81. * log(
mu_b /
Mb) * log(
mu_b /
Mb) + 5.4082 - 1.0934 * gslpp::complex::i();
395 F29_L1 = 32. / 81. * log(
mu_b /
Mb) + (0.48576 + 0.31119 * gslpp::complex::i());
396 F29_1 = (-32. / 405. + 64. / 45. / Mc2 * Mb2) * log(
mu_b /
Mb) + (1.9061 + 0.80843 * gslpp::complex::i());
397 F29_2 = (-8. / 945. + 16. / 105. / Mc2 * Mb2 / Mc2 * Mb2) * log(
mu_b /
Mb) + (-1.8286 + 2.8428 * gslpp::complex::i());
398 F29_3 = (-32. / 25515. + 64. / 2835. / Mc2 * Mb2 / Mc2 * Mb2 / Mc2 * Mb2) * log(
mu_b /
Mb) + (-12.113 + 8.1251 * gslpp::complex::i());
399 F29_L1_1 = (0.21951 - 0.14852 * gslpp::complex::i());
400 F29_L1_2 = (0.13015 - 0.22155 * gslpp::complex::i());
401 F29_L1_3 = (-0.079692 - 0.31214 * gslpp::complex::i());
403 F27_0 = 416. / 81. * log(
mu_b /
Mb) + 3.8367 + 0.3531 * gslpp::complex::i();
404 F27_1 = (1.3098 + 0.60185 * gslpp::complex::i());
405 F27_2 = (0.13507 + 0.89014 * gslpp::complex::i());
406 F27_3 = (-1.0271 + 0.77168 * gslpp::complex::i());
407 F27_L1_1 = (-0.031936 - 0.10981 * gslpp::complex::i());
408 F27_L1_2 = (-0.14169 - 0.035553 * gslpp::complex::i());
409 F27_L1_3 = (-0.13592 + 0.093 * gslpp::complex::i());
411 std::map<std::pair<double, double>,
unsigned int >::iterator it;
413 if (I0_updated == 0)
for (it = sigma0Cached.begin(); it != sigma0Cached.end(); ++it) it->second = 0;
414 if (I2_updated == 0)
for (it = sigma2Cached.begin(); it != sigma2Cached.end(); ++it) it->second = 0;
416 if (I0_updated == 0)
for (it = delta0Cached.begin(); it != delta0Cached.end(); ++it) it->second = 0;
417 if (I2_updated == 0)
for (it = delta2Cached.begin(); it != delta2Cached.end(); ++it) it->second = 0;
419 if (Itree_updated)
for (it = sigmaTreeCached.begin(); it != sigmaTreeCached.end(); ++it) it->second = 0;
421 std::map<double, unsigned int >::iterator iti;
422 if (deltaTparpupdated == 0)
for (iti = deltaTparpCached.begin(); iti != deltaTparpCached.end(); ++iti) iti->second = 0;
423 if (deltaTparmupdated == 0)
for (iti = deltaTparmCached.begin(); iti != deltaTparmCached.end(); ++iti) iti->second = 0;
425 if (deltaTparpupdated * deltaTparmupdated == 0)
for (it = I1Cached.begin(); it != I1Cached.end(); ++it) it->second = 0;
443void MPll::checkCache()
446 if (
MM == k2_cache(0) &&
MP == k2_cache(1)) {
455 if (b_0_fplus == fplus_lat_cache(0) && b_1_fplus == fplus_lat_cache(1) && b_2_fplus == fplus_lat_cache(2)) {
456 fplus_lat_updated = 1;
458 fplus_lat_updated = 0;
459 fplus_lat_cache(0) = b_0_fplus;
460 fplus_lat_cache(1) = b_1_fplus;
461 fplus_lat_cache(2) = b_2_fplus;
464 if (b_0_fT == fT_lat_cache(0) && b_1_fT == fT_lat_cache(1) && b_2_fT == fT_lat_cache(2)) {
468 fT_lat_cache(0) = b_0_fT;
469 fT_lat_cache(1) = b_1_fT;
470 fT_lat_cache(2) = b_2_fT;
473 if (b_0_f0 == f0_lat_cache(0) && b_1_f0 == f0_lat_cache(1) && b_2_f0 == f0_lat_cache(2)) {
477 f0_lat_cache(0) = b_0_f0;
478 f0_lat_cache(1) = b_1_f0;
479 f0_lat_cache(2) = b_2_f0;
482 if (r_1_fplus == fplus_cache(0) && r_2_fplus == fplus_cache(1)) {
486 fplus_cache(0) = r_1_fplus;
487 fplus_cache(1) = r_2_fplus;
490 if (r_1_fT == fT_cache(0) && r_2_fT == fT_cache(1)) {
494 fT_cache(0) = r_1_fT;
495 fT_cache(1) = r_2_fT;
498 if (r_2_f0 == f0_cache) {
506 if (
Mlep == beta_cache) {
513 lambda_updated = k2_updated;
514 F_updated = lambda_updated * beta_updated;
517 VL_updated = k2_updated * fplus_lat_updated;
518 TL_updated = k2_updated * fT_lat_updated;
520 VL_updated = k2_updated * fplus_updated;
521 TL_updated = k2_updated * fT_updated;
524 if (
Mb == SL_cache(0) &&
Ms == SL_cache(1)) {
526 SL_updated = k2_updated * f0_lat_updated;
528 SL_updated = k2_updated * f0_updated;
535 if (
GF == N_cache(0) &&
ale == N_cache(1) &&
MM == N_cache(2) && lambda_t == Nc_cache) {
545 if (C_1 == C_1_cache) {
552 if (C_2 == C_2_cache) {
559 if (C_3 == C_3_cache) {
566 if (C_4 == C_4_cache) {
573 if (C_5 == C_5_cache) {
580 if (C_6 == C_6_cache) {
587 if (C_7 == C_7_cache) {
594 if (C_9 == C_9_cache) {
601 if (C_10 == C_10_cache) {
608 if (C_S == C_S_cache) {
615 if (C_P == C_P_cache) {
622 if (C_7p == C_7p_cache) {
629 if (C_9p == C_9p_cache) {
636 if (C_10p == C_10p_cache) {
643 if (C_Sp == C_Sp_cache) {
650 if (C_Pp == C_Pp_cache) {
657 if (C_2Lh_bar == C_2Lh_cache) {
661 C_2Lh_cache = C_2Lh_bar;
664 if (C_8Lh == C_8Lh_cache) {
671 if (C_L_nunu == C_L_nunu_cache) {
672 C_L_nunu_updated = 1;
674 C_L_nunu_updated = 0;
675 C_L_nunu_cache = C_L_nunu;
678 if (C_R_nunu == C_R_nunu_cache) {
679 C_R_nunu_updated = 1;
681 C_R_nunu_updated = 0;
682 C_R_nunu_cache = C_R_nunu;
685 if (
Mb == Ycache(0) &&
Mc == Ycache(1)) {
686 Yupdated = C_1_updated * C_2_updated * C_3_updated * C_4_updated * C_5_updated * C_6_updated;
694 H_V0updated = N_updated * VL_updated * C_L_nunu_updated * C_R_nunu_updated;
695 H_A0updated = N_updated * VL_updated * C_L_nunu_updated * C_R_nunu_updated;
699 if (
MM == H_V0cache(0) &&
Mb == H_V0cache(1) &&
h_0 == H_V0Ccache[0] && h_1 == H_V0Ccache[1] && h_2 == H_V0Ccache[2]) {
700 H_V0updated = N_updated * C_9_updated * Yupdated * VL_updated * C_9p_updated * C_7_updated * TL_updated * C_7p_updated;
710 if (
MM == H_V0cache(0) &&
Mb == H_V0cache(1) && r_1 == H_V0Ccache_dispersion[0] && r_2 == H_V0Ccache_dispersion[1] && Delta_C9 == H_V0Ccache_dispersion[2] && exp_Phase == H_V0Ccache_dispersion[3]) {
711 H_V0updated = N_updated * C_9_updated * Yupdated * VL_updated * C_9p_updated * C_7_updated * TL_updated * C_7p_updated;
716 H_V0Ccache_dispersion[0] = r_1;
717 H_V0Ccache_dispersion[1] = r_2;
718 H_V0Ccache_dispersion[2] = Delta_C9;
719 H_V0Ccache_dispersion[3] = exp_Phase;
723 H_A0updated = N_updated * C_10_updated * VL_updated * C_10p_updated;
726 if (
Mb == H_Scache(0) && MW == H_Scache(1)) {
727 H_Supdated = N_updated * C_S_updated * SL_updated * C_Sp_updated;
734 if (
Mb == H_P_cache(0) && MW == H_P_cache(1) &&
Mlep == H_P_cache(2) &&
Ms == H_P_cache(3)) {
735 H_P_updated = N_updated * C_P_updated * SL_updated * C_Pp_updated * SL_updated * C_10_updated * C_10p_updated;
744 if (
MM == T_cache(0) &&
Mb == T_cache(1) &&
Mc == T_cache(2) &&
756 deltaTparpupdated = C_2Lh_updated * T_updated;
757 deltaTparmupdated = C_2Lh_updated * C_8Lh_updated * T_updated;
759 I0_updated = F_updated * H_V0updated * H_A0updated * H_P_updated * beta_updated * H_Supdated * deltaTparmupdated;
760 I2_updated = F_updated * beta_updated * H_V0updated * H_A0updated * deltaTparmupdated;
761 I8_updated = F_updated * beta_updated * H_Supdated * H_V0updated * deltaTparmupdated;
763 if (MM2 == Itree_cache(0) && mtau2 == Itree_cache(1) && MP2 == Itree_cache(2)) {
767 Itree_cache(0) = MM2;
768 Itree_cache(1) = mtau2;
769 Itree_cache(2) = MP2;
777double MPll::LCSR_fit1(
double q2,
double r_1,
double r_2,
double m_fit2)
779 return r_1 / (1. - q2 / m_fit2) + r_2 / pow((1. - q2 / m_fit2), 2.);
783double MPll::LCSR_fit2(
double q2,
double r_2,
double m_fit2)
785 return r_2 / (1. - q2 / m_fit2);
788double MPll::LCSR_fit3(
double q2,
double b_0,
double b_1,
double b_2,
double m_fit2)
790 return 1. / (1. - q2 / m_fit2) * (b_0 + b_1 * (zeta(q2) - zeta(0)) + b_2 * (zeta(q2) - zeta(0)) * (zeta(q2) - zeta(0)));
793double MPll::zeta(
double q2)
798 t0 = (
MM +
MP)*(sqrt(
MM) - sqrt(
MP))*(sqrt(
MM) - sqrt(
MP));
800 return (sqrt(tp - q2) - sqrt(tp - t0)) / (sqrt(tp - q2) + sqrt(tp - t0));
803double MPll::zeta_DM(
double q2)
810 return (sqrt(tp - q2) - sqrt(tp - tm)) / (sqrt(tp - q2) + sqrt(tp - tm));
813double MPll::phiplus_DM(
double q2,
double m_fit2)
815 double z = zeta_DM(q2);
816 double z_M = zeta_DM(m_fit2);
818 double Chi1minus = 0.000623174575;
820 return 16.*rP*rP/
MM*sqrt(4./3./Chi1minus/M_PI) * (1. + z)*(1. + z)*sqrt(1. - z)/pow((1. + rP)*(1. - z)+2.*sqrt(rP)*(1. + z),5) * (z - z_M)/(1. - z_M*z);
823double MPll::phi0_DM(
double q2)
825 double z = zeta_DM(q2);
827 double Chi0plus = 0.0142;
829 return 2.*rP*(1 - rP*rP)*sqrt(4./Chi0plus/M_PI)* (1. - z*z)*sqrt(1. - z)/pow((1. + rP)*(1. - z)+2.*sqrt(rP)*(1. + z),4);
832double MPll::phiT_DM(
double q2,
double m_fit2)
834 double z = zeta_DM(q2);
835 double z_M = zeta_DM(m_fit2);
837 double ChiTT = 0.0454644444;
839 return 16*rP*rP/
MM/(1. + rP)*sqrt(4./3./ChiTT/M_PI) * (1. + z)*(1. + z)/sqrt(1. - z)/pow((1. + rP)*(1. - z)+2.*sqrt(rP)*(1. + z),4) * (z - z_M)/(1. - z_M*z);
842double MPll::fplus_DM(
double q2,
double b_0,
double b_1,
double b_2,
double m_fit2)
844 double z = zeta_DM(q2);
846 return (b_0 + b_1*z + b_2*z*z) / phiplus_DM(q2, m_fit2);
849double MPll::f0_DM(
double q2,
double b_0,
double b_1,
double b_2)
851 double z = zeta_DM(q2);
853 return (b_0 + b_1*z + b_2*z*z) / phi0_DM(q2);
856double MPll::fT_DM(
double q2,
double b_0,
double b_1,
double b_2,
double m_fit2)
858 double z = zeta_DM(q2);
860 return (b_0 + b_1*z + b_2*z*z) / phiT_DM(q2, m_fit2);
864double MPll::LATTICE_fit1(
double q2,
double b_0,
double b_1,
double b_2,
double m_fit2)
866 double z2 = zeta(q2) * zeta(q2);
867 double z3 = zeta(q2) * z2;
869 return 1. / (1. - q2 / m_fit2) * (b_0 + b_1 * (zeta(q2) - 1. / 3. * z3) + b_2 * (z2 + 2. / 3. * z3));
873double MPll::LATTICE_fit2(
double q2,
double b_0,
double b_1,
double b_2,
double m_fit2)
875 return 1. / (1. - q2 / m_fit2) * (b_0 + b_1 * zeta(q2) + b_2 * zeta(q2) * zeta(q2));
878double MPll::f_plus(
double q2)
881 return LATTICE_fit1(q2, b_0_fplus, b_1_fplus, b_2_fplus, m_fit2_fplus_lat);
883 return LCSR_fit3(q2, b_0_fplus, b_1_fplus, b_2_fplus, m_fit2_fplus_lat);
885 return fplus_DM(q2, b_0_fplus, b_1_fplus, b_2_fplus, m_fit2_fplus_lat);
887 return LCSR_fit1(q2, r_1_fplus, r_2_fplus, m_fit2_fplus);
890double MPll::f_T(
double q2)
893 return LATTICE_fit1(q2, b_0_fT, b_1_fT, b_2_fT, m_fit2_fT_lat);
895 return LCSR_fit3(q2, b_0_fT, b_1_fT, b_2_fT, m_fit2_fT_lat);
897 return fT_DM(q2, b_0_fT, b_1_fT, b_2_fT, m_fit2_fT_lat);
899 return LCSR_fit1(q2, r_1_fT, r_2_fT, m_fit2_fT);
902double MPll::f_0(
double q2)
905 return LATTICE_fit2(q2, b_0_f0, b_1_f0, b_2_f0, m_fit2_f0_lat);
907 return LCSR_fit3(q2, b_0_f0, b_1_f0, b_2_f0, m_fit2_f0_lat);
909 return f0_DM(q2, b_0_f0, b_1_f0, b_2_f0);
911 return LCSR_fit2(q2, r_2_f0, m_fit2_f0);
916 return gslpp::complex::i() * sqrt(lambda(q2)) / (twoMM * sqrt(q2)) * f_plus(q2);
921 return gslpp::complex::i() * sqrt(lambda(q2) * q2) / (twoMM2_MMpMP) * f_T(q2);
926 return S_L_pre * f_0(q2);
935 std::pair<double, double > uq2 = std::make_pair(u, q2);
937 if (I1Cached[uq2] == 0) {
939 xp = .5 + sqrt(0.25 - (Mc2 - gslpp::complex::i()*1.e-10) / (ubar * MM2 + u * q2));
940 xm = .5 - sqrt(0.25 - (Mc2 - gslpp::complex::i()*1.e-10) / (ubar * MM2 + u * q2));
941 yp = .5 + sqrt(0.25 - (Mc2 - gslpp::complex::i()*1.e-10) / q2);
942 ym = .5 - sqrt(0.25 - (Mc2 - gslpp::complex::i()*1.e-10) / q2);
943 L1xp = log(1. - 1. / xp) * log(1. - xp) - M_PI2osix + dilog(xp / (xp - 1.));
944 L1xm = log(1. - 1. / xm) * log(1. - xm) - M_PI2osix + dilog(xm / (xm - 1.));
945 L1yp = log(1. - 1. / yp) * log(1. - yp) - M_PI2osix + dilog(yp / (yp - 1.));
946 L1ym = log(1. - 1. / ym) * log(1. - ym) - M_PI2osix + dilog(ym / (ym - 1.));
948 cacheI1[uq2] = 1. + twoMc2 / ubar / (MM2 - q2)*(L1xp + L1xm - L1yp - L1ym);
957 Ee = (MM2 - q2) / twoMM;
959 arg1 = (fourMc2 - gslpp::complex::i()*1.e-10) / (ubar * MM2 + u * q2) - 1.;
960 B01 = -2. * sqrt(arg1) * arctan(1. / sqrt(arg1));
961 arg1 = (fourMc2 - gslpp::complex::i()*1.e-10) / q2 - 1.;
962 B00 = -2. * sqrt(arg1) * arctan(1. / sqrt(arg1));
964 gslpp::complex tpar = twoMM / Ee / ubar *
I1(u, q2) + (ubar * MM2 + u * q2) / Ee / Ee / ubar / ubar * (B01 - B00);
970 double ubar = 1. - u;
972 + sixMMoMb * H_c(ubar * MM2 + u * q2,
mu_h *
mu_h) * C_2Lh_bar);
978 return ((
Tparplus(u, tmpq2)*6. * u * (1. - u)*
979 (1 + threeGegen0 * (2. * u - 1)
986 return ((
Tparplus(u, tmpq2)*6. * u * (1. - u)*
987 (1 + threeGegen0 * (2. * u - 1)
994 gslpp::complex Lambdamin = exp(-tmpq2 /
MM / Lambdaplus) / Lambdaplus * (-gsl_sf_expint_Ei(tmpq2 /
MM / Lambdaplus) + gslpp::complex::i() * M_PI);
997 return ((
Tparminus(u, tmpq2)*6. * u * (1. - u)*
998 (1 + threeGegen0 * (2. * u - 1)
999 + threeGegen1otwo * ((10. * u - 5.)*(2. * u - 1.) - 1.))) / Lambdamin).real();
1005 gslpp::complex Lambdamin = exp(-tmpq2 /
MM / Lambdaplus) / Lambdaplus * (-gsl_sf_expint_Ei(tmpq2 /
MM / Lambdaplus) + gslpp::complex::i() * M_PI);
1008 return ((
Tparminus(u, tmpq2)*6. * u * (1. - u)*
1009 (1 + threeGegen0 * (2. * u - 1)
1010 + threeGegen1otwo * ((10. * u - 5.)*(2. * u - 1.) - 1.))) / Lambdamin).imag();
1025 double s = q2 / Mb2;
1028 double Lc = log(
Mc /
Mb);
1029 double Lm = log(
mu_b /
Mb);
1030 gslpp::complex i = gslpp::complex::i();
1031 return (-1424. / 729. + 16. / 243. * i * M_PI + 64. / 27. * Lc)*Lm - 16. / 243. * Lm * Ls + (16. / 1215. - 32. / 135. / Mc2 * Mb2) * Lm *
s
1032 + (4. / 2835. - 8. / 315. / Mc2 * Mb2 / Mc2 * Mb2) * Lm * s2 + (16. / 76545. - 32. / 8505 / Mc2 * Mb2 / Mc2 * Mb2 / Mc2 * Mb2) * Lm *
s * s2 - 256. / 243. * Lm * Lm
1033 + (-11.65 + 0.18223 * i + (-24.709 - 0.13474 * i) *
s + (-43.588 - 0.4738 * i) * s2 + (-86.22 - 1.3542 * i) *
s * s2
1034 + (-0.080959 - 0.051864 * i + (-0.036585 + 0.024753 * i) *
s + (-0.021692 + 0.036925 * i) * s2 + (0.013282 + 0.052023 * i) *
s * s2) * Ls);
1039 double s = q2 / Mb2;
1042 gslpp::complex i = gslpp::complex::i();
1043 return F27_0 + F27_1 *
s + F27_2 * s2 + F27_3 *
s * s2 + F27_L1_1 * Ls *
s + F27_L1_2 * Ls * s2 + F27_L1_3 * Ls *
s * s2;
1048 double s = q2 / Mb2;
1051 gslpp::complex i = gslpp::complex::i();
1052 return F29_0 + F29_L1 * Ls + F29_1 *
s + F29_2 * s2 + F29_3 *
s * s2 + F29_L1_1 * Ls *
s + F29_L1_2 * Ls * s2 + F29_L1_3 * Ls * s2 *
s;
1057 double s = q2 / Mb2;
1059 return F87_0 + F87_1 *
s + F87_2 * s2 + F87_3 *
s * s2 - 0.888889 * log(
s)*(1. +
s + s2 +
s * s2);
1064 double s = q2 / Mb2;
1066 return F89_0 + F89_1 *
s + F89_2 * s2 + F89_3 *
s * s2 + 1.77778 * log(
s)*(1. +
s + s2 +
s * s2);
1071 return -(C_2L_bar *
F27(q2) + C_8L *
F87(q2) +
MM / 2. /
Mb *
1072 (C_2L_bar *
F29(q2) + 2. * C_1L_bar * (
F19(q2) +
F29(q2) / 6.) + C_8L *
F89(q2)));
1081 if (deltaTparpCached[q2] == 0) {
1084 if (gsl_integration_cquad(&DTPPR, 0., 1., 1.e-2, 1.e-1, w_DTPPR, &avaDTPPR, &errDTPPR, NULL) != 0)
return std::numeric_limits<double>::quiet_NaN();
1085 double ReTppint = avaDTPPR;
1088 if (gsl_integration_cquad(&DTPPR, 0., 1., 1.e-2, 1.e-1, w_DTPPR, &avaDTPPR, &errDTPPR, NULL) != 0)
return std::numeric_limits<double>::quiet_NaN();
1089 double ImTppint = avaDTPPR;
1091 cacheDeltaTparp[q2] = (ReTppint + gslpp::complex::i() * ImTppint);
1092 deltaTparpCached[q2] = 1;
1097 return deltaT_0 *
Cpar(q2) + deltaT_1par * cacheDeltaTparp[q2] / f_plus(q2);
1102 return p[0] / x[0] + p[1] + p[2] * x[0] + p[3] * x[0] * x[0] + p[4] * x[0] * x[0] * x[0] + p[5] * x[0] * x[0] * x[0] * x[0] + p[6] * x[0] * x[0] * x[0] * x[0] * x[0];
1107 return p[0] / x[0] + p[1] + p[2] * x[0] + p[3] * x[0] * x[0] + p[4] * x[0] * x[0] * x[0] + p[5] * x[0] * x[0] * x[0] * x[0] + p[6] * x[0] * x[0] * x[0] * x[0] * x[0] + p[7] * x[0] * x[0] * x[0] * x[0] * x[0] * x[0];
1115 for (
double i = 0.1; i < MPllSWITCH; i += 0.4) {
1117 myq2.push_back(q2tmp);
1118 ReDeltaC9.push_back((
deltaTpar(q2tmp)).real());
1119 ImDeltaC9.push_back((
deltaTpar(q2tmp)).imag());
1122 for (
double i = MPllSWITCH; i < 8.2; i += 0.4) {
1124 myq2.push_back(q2tmp);
1125 ReDeltaC9.push_back(q2tmp * (
deltaTpar(q2tmp)).real());
1126 ImDeltaC9.push_back(q2tmp * (
deltaTpar(q2tmp)).imag());
1130 gr1 = TGraph(dim, myq2.data(), ReDeltaC9.data());
1131 gr2 = TGraph(dim, myq2.data(), ImDeltaC9.data());
1133 reffit = TF1(
"reffit",
this, &
MPll::reDC9fit, 0, 8.1, 7,
"MPll",
"reDC9fit");
1134 imffit = TF1(
"imffit",
this, &
MPll::imDC9fit, 0, 8.1, 8,
"MPll",
"imDC9fit");
1136 refres = gr1.Fit(&reffit,
"SQN0+rob=0.99");
1137 imfres = gr2.Fit(&imffit,
"SQN0+rob=0.99");
1146 if (q2 < MPllSWITCH)
return (
reDC9fit(&q2,
const_cast<double *
> (refres->GetParams()))
1147 + gslpp::complex::i() *
imDC9fit(&q2,
const_cast<double *
> (imfres->GetParams())));
1148 else return (
reDC9fit(&q2,
const_cast<double *
> (refres->GetParams()))
1149 + gslpp::complex::i() *
imDC9fit(&q2,
const_cast<double *
> (imfres->GetParams()))) / q2;
1161 if (spline)
return gsl_spline_eval(spline_Re_deltaC7_QCDF, q2, acc_Re_deltaC7_QCDF);
1172 gslpp::complex F_17 =
myF_1->F_17re(muh, z, sh, 20) + gslpp::complex::i() *
myF_1->F_17im(muh, z, sh, 20);
1173 gslpp::complex F_27 =
myF_2->F_27re(muh, z, sh, 20) + gslpp::complex::i() *
myF_2->F_27im(muh, z, sh, 20);
1174 gslpp::complex F_87 = F87_0 + F87_1 * sh + F87_2 * sh2 + F87_3 * sh * sh2 - 8. / 9. * log(sh) * (sh + sh2 + sh * sh2);
1176 gslpp::complex delta = C_1 * F_17 + C_2 * F_27;
1177 gslpp::complex delta_t = C_8 * F_87 + delta;
1186 if (spline)
return gsl_spline_eval(spline_Re_deltaC9_QCDF, q2, acc_Re_deltaC9_QCDF);
1197 gslpp::complex F_19 =
myF_1->F_19re(muh, z, sh, 20) + gslpp::complex::i() *
myF_1->F_19im(muh, z, sh, 20);
1198 gslpp::complex F_29 =
myF_2->F_29re(muh, z, sh, 20) + gslpp::complex::i() *
myF_2->F_29im(muh, z, sh, 20);
1199 gslpp::complex F_89 = (F89_0 + F89_1 * sh + F89_2 * sh2 + F89_3 * sh * sh2 + 16. / 9. * log(sh) * (1. + sh + sh2 + sh * sh2));
1201 gslpp::complex delta = C_1 * F_19 + C_2 * F_29;
1202 gslpp::complex delta_t = C_8 * F_89 + delta;
1210 int dim_DC = GSL_INTERP_DIM_DC;
1212 double interval_DC = (9.9 - min) / ((
double) dim_DC);
1213 double q2_spline_DC[dim_DC];
1214 double fq2_Re_deltaC7_QCDF[dim_DC], fq2_Im_deltaC7_QCDF[dim_DC], fq2_Re_deltaC9_QCDF[dim_DC], fq2_Im_deltaC9_QCDF[dim_DC];
1216 for (
int i = 0; i < dim_DC; i++) {
1217 q2_spline_DC[i] = min + (double) i*interval_DC;
1218 fq2_Re_deltaC7_QCDF[i] =
deltaC7_QCDF(q2_spline_DC[i],
false).real();
1219 fq2_Im_deltaC7_QCDF[i] =
deltaC7_QCDF(q2_spline_DC[i],
false).imag();
1220 fq2_Re_deltaC9_QCDF[i] =
deltaC9_QCDF(q2_spline_DC[i],
false).real();
1221 fq2_Im_deltaC9_QCDF[i] =
deltaC9_QCDF(q2_spline_DC[i],
false).imag();
1225 gsl_spline_init(spline_Re_deltaC7_QCDF, q2_spline_DC, fq2_Re_deltaC7_QCDF, dim_DC);
1226 gsl_spline_init(spline_Im_deltaC7_QCDF, q2_spline_DC, fq2_Im_deltaC7_QCDF, dim_DC);
1227 gsl_spline_init(spline_Re_deltaC9_QCDF, q2_spline_DC, fq2_Re_deltaC9_QCDF, dim_DC);
1228 gsl_spline_init(spline_Im_deltaC9_QCDF, q2_spline_DC, fq2_Im_deltaC9_QCDF, dim_DC);
1236gslpp::complex MPll::H_c(
double q2,
double mu2)
1238 double x = fourMc2 / q2;
1241 if (x > 1.) par = sqrt(x - 1.) * atan(1. / sqrt(x - 1.));
1242 else par = sqrt(1. - x) * (log((1. + sqrt(1. - x)) / sqrt(x)) - ihalfMPI);
1243 return -fournineth * (log(Mc2 / mu2) - twothird - x) - fournineth * (2. + x) * par;
1246gslpp::complex MPll::H_b(
double q2,
double mu2)
1248 double x = fourMb2 / q2;
1251 if (x > 1.) par = sqrt(x - 1.) * atan(1. / sqrt(x - 1.));
1252 else par = sqrt(1. - x) * (log((1. + sqrt(1. - x)) / sqrt(x)) - ihalfMPI);
1254 return -fournineth * (log(Mb2 / mu2) - twothird - x) - fournineth * (2. + x) * par;
1257gslpp::complex MPll::H_0(
double q2)
1259 return (H_0_pre - fournineth * log(q2 / mu_b2));
1262gslpp::complex MPll::Y(
double q2)
1264 return -half * H_0(q2) * H_0_WC + H_c(q2, mu_b2) * H_c_WC - half * H_b(q2, mu_b2) * H_b_WC;
1269 if (q2 < 4. *
Mc *
Mc)
1270 return -8. / 9. * log(
Mc /
Mb) + 8. / 27. + 16. / 9. *
Mc *
Mc / q2 - 4. / 9. * (2. + 4. *
Mc *
Mc / q2) * (sqrt(4. *
Mc *
Mc / q2 - 1.) * atan(1. / sqrt(4. *
Mc *
Mc / q2 - 1.)));
1272 return -8. / 9. * log(
Mc /
Mb) + 8. / 27. + 16. / 9. *
Mc *
Mc / q2 - 4. / 9. * (2. + 4. *
Mc *
Mc / q2) * (sqrt(1. - 4. *
Mc *
Mc / q2) * (log(1. + sqrt(1. - 4. *
Mc *
Mc / q2) / sqrt(4. *
Mc *
Mc / q2)) - gslpp::complex::i() * M_PI_2));
1277 return ((Delta_C9 + r_1 * q2 /
mJ2) / (1. - r_2 * q2 /
mJ2) - (3. * (-0.267) + 1.117) *
funct_g(q2))*exp_Phase;
1289 return (twoMboMM *
h_0 *
T_L(q2) + h_1 * q2 / MM2 *
V_L(q2)) / sixteenM_PI2 + h_2 * q2 * q2;
1292 return -q2 / (MM2 * sixteenM_PI2) *
V_L(q2) *
DeltaC9_KD(q2);
1299 return -(C_L_nunu - etaP * pow(-1, angmomP) * C_R_nunu) *
V_L(q2);
1301 return -((C_9 +
deltaC9_QCDF(q2, SPLINE) + Y(q2) - etaP * pow(-1, angmomP) * C_9p) *
V_L(q2)
1302 + MM2 / q2 * (twoMboMM * (C_7 +
deltaC7_QCDF(q2, SPLINE) - etaP * pow(-1, angmomP) * C_7p) *
T_L(q2)
1309 return -(C_L_nunu - etaP * pow(-1, angmomP) * C_R_nunu) *
V_L(q2);
1311 return (-C_10 + etaP * pow(-1, angmomP) * C_10p) *
V_L(q2);
1316 return MboMW * (C_S - etaP * pow(-1, angmomP) * C_Sp) *
S_L(q2);
1321 return ( MboMW * (C_P - etaP * pow(-1, angmomP) * C_Pp) + twoMlepMb / q2 * (C_10 * (1. + etaP * pow(-1, angmomP) * MsoMb) - C_10p * (etaP * pow(-1, angmomP) + MsoMb))) *
S_L(q2);
1327double MPll::k2(
double q2)
1329 return (MM4 + q2 * q2 + MP4 - twoMP2 * q2 - twoMM2 * (q2 + MP2)) / fourMM2;
1332double MPll::beta(
double q2)
1334 return sqrt(1. - 4. * Mlep2 / q2);
1337double MPll::beta2(
double q2)
1339 return 1. - 4. * Mlep2 / q2;
1342double MPll::lambda(
double q2)
1344 return 4. * MM2 * k2(q2);
1347double MPll::F(
double q2)
1349 return sqrt(lambda(q2)) * beta(q2) * q2 / (ninetysixM_PI3MM3);
1352double MPll::I_1c(
double q2)
1354 return F(q2)*((
H_V(q2).abs2() +
H_A(q2).abs2()) / 2. +
H_P(q2).abs2() + 2. * Mlep2 / q2 * (
H_V(q2).abs2()
1355 -
H_A(q2).abs2()) + beta2(q2) *
H_S(q2).abs2());
1358double MPll::I_2c(
double q2)
1360 return -F(q2) * beta2(q2) / 2. * (
H_V(q2).abs2() +
H_A(q2).abs2());
1363double MPll::I_6c(
double q2)
1365 return 4. * F(q2) * beta(q2) *
Mlep / sqrt(q2)*(
H_S(q2).conjugate() *
H_V(q2)).real();
1368double MPll::Delta(
int i,
double q2)
1378 std::pair<double, double > qbin = std::make_pair(q_min, q_max);
1380 old_handler = gsl_set_error_handler_off();
1384 if (sigma0Cached[qbin] == 0) {
1386 if (gsl_integration_cquad(&FS, q_min, q_max, 1.e-2, 1.e-1, w_sigma, &avaSigma, &errSigma, NULL) != 0)
return std::numeric_limits<double>::quiet_NaN();
1387 cacheSigma0[qbin] = NN*avaSigma;
1388 sigma0Cached[qbin] = 1;
1390 return cacheSigma0[qbin];
1393 if (sigma2Cached[qbin] == 0) {
1395 if (gsl_integration_cquad(&FS, q_min, q_max, 1.e-2, 1.e-1, w_sigma, &avaSigma, &errSigma, NULL) != 0)
return std::numeric_limits<double>::quiet_NaN();
1396 cacheSigma2[qbin] = NN*avaSigma;
1397 sigma2Cached[qbin] = 1;
1399 return cacheSigma2[qbin];
1402 std::stringstream out;
1404 throw std::runtime_error(
"MPll::integrateSigma: index " + out.str() +
" not implemented");
1407 gsl_set_error_handler(old_handler);
1426 std::stringstream out;
1428 throw std::runtime_error(
"MPll::getSigma: index " + out.str() +
" not implemented");
1436 std::pair<double, double > qbin = std::make_pair(q_min, q_max);
1438 old_handler = gsl_set_error_handler_off();
1442 if (delta0Cached[qbin] == 0) {
1444 if (gsl_integration_cquad(&FD, q_min, q_max, 1.e-2, 1.e-1, w_delta, &avaDelta, &errDelta, NULL) != 0)
return std::numeric_limits<double>::quiet_NaN();
1445 cacheDelta0[qbin] = NN*avaDelta;
1446 delta0Cached[qbin] = 1;
1448 return cacheDelta0[qbin];
1451 if (delta2Cached[qbin] == 0) {
1453 if (gsl_integration_cquad(&FD, q_min, q_max, 1.e-2, 1.e-1, w_delta, &avaDelta, &errDelta, NULL) != 0)
return std::numeric_limits<double>::quiet_NaN();
1454 cacheDelta2[qbin] = NN*avaDelta;
1455 delta2Cached[qbin] = 1;
1457 return cacheDelta2[qbin];
1460 std::stringstream out;
1462 throw std::runtime_error(
"MPll::integrateDelta: index " + out.str() +
" not implemented");
1465 gsl_set_error_handler(old_handler);
1476 double q_cut = (mtau2 - MP2) * (MM2 - mtau2) / mtau2;
1477 if (q_max >= q_cut) {
1482 double prefactor =
mySM.
getMesons(
meson).
getLifetime() / HCUT * GF4 * VusVub_abs2 * fP2 * fM2 / (64. * M_PI2 * MM3 * Gammatau) * mtau2 * mtau;
1484 std::pair<double, double > qbin = std::make_pair(q_min, q_max);
1486 old_handler = gsl_set_error_handler_off();
1488 if (sigmaTreeCached[qbin] == 0) {
1490 if (gsl_integration_cquad(&FD, q_min, q_max, 1.e-2, 1.e-1, w_sigmaTree, &avaSigmaTree, &errSigmaTree, NULL) != 0)
return std::numeric_limits<double>::quiet_NaN();
1491 cacheSigmaTree[qbin] = avaSigmaTree;
1492 sigmaTreeCached[qbin] = 1;
1494 return prefactor * cacheSigmaTree[qbin];
1496 gsl_set_error_handler(old_handler);
1501 return MM2 * (mtau2 - MP2) - mtau2 * (mtau2 + q2 - MP2);
1506 return mySM.
getMesons(
meson).
getLifetime() / HCUT * GF4 * VusVub_abs2 * fP2 * fM2 / (128. * M_PI2 * MM3 * Gammatau) * mtau * (mtau2 - MP2) * (mtau2 - MP2) * (MM2 - mtau2) * (MM2 - mtau2);
const gslpp::complex computelamt_s() const
The product of the CKM elements .
const gslpp::complex computelamu_s() const
The product of the CKM elements .
bool getFlagUseDispersionRelation() const
bool getFlagMPll_DM() const
gslpp::vector< gslpp::complex > ** ComputeCoeffsnunu(QCD::lepton lepton=QCD::NOLEPTON, bool noSM=false) const
bool getFlagFixedWCbtos() const
bool getFlagNeutrinoTree() const
void setUpdateFlag(QCD::meson meson_i, QCD::meson meson_j, QCD::lepton lep_i, bool updated_i) const
sets the update flag for the initial and final state dependent object for .
bool getFlagMPll_FNALMILC() const
gslpp::vector< gslpp::complex > ** ComputeCoeffprimeBMll(double mu, QCD::lepton lepton, schemes scheme=NDR) const
Computes the chirality flipped Wilson coefficient for the process .
bool getUpdateFlag(QCD::meson meson_i, QCD::meson meson_j, QCD::lepton lep_i) const
gets the update flag for the initial and final state dependent object for .
gslpp::vector< gslpp::complex > ** ComputeCoeffBMll(double mu, QCD::lepton lepton, bool noSM=false, schemes scheme=NDR) const
Computes the Wilson coefficient for the process .
bool getFlagMPll_GRvDV() const
std::vector< std::string > initializeMPllParameters()
A method for initializing the parameters necessary for MPll.
double Integrand_ReTpar_pm(double up)
The sum of Integrand_ReTparplus() and Integrand_ReTparminus().
double getSigma1c(double q2)
The CP average .
double SigmaTree(double q2)
gslpp::complex H_A(double q2)
The helicity amplitude .
gslpp::complex h_lambda(double q2)
The non-pertubative ccbar contributions to the helicity amplitudes.
double F89(double q2)
The correction from .
gslpp::complex deltaC9_QCDF(double q2, bool spline=false)
QCDF Correction from various BFS papers (hep-ph/0403185, hep-ph/0412400) and Greub et....
gslpp::complex DeltaC9_KD(double q2)
gslpp::complex H_P(double q2)
The helicity amplitude .
gslpp::complex H_S(double q2)
The helicity amplitude .
gslpp::complex F87(double q2)
The correction from .
std::vector< std::string > mpllParameters
double Integrand_ImTparminus(double up)
The imaginary part of the integral involving at fixed , according to .
std::unique_ptr< F_2 > myF_2
gslpp::complex I1(double u, double q2)
The function from .
double Integrand_ReTparminus(double up)
The real part of the integral involving at fixed , according to .
void fit_DeltaC9_mumu()
The fitting routine for the QCDF correction in the muon channel.
gslpp::complex Tparminus(double u, double q2)
The function from .
double imDC9fit(double *x, double *p)
The fit function for the imaginary part of the QCDF correction .
double getDelta2c(double q2)
The CP asymmetry .
gslpp::complex F19(double q2)
The correction from .
double integrateSigma(int i, double q_min, double q_max)
The integral of from to .
gslpp::complex Cpar(double q2)
The correction from .
double reDC9fit(double *x, double *p)
The fit function for the real part of the QCDF correction .
const StandardModel & mySM
gslpp::complex V_L(double q2)
The helicity form factor .
double getSigma(int i, double q_2)
The value of from to .
virtual ~MPll()
Destructor.
gslpp::complex funct_g(double q2)
double Integrand_ImTpar_pm(double up)
The sum of Integrand_ImTparplus() and Integrand_ImTparminus().
double Integrand_ReTparplus(double up)
The real part of the integral involving at fixed , according to .
gslpp::complex T_L(double q2)
The helicity form factor .
double getSigma2c(double q2)
The CP average .
gslpp::complex Tparplus(double u, double q2)
The function from .
std::unique_ptr< F_1 > myF_1
double integrateSigmaTree(double q_min, double q_max)
The integral of from to (arxiv/2301.06990)
double getintegratedSigmaTree()
The integral of from 0 to .
double getDelta1c(double q2)
The CP asymmetry .
gslpp::complex H_V(double q2)
The helicity amplitude .
gslpp::complex DeltaC9(double q2)
The total QCDF correction computed integrating over .
gslpp::complex deltaC7_QCDF(double q2, bool spline=false)
QCDF Correction from various BFS papers (hep-ph/0403185, hep-ph/0412400) and Greub et....
double getSigma6c(double q2)
The CP average .
gslpp::complex F27(double q2)
The correction from .
gslpp::complex fDeltaC9(double q2)
The total QCDF correction computed fitting over .
double S_L(double q2)
The helicity form factor .
MPll(const StandardModel &SM_i, QCD::meson meson_i, QCD::meson pseudoscalar_i, QCD::lepton lep_i)
Constructor.
gslpp::complex deltaTpar(double q2)
The total correction from .
double integrateDelta(int i, double q_min, double q_max)
The integral of from to .
gslpp::complex F29(double q2)
The correction from .
double Integrand_ImTparplus(double up)
The imaginary part of the integral involving at fixed , according to .
const double & getLambdaM() const
double computeWidth() const
A method to compute the width of the meson from its lifetime.
const double & getDecayconst() const
A get method for the decay constant of the meson.
const double & getGegenalpha(int i) const
A get method to get the Gegenbaur coefficient.
double getLifetime() const
A get method for the lifetime of the meson.
const double & getMass() const
A get method to access the particle mass.
double getCharge() const
A get method to access the particle charge.
meson
An enum type for mesons.
const double getOptionalParameter(std::string name) const
A method to get parameters that are specific to only one set of observables.
const Meson & getMesons(const QCD::meson m) const
A get method to access a meson as an object of the type Meson.
lepton
An enum type for leptons.
const Particle & getQuarks(const QCD::quark q) const
A get method to access a quark as an object of the type Particle.
void initializeMeson(QCD::meson meson_i) const
A method to initialize a meson.
const double getMub() const
A get method to access the threshold between five- and four-flavour theory in GeV.
const double Mbar2Mp(const double mbar, const quark q, const orders order=FULLNNLO) const
Converts the mass to the pole mass.
A model class for the Standard Model.
const Particle & getLeptons(const QCD::lepton p) const
A get method to retrieve the member object of a lepton.
const CKM & getCKM() const
A get method to retrieve the member object of type CKM.
virtual const double Mw() const
The SM prediction for the -boson mass in the on-shell scheme, .
const Flavour & getFlavour() const
const double getGF() const
A get method to retrieve the Fermi constant .
const double Als(const double mu, const orders order, const bool Nf_thr, const bool qed_flag) const
The running QCD coupling in the scheme including QED corrections.
const double getAle() const
A get method to retrieve the fine-structure constant .
A class for the correction in .