a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models Logo
bsgamma.h
Go to the documentation of this file.
1/*
2 * Copyright (C) 2015 HEPfit Collaboration
3 *
4 *
5 * For the licensing terms see doc/COPYING.
6 */
7
8#ifndef BSGAMMA_H
9#define BSGAMMA_H
10
11#include "ThObservable.h"
12#include "Math/GSLIntegrator.h"
13#include "Math/Functor.h"
14#include <Polylogarithms.h>
15#include <ClausenFunctions.h>
16
166class Bsgamma : public ThObservable {
167public:
174 Bsgamma(const StandardModel& SM_i, QCD::quark quark_i, int obsFlag);
175
176
182 Bsgamma(const StandardModel& SM_i, int obsFlag);
183
184
190 double delta(double E0);
191
192
198 double rho(double E0);
199
200
206 double omega(double E0);
207
208
215 double T1(double E0, double t);
216
217
224 double T2(double E0, double t);
225
226
233 double T3(double E0, double t);
234
235
242 double P0_4body(double E0, double t);
243
244
249 double zeta();
250
251
257 gslpp::complex a(double z);
258
259
265 gslpp::complex b(double z);
266
267
274 gslpp::complex r1(int i, double z);
275
276
283 gslpp::complex r1_ew(int i, double z);
284
285
291 gslpp::complex Gamma_t(double t);
292
293
300 gslpp::complex kappa(double Mq, double t);
301
302
308 double getKc_abs2_t(double t)
309 {
310 return kappa(Mc,t).abs2() * t;
311 };
312
313
319 double getKc_abs2_1mt(double t)
320 {
321 return kappa(Mc,t).abs2() * (1. - t);
322 };
323
324
330 double getKc_abs2_t_1mt(double t)
331 {
332 return kappa(Mc,t).abs2() * t * (1. - t);
333 };
334
335
341 double getKc_abs2_1mt2(double t)
342 {
343 return kappa(Mc,t).abs2() * (1. - t) * (1. - t);
344 };
345
346
352 double getKc_re_t(double t)
353 {
354 return kappa(Mc,t).real() * t ;
355 };
356
357
363 double getKc_im_t(double t)
364 {
365 return kappa(Mc,t).imag() * t ;
366 };
367
368
374 double getKc_re_t_1mt(double t)
375 {
376 return kappa(Mc,t).real() * t * (1. - t);
377 };
378
379
385 double getKc_im_t_1mt(double t)
386 {
387 return kappa(Mc,t).imag() * t * (1. - t);
388 };
389
390
396 double getKc_re_t_1mt2(double t)
397 {
398 return kappa(Mc,t).real() * t * (1. - t) * (1. - t);
399 };
400
401
407 double getKc_im_t_1mt2(double t)
408 {
409 return kappa(Mc,t).imag() * t * (1. - t) * (1. - t);
410 };
411
412
418 double getKc_re_1mt(double t)
419 {
420 return kappa(Mc,t).real() * (1. - t);
421 };
422
423
429 double getKc_im_1mt(double t)
430 {
431 return kappa(Mc,t).imag() * (1. - t);
432 };
433
434
440 double getKc_re_1mt2(double t)
441 {
442 return kappa(Mc,t).real() * (1. - t) * (1. - t);
443 };
444
445
451 double getKc_im_1mt2(double t)
452 {
453 return kappa(Mc,t).imag() * (1. - t) * (1. - t);
454 };
455
456
462 double getKb_abs2_1mt(double t)
463 {
464 return kappa(Mb_kin,t).abs2() * (1. - t);
465 };
466
467
473 double getKb_abs2_1mt2(double t)
474 {
475 return kappa(Mb_kin,t).abs2() * (1. - t) * (1. - t);
476 };
477
478
484 double getKb_abs2_t_1mt(double t)
485 {
486 return kappa(Mb_kin,t).abs2() * t * (1. - t);
487 };
488
489
495 double getKb_abs2_t_1mt2(double t)
496 {
497 return kappa(Mb_kin,t).abs2() * t * (1. - t) * (1. - t);
498 };
499
500
506 double getKb_abs2_t2_1mt(double t)
507 {
508 return kappa(Mb_kin,t).abs2() * t * t * (1. - t);
509 };
510
511
517 double getKb_abs2_t2_1mt2(double t)
518 {
519 return kappa(Mb_kin,t).abs2() * t * t * (1. - t) * (1. - t);
520 };
521
522
528 double getKb_re_t(double t)
529 {
530 return kappa(Mb_kin,t).real() * t ;
531 };
532
533
539 double getKb_re_t_1mt(double t)
540 {
541 return kappa(Mb_kin,t).real() * t * (1. - t);
542 };
543
544
550 double getKb_re_t2_1mt(double t)
551 {
552 return kappa(Mb_kin,t).real() * t * t * (1. - t);
553 };
554
555
561 double getKb_re_t2_1mt2(double t)
562 {
563 return kappa(Mb_kin,t).real() * t * t * (1. - t) * (1. - t);
564 };
565
566
572 double getKb_re_t_1mt2(double t)
573 {
574 return kappa(Mb_kin,t).real() * t * (1. - t) * (1. - t);
575 };
576
577
583 double getKb_re_1mt(double t)
584 {
585 return kappa(Mb_kin,t).real() * (1. - t);
586 };
587
588
594 double getKb_re_1mt2(double t)
595 {
596 return kappa(Mb_kin,t).real() * (1. - t) * (1. - t);
597 };
598
599
605 double getKc_re_Kb_1mt(double t)
606 {
607 return kappa(Mc,t).real() * kappa(Mb_kin,t).real() * (1. - t);
608 };
609
610
616 double getKc_im_Kb_1mt(double t)
617 {
618 return kappa(Mc,t).imag() * kappa(Mb_kin,t).real() * (1. - t);
619 };
620
621
627 double getKc_re_Kb_1mt2(double t)
628 {
629 return kappa(Mc,t).real() * kappa(Mb_kin,t).real() * (1. - t) * (1. - t);
630 };
631
632
638 double getKc_im_Kb_1mt2(double t)
639 {
640 return kappa(Mc,t).imag() * kappa(Mb_kin,t).real() * (1. - t) * (1. - t);
641 };
642
643
649 double getKc_re_Kb_t_1mt(double t)
650 {
651 return kappa(Mc,t).real() * kappa(Mb_kin,t).real() * t * (1. - t);
652 };
653
654
660 double getKc_im_Kb_t_1mt(double t)
661 {
662 return kappa(Mc,t).imag() * kappa(Mb_kin,t).real() * t * (1. - t);
663 };
664
665
671 double getKc_re_Kb_t_1mt2(double t)
672 {
673 return kappa(Mc,t).real() * kappa(Mb_kin,t).real() * t * (1. - t) * (1. - t);
674 };
675
676
682 double getKc_im_Kb_t_1mt2(double t)
683 {
684 return kappa(Mc,t).imag() * kappa(Mb_kin,t).real() * t * (1. - t) * (1. - t);
685 };
686
687
693 double Int_b1(double E0);
694
695
701 double Int_b2(double E0);
702
703
709 double Int_b3(double E0);
710
711
717 double Int_b4(double E0);
718
719
725 double Int_bb1(double E0);
726
727
733 double Int_bb2(double E0);
734
735
741 double Int_bb4(double E0);
742
743
749 gslpp::complex Int_bc1(double E0);
750
751
757 gslpp::complex Int_bc2(double E0);
758
759
765 gslpp::complex Int_c1(double E0);
766
767
773 gslpp::complex Int_c2(double E0);
774
775
781 gslpp::complex Int_c3(double E0);
782
783
789 double Int_cc(double E0);
790
791
797 double Int_cc1(double E0);
798
799
805 double Int_cc1_part1(double E0);
806
807
813 double ff7_dMP(double E0);
814
815
821 double ff7_sMP(double E0);
822
823
829 double ff8_dMP(double E0);
830
831
837 double ff8_sMP(double E0);
838
839
845 double Phi11_1(double E0);
846
847
853 double Phi12_1(double E0);
854
855
861 gslpp::complex Phi13_1(double E0);
862
863
869 gslpp::complex Phi14_1(double E0);
870
871
877 gslpp::complex Phi15_1(double E0);
878
879
885 gslpp::complex Phi16_1(double E0);
886
887
894 gslpp::complex Phi17_1(double E0, double z);
895
896
903 gslpp::complex Phi18_1(double E0, double z);
904
905
911 double Phi22_1(double E0);
912
913
919 double Phi23_1_4body(double E0);
920
921
928 gslpp::complex Phi23_1(double E0);
929
930
936 double Phi24_1_4body(double E0);
937
938
945 gslpp::complex Phi24_1(double E0);
946
947
953 double Phi25_1_4body(double E0);
954
955
962 gslpp::complex Phi25_1(double E0);
963
964
970 double Phi26_1_4body(double E0);
971
972
979 gslpp::complex Phi26_1(double E0);
980
981
988 gslpp::complex Phi27_1(double E0, double z);
989
990
997 gslpp::complex Phi28_1(double E0, double z);
998
1004 double Phi33_1(double E0);
1005
1011 double Phi34_1(double E0);
1012
1018 double Phi35_1(double E0);
1019
1026 gslpp::complex Phi36_1(double E0);
1027
1034 double Phi37_1(double E0);
1035
1042 double Phi38_1(double E0);
1043
1049 double Phi44_1(double E0);
1050
1056 double Phi45_1(double E0);
1057
1064 gslpp::complex Phi46_1(double E0);
1065
1066
1073 double Phi47_1(double E0);
1074
1081 double Phi48_1(double E0);
1082
1088 double Phi55_1(double E0);
1089
1096 gslpp::complex Phi56_1(double E0);
1097
1098
1105 double Phi57_1(double E0);
1106
1113 double Phi58_1(double E0);
1114
1120 gslpp::complex Phi66_1(double E0);
1121
1122
1129 gslpp::complex Phi67_1(double E0);
1130
1137 gslpp::complex Phi68_1(double E0);
1138
1139
1145 double Phi77_1(double E0);
1146
1147
1153 double Phi78_1(double E0);
1154
1155
1161 double Phi88_1(double E0);
1162
1163
1172 gslpp::complex Kij_1(int i, int j, double E0, double mu);
1173
1174
1180 double Rer22(double z);
1181
1182
1189 double Phi22_2beta0(double E0, double mu);
1190
1191
1198 double Phi28_2beta0(double E0, double mu);
1199
1200
1207 double Phi77_2beta0(double E0, double mu);
1208
1209
1216 double Phi88_2beta0(double E0, double mu);
1217
1218
1225 double dY1(double E0);
1226
1227
1234 double Y1(double E0, double mu);
1235
1236
1243 double Y2CF(double E0, double mu);
1244
1245
1252 double Y2CA(double E0, double mu);
1253
1254
1261 double Y2NL(double E0, double mu);
1262
1263
1269 double Y2NV_PHI1(double rho);
1270
1271
1277 double Y2NV_PHI2(double rho);
1278
1279
1285 double Y2NV_PHI3(double rho);
1286
1287
1293 double Y2NV_PHI4(double rho);
1294
1295
1302 double Y2NV(double E0, double mu);
1303
1304
1311 double Y2NH(double E0, double mu);
1312
1313
1320 double Y2(double E0, double mu);
1321
1322
1328 double f_NLO_1(double z);
1329
1330
1337 double zdz_f_NLO(double z, double E0);
1338
1339
1346 double mddel_f_NLO(double z, double E0);
1347
1348
1355 double h27_2(double z, double E0);
1356
1357
1364 double f_q(double z, double E0);
1365
1366
1372 double f_b(double z);
1373
1374
1380 double f_c(double z);
1381
1382
1388 double F_1(double z);
1389
1390
1396 double F_2(double z);
1397
1398
1405 double delddel_Phi22_1(double E0);
1406
1407
1414 double zdz_Phi22_1(double E0);
1415
1416
1423 double delddel_Phi28_1(double z, double E0);
1424
1425
1432 double zdz_Phi28_1(double z, double E0);
1433
1434
1441 double delddel_Phi88_1(double E0);
1442
1443
1449 double f(double r);
1450
1451
1457 double Delta(double r);
1458
1459
1466 double f_u(double r);
1467
1468
1475 double omega77(double z);
1476
1477
1483 double Int_Phi77_2rem(double E0);
1484
1485
1492 double Phi77_2rem(double E0);
1493
1494
1501 double K77_2_z1(double E0, double mu);
1502
1503
1513 double Kij_2(int i, int j, double E0, double mu_b, double mu_c);
1514
1515
1520 void computeCoeff(double mu);
1521
1522
1528 double P0(double E0);
1529
1530
1535 double P11();
1536
1537
1544 double P21(double E0, double mu);
1545
1546
1553 double P21_CPodd(double E0, double mu);
1554
1555
1560 double P12();
1561
1562
1570 double P22(double E0, double mu_b, double mu_c);
1571
1572
1579 double P32(double E0, double mu);
1580
1581
1587 double EW_NLO(double mu);
1588
1589
1594 double Vub_NLO_2body();
1595
1596
1602 double Vub_NLO_2body_CPodd();
1603
1604
1610 double Vub_NLO_3body_A(double E0);
1611
1612
1618 double Vub_NLO_3body_A_CPodd(double E0);
1619
1620
1626 double Vub_NLO_3body_B(double E0);
1627
1628
1634 double Vub_NLO_3body_B_CPodd(double E0);
1635
1636
1642 double Vub_NLO_4body(double E0);
1643
1644
1650 double Vub_NLO_4body_CPodd(double E0);
1651
1652
1658 double Vub_NLO(double E0);
1659
1660
1666 double Vub_NLO_CPodd(double E0);
1667
1668
1674 double Vub_NNLO(double E0);
1675
1676
1685 double P(double E0, double mu_b, double mu_c, orders order);
1686
1687
1693 double N_27();
1694
1695
1703 double N_77(double E0, double mu);
1704
1705
1712 double N(double E0, double mu);
1713
1714
1722 double C_sem();
1723
1724
1728 void updateParameters();
1729
1730
1735 double computeThValue();
1736
1737
1738private:
1741 bool SUM;
1744 bool WET_NP_btos = false, SMEFT_NP_btos = false;
1745
1746 double ale;
1748 double alsUps;
1749 double Alstilde;
1750 double mu_b;
1751 double mu_c;
1752 double mu_kin;
1753 double Mb_kin;
1754 double Mc;
1755 double Ms;
1756 double Mb;
1757 double Mz;
1758 double BRsl;
1759 double C;
1760 double CKMratio;
1761 gslpp::complex V_ub;
1762 gslpp::complex V_cb;
1763 gslpp::complex V_tb;
1764 gslpp::complex CKMu;
1765 double CKMusq;
1766 double overall;
1767 double mu_pi2;
1768 double mu_G2;
1769 double rho_D3;
1770 double rho_LS3;
1771 double BLNPcorr;
1773 int obs;
1775// double BR; /**<BR of the decay */
1776// double BR_CPodd; /**<BR of the decay */
1777
1778 gslpp::vector<gslpp::complex> ** allcoeff;
1779 gslpp::vector<gslpp::complex> ** allcoeffprime;
1781 gslpp::complex C1_0;
1782 gslpp::complex C2_0;
1783 gslpp::complex C3_0;
1784 gslpp::complex C4_0;
1785 gslpp::complex C5_0;
1786 gslpp::complex C6_0;
1787 gslpp::complex C7_0;
1788 gslpp::complex C8_0;
1790 gslpp::complex C1_1;
1791 gslpp::complex C2_1;
1792 gslpp::complex C3_1;
1793 gslpp::complex C4_1;
1794 gslpp::complex C5_1;
1795 gslpp::complex C6_1;
1796 gslpp::complex C7_1;
1797 gslpp::complex C8_1;
1799 gslpp::complex C7_1ew;
1801 gslpp::complex C7_2;
1803 gslpp::complex C7p_0;
1804 gslpp::complex C7p_1;
1806 gslpp::complex C_7_NP;
1807 gslpp::complex C_7p_NP;
1808
1809 double avaINT;
1810 ROOT::Math::GSLIntegrator ig;
1811 ROOT::Math::Functor1D wf;
1813 unsigned int Intb1Cached;
1814 unsigned int Intb2Cached;
1815 unsigned int Intb3Cached;
1816 unsigned int Intb4Cached;
1817 unsigned int Intbb1Cached;
1818 unsigned int Intbb2Cached;
1819 unsigned int Intbb4Cached;
1820 unsigned int Intbc1Cached;
1821 unsigned int Intbc2Cached;
1822 unsigned int Intc1Cached;
1823 unsigned int Intc1imCached;
1824 unsigned int Intc2Cached;
1825 unsigned int Intc3Cached;
1826 unsigned int IntccCached;
1827 unsigned int Intcc1Cached;
1828 unsigned int Intcc1p1Cached;
1829 unsigned int IntPhi772rCached;
1838 gslpp::complex CacheIntbc1;
1839 gslpp::complex CacheIntbc2;
1840 gslpp::complex CacheIntc1;
1841 gslpp::complex CacheIntc2;
1842 gslpp::complex CacheIntc3;
1848 unsigned int Intb_updated;
1849 unsigned int Intbc_updated;
1852 gslpp::vector<double> Intbc_cache;
1857 void checkCache();
1858
1859};
1860
1861#endif /* BSGAMMA_H */
A class for the decay.
Definition: bsgamma.h:166
double getKb_abs2_1mt(double t)
The function .
Definition: bsgamma.h:462
double P22(double E0, double mu_b, double mu_c)
The perturbative part of the BR as defined in .
Definition: bsgamma.cpp:2115
double Phi88_2beta0(double E0, double mu)
The function from arXiv:1009.5685.
Definition: bsgamma.cpp:1325
double N(double E0, double mu)
The non perturbative part of the as defined in , .
Definition: bsgamma.cpp:2397
double zeta()
The squared ratio between and , .
Definition: bsgamma.cpp:227
gslpp::complex Int_bc2(double E0)
Integral of the functions getKc_re_Kb_t_1mt(), getKc_im_Kb_t_1mt() and getKc_re_Kb_t_1mt2(),...
Definition: bsgamma.cpp:561
gslpp::complex kappa(double Mq, double t)
The function as defined in .
Definition: bsgamma.cpp:352
gslpp::complex Phi67_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:1118
double CKMratio
Definition: bsgamma.h:1760
double f_b(double z)
The function from arXiv:1503.01791.
Definition: bsgamma.cpp:1689
double getKb_abs2_t_1mt(double t)
The function .
Definition: bsgamma.h:484
gslpp::complex Phi24_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:911
gslpp::complex Gamma_t(double t)
The function as defined in .
Definition: bsgamma.cpp:344
gslpp::complex r1(int i, double z)
The funcion as defined in .
Definition: bsgamma.cpp:285
gslpp::complex C5_0
Definition: bsgamma.h:1785
double Int_b3(double E0)
Integral of the functions getKb_re_t() and getKb_re_t_1mt().
Definition: bsgamma.cpp:405
gslpp::complex C1_0
Definition: bsgamma.h:1781
double CacheIntcc
Definition: bsgamma.h:1843
double EW_NLO(double mu)
The NLO electroweak correction to the BR as defined in .
Definition: bsgamma.cpp:2158
unsigned int Intb3Cached
Definition: bsgamma.h:1815
gslpp::complex Int_c1(double E0)
Integral of the functions getKc_re_1mt(), getKc_im_1mt() and getKc_re_1mt2(), getKc_im_1mt2().
Definition: bsgamma.cpp:597
double Phi77_2rem(double E0)
The part of the function with no dependance, as defined in .
Definition: bsgamma.cpp:1891
double P21(double E0, double mu)
The perturbative part of the BR as defined in .
Definition: bsgamma.cpp:2057
gslpp::complex C8_1
Definition: bsgamma.h:1797
double ff8_sMP(double E0)
The 4-body NLO correction due to and s, , from .
Definition: bsgamma.cpp:821
double Y2CA(double E0, double mu)
The function from arXiv:1005.5587v1.
Definition: bsgamma.cpp:1391
double Phi24_1_4body(double E0)
The function obtained from .
Definition: bsgamma.cpp:903
unsigned int Intbc2Cached
Definition: bsgamma.h:1821
gslpp::complex Phi36_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:1012
double getKc_abs2_1mt2(double t)
The function .
Definition: bsgamma.h:341
double delddel_Phi22_1(double E0)
Derivative of the function Phi22_1() used to compute effects of massive quark loops on gluon lines.
Definition: bsgamma.cpp:1713
double zdz_f_NLO(double z, double E0)
The function from arXiv:1503.01791.
Definition: bsgamma.cpp:1534
double Kij_2(int i, int j, double E0, double mu_b, double mu_c)
The function from arXiv:1503.01791.
Definition: bsgamma.cpp:1916
double Phi44_1(double E0)
The function obtained using the prescription of .
Definition: bsgamma.cpp:1038
unsigned int Intcc1Cached
Definition: bsgamma.h:1827
double getKc_im_1mt2(double t)
The function .
Definition: bsgamma.h:451
double computeThValue()
Computes the Branching Ratio for the decay.
Definition: bsgamma.cpp:2506
double Phi35_1(double E0)
The function obtained using the prescription of .
Definition: bsgamma.cpp:1000
unsigned int Intb1Cached
Definition: bsgamma.h:1813
gslpp::complex Phi27_1(double E0, double z)
The function from .
Definition: bsgamma.cpp:945
double CacheIntcc1p1
Definition: bsgamma.h:1845
double CacheIntPhi772r
Definition: bsgamma.h:1846
gslpp::complex C1_1
Definition: bsgamma.h:1790
bool SUM
Definition: bsgamma.h:1741
double Phi22_1(double E0)
The function from .
Definition: bsgamma.cpp:884
double K77_2_z1(double E0, double mu)
The function computed in the limit .
Definition: bsgamma.cpp:1903
double getKc_re_t_1mt(double t)
The function .
Definition: bsgamma.h:374
double Int_cc1_part1(double E0)
Integral of the functions getKc_abs2_1mt().
Definition: bsgamma.cpp:753
double Y2NV_PHI1(double rho)
The function from arXiv:0805.3911v2.
Definition: bsgamma.cpp:1437
gslpp::complex C_7_NP
Definition: bsgamma.h:1806
gslpp::complex C_7p_NP
Definition: bsgamma.h:1807
gslpp::complex Phi18_1(double E0, double z)
The function from .
Definition: bsgamma.cpp:879
double getKc_re_1mt(double t)
The function .
Definition: bsgamma.h:418
double Y2NV_PHI3(double rho)
The function from arXiv:0805.3911v2.
Definition: bsgamma.cpp:1459
gslpp::complex C7p_0
Definition: bsgamma.h:1803
double CacheIntb2
Definition: bsgamma.h:1832
double Phi55_1(double E0)
The function obtained using the prescription of .
Definition: bsgamma.cpp:1065
double C_sem()
The ratio as defined in , but with coefficients slightly modified due to different imput parameters...
Definition: bsgamma.cpp:2402
double mu_b
Definition: bsgamma.h:1750
double Phi45_1(double E0)
The function obtained using the prescription of .
Definition: bsgamma.cpp:1043
double CacheIntbb4
Definition: bsgamma.h:1837
double getKc_re_1mt2(double t)
The function .
Definition: bsgamma.h:440
double Int_Phi77_2rem(double E0)
The integral of omega77()
Definition: bsgamma.cpp:1874
ROOT::Math::GSLIntegrator ig
Definition: bsgamma.h:1810
double dY1(double E0)
The function from arXiv:0805.3911v2.
Definition: bsgamma.cpp:1349
double mu_pi2
Definition: bsgamma.h:1767
unsigned int Intb2Cached
Definition: bsgamma.h:1814
double Phi47_1(double E0)
The function from and adding the 4-body contribution from .
Definition: bsgamma.cpp:1053
void computeCoeff(double mu)
Compute the Wilson Coefficient.
Definition: bsgamma.cpp:1978
double P(double E0, double mu_b, double mu_c, orders order)
The perturbative part of the as defined in , .
Definition: bsgamma.cpp:2310
gslpp::complex Phi66_1(double E0)
The function obtained using the prescription of .
Definition: bsgamma.cpp:1104
double getKb_re_t(double t)
The function .
Definition: bsgamma.h:528
double getKb_re_t2_1mt(double t)
The function .
Definition: bsgamma.h:550
double P0_4body(double E0, double t)
The 4-body LO contribution as defined in .
Definition: bsgamma.cpp:171
double P0(double E0)
The perturbative part of the BR as defined in .
Definition: bsgamma.cpp:2046
double F_2(double z)
The interpolated function from arXiv:1503.01791.
Definition: bsgamma.cpp:1706
double Rer22(double z)
The function from .
Definition: bsgamma.cpp:1225
unsigned int Intbb2Cached
Definition: bsgamma.h:1818
double P32(double E0, double mu)
The perturbative part of the BR as defined in .
Definition: bsgamma.cpp:2139
unsigned int Intbc_updated
Definition: bsgamma.h:1849
gslpp::complex a(double z)
The funcion as defined in .
Definition: bsgamma.cpp:232
gslpp::complex C7_1ew
Definition: bsgamma.h:1799
double Phi22_2beta0(double E0, double mu)
The function from arXiv:1009.5685.
Definition: bsgamma.cpp:1257
double getKb_abs2_t2_1mt(double t)
The function .
Definition: bsgamma.h:506
double getKc_abs2_t_1mt(double t)
The function .
Definition: bsgamma.h:330
double Vub_NLO_3body_A(double E0)
The first piece of the 3 body NLO Vub part of the , .
Definition: bsgamma.cpp:2211
gslpp::vector< double > Intbc_cache
Definition: bsgamma.h:1852
double f(double r)
The function from hep-ph/0611123.
Definition: bsgamma.cpp:1768
double CacheIntb3
Definition: bsgamma.h:1833
double Y2NV(double E0, double mu)
The function from arXiv:0805.3911v2.
Definition: bsgamma.cpp:1482
double Phi11_1(double E0)
The function from .
Definition: bsgamma.cpp:844
double omega77(double z)
The function, linear combination of the functions , and from hep-ph/0505097.
Definition: bsgamma.cpp:1829
double delddel_Phi88_1(double E0)
Derivative of the function Phi88_1() used to compute effects of massive quark loops on gluon lines.
Definition: bsgamma.cpp:1758
double Phi58_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:1098
double getKc_abs2_t(double t)
The function .
Definition: bsgamma.h:308
gslpp::complex Kij_1(int i, int j, double E0, double mu)
The function from .
Definition: bsgamma.cpp:1169
double getKc_im_t_1mt2(double t)
The function .
Definition: bsgamma.h:407
bool WET_NP_btos
Definition: bsgamma.h:1744
double Int_bb2(double E0)
Integral of the functions getKb_abs2_t_1mt() and getKb_abs2_t_1mt2().
Definition: bsgamma.cpp:477
double Phi77_2beta0(double E0, double mu)
The function from ..
Definition: bsgamma.cpp:1303
double getKb_abs2_t_1mt2(double t)
The function .
Definition: bsgamma.h:495
double Mb
Definition: bsgamma.h:1756
double mddel_f_NLO(double z, double E0)
The function from arXiv:1503.01791.
Definition: bsgamma.cpp:1630
double Phi23_1_4body(double E0)
The function obtained from .
Definition: bsgamma.cpp:889
double f_q(double z, double E0)
The function from arXiv:1503.01791.
Definition: bsgamma.cpp:1684
unsigned int Intb_updated
Definition: bsgamma.h:1848
unsigned int Intbb1Cached
Definition: bsgamma.h:1817
gslpp::complex CacheIntc3
Definition: bsgamma.h:1842
double mu_kin
Definition: bsgamma.h:1752
double getKc_re_t(double t)
The function .
Definition: bsgamma.h:352
gslpp::complex V_tb
Definition: bsgamma.h:1763
unsigned int Intc2Cached
Definition: bsgamma.h:1824
double getKc_re_t_1mt2(double t)
The function .
Definition: bsgamma.h:396
double rho_D3
Definition: bsgamma.h:1769
double T1(double E0, double t)
The cutoff energy function as defined in .
Definition: bsgamma.cpp:127
double Phi77_1(double E0)
The function from .
Definition: bsgamma.cpp:1133
double Mb_kin
Definition: bsgamma.h:1753
bool FOUR_BODY
Definition: bsgamma.h:1743
double Vub_NLO_4body_CPodd(double E0)
The CP odd part of the 4 body NLO Vub part of the obtained from , .
Definition: bsgamma.cpp:2281
double Y1(double E0, double mu)
The function from arXiv:0805.3911v2.
Definition: bsgamma.cpp:1357
double Phi57_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:1090
double P12()
The perturbative part of the BR as defined in .
Definition: bsgamma.cpp:2109
double ff7_dMP(double E0)
The 4-body NLO correction due to and d, , from .
Definition: bsgamma.cpp:770
double Phi34_1(double E0)
The function obtained using the prescription of .
Definition: bsgamma.cpp:995
double Int_cc(double E0)
Integral of the functions getKc_abs2_t() and getKc_abs2_t_1mt().
Definition: bsgamma.cpp:705
double Mz
Definition: bsgamma.h:1757
double Phi38_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:1033
gslpp::complex C2_0
Definition: bsgamma.h:1782
double Vub_NLO_CPodd(double E0)
The CP odd part of the total NLO Vub part of the , .
Definition: bsgamma.cpp:2295
ROOT::Math::Functor1D wf
Definition: bsgamma.h:1811
double Vub_NLO_2body_CPodd()
The CP odd part of the 2 body NLO Vub part of the as defined in , .
Definition: bsgamma.cpp:2201
double N_27()
The non perturbative part of the due to interference as defined in , .
Definition: bsgamma.cpp:2342
double BRsl
Definition: bsgamma.h:1758
double T2(double E0, double t)
The cutoff energy function as defined in .
Definition: bsgamma.cpp:142
unsigned int IntccCached
Definition: bsgamma.h:1826
double getKc_im_Kb_1mt2(double t)
The function .
Definition: bsgamma.h:638
gslpp::complex C3_0
Definition: bsgamma.h:1783
double omega(double E0)
The cutoff energy function as defined in .
Definition: bsgamma.cpp:117
double Vub_NNLO(double E0)
The NNLO Vub part of the as defined in xxxxxxxxx, .
Definition: bsgamma.cpp:2300
double ff8_dMP(double E0)
The 4-body NLO correction due to and d, , from .
Definition: bsgamma.cpp:798
double CKMusq
Definition: bsgamma.h:1765
double F_1(double z)
The interpolated function from arXiv:1503.01791.
Definition: bsgamma.cpp:1699
unsigned int Intbc1Cached
Definition: bsgamma.h:1820
int obs
Definition: bsgamma.h:1773
double getKc_re_Kb_t_1mt2(double t)
The function .
Definition: bsgamma.h:671
double h27_2(double z, double E0)
The function from arXiv:1009.5685 and arXiv:1503.01791.
Definition: bsgamma.cpp:1661
gslpp::complex Int_c2(double E0)
Integral of the functions getKc_re_t_1mt(), getKc_im_t_1mt() and getKc_re_t_1mt2(),...
Definition: bsgamma.cpp:633
double Phi88_1(double E0)
The function from .
Definition: bsgamma.cpp:1155
unsigned int Intc1Cached
Definition: bsgamma.h:1822
double CacheIntcc1
Definition: bsgamma.h:1844
double Vub_NLO_3body_B(double E0)
The second piece of the 3 body NLO Vub part of the , .
Definition: bsgamma.cpp:2225
double Mc
Definition: bsgamma.h:1754
gslpp::complex CacheIntbc2
Definition: bsgamma.h:1839
unsigned int Intb4Cached
Definition: bsgamma.h:1816
double Phi37_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:1025
double Phi78_1(double E0)
The function from .
Definition: bsgamma.cpp:1142
double Vub_NLO(double E0)
The total NLO Vub part of the , .
Definition: bsgamma.cpp:2290
double Alstilde
Definition: bsgamma.h:1749
gslpp::complex C3_1
Definition: bsgamma.h:1792
double ale
Definition: bsgamma.h:1746
double C
Definition: bsgamma.h:1759
double CacheIntb4
Definition: bsgamma.h:1834
double Phi28_2beta0(double E0, double mu)
The function from arXiv:1009.5685.
Definition: bsgamma.cpp:1277
unsigned int Intcc1p1Cached
Definition: bsgamma.h:1828
double Vub_NLO_3body_B_CPodd(double E0)
The CP odd part of the second piece of the 3 body NLO Vub part of the , .
Definition: bsgamma.cpp:2238
gslpp::complex Phi56_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:1077
void updateParameters()
The update parameter method for bsgamma.
Definition: bsgamma.cpp:2410
gslpp::complex Phi16_1(double E0)
The function obtained using the prescription of .
Definition: bsgamma.cpp:869
double getKb_abs2_1mt2(double t)
The function .
Definition: bsgamma.h:473
gslpp::complex r1_ew(int i, double z)
The funcion as defined in .
Definition: bsgamma.cpp:312
bool EWflag
Definition: bsgamma.h:1742
gslpp::complex Phi23_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:897
gslpp::complex Phi28_1(double E0, double z)
The function from .
Definition: bsgamma.cpp:978
double Int_bb4(double E0)
Integral of the functions getKb_abs2_t2_1mt() and getKb_abs2_t2_1mt2().
Definition: bsgamma.cpp:501
double getKc_abs2_1mt(double t)
The function .
Definition: bsgamma.h:319
double Y2NL(double E0, double mu)
The function from arXiv:0805.3911v2.
Definition: bsgamma.cpp:1417
gslpp::complex CKMu
Definition: bsgamma.h:1764
double delta(double E0)
The cutoff energy function .
Definition: bsgamma.cpp:104
double getKb_re_t2_1mt2(double t)
The function .
Definition: bsgamma.h:561
double CacheIntbb1
Definition: bsgamma.h:1835
unsigned int Intc1imCached
Definition: bsgamma.h:1823
double avaINT
Definition: bsgamma.h:1809
gslpp::complex Phi26_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:939
gslpp::complex C7_2
Definition: bsgamma.h:1801
double Delta(double r)
The function from Z. Phys. C 48, 673 (1990).
Definition: bsgamma.cpp:1788
double Vub_NLO_3body_A_CPodd(double E0)
The CP odd part of the first piece of the 3 body NLO Vub part of the , .
Definition: bsgamma.cpp:2220
gslpp::complex C7_0
Definition: bsgamma.h:1787
double getKc_im_t_1mt(double t)
The function .
Definition: bsgamma.h:385
gslpp::complex Phi25_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:925
double Intb_cache
Definition: bsgamma.h:1851
double P11()
The perturbative part of the BR as defined in .
Definition: bsgamma.cpp:2051
gslpp::complex Phi17_1(double E0, double z)
The function from .
Definition: bsgamma.cpp:874
double delddel_Phi28_1(double z, double E0)
Derivative of the function Phi28_1() used to compute effects of massive quark loops on gluon lines.
Definition: bsgamma.cpp:1725
double getKc_im_Kb_1mt(double t)
The function .
Definition: bsgamma.h:616
double f_NLO_1(double z)
The function from arXiv:1503.01791.
Definition: bsgamma.cpp:1529
unsigned int Intc3Cached
Definition: bsgamma.h:1825
double Phi33_1(double E0)
The function obtained using the prescription of .
Definition: bsgamma.cpp:983
double Phi26_1_4body(double E0)
The function obtained from .
Definition: bsgamma.cpp:931
unsigned int IntPhi772rCached
Definition: bsgamma.h:1829
double Ms
Definition: bsgamma.h:1755
Bsgamma(const StandardModel &SM_i, QCD::quark quark_i, int obsFlag)
Constructor.
Definition: bsgamma.cpp:23
gslpp::complex Phi13_1(double E0)
The function obtained using the prescription of .
Definition: bsgamma.cpp:854
double getKb_re_t_1mt(double t)
The function .
Definition: bsgamma.h:539
double f_u(double r)
The function obtained after multiplying the fitted function of arXiv:0803.0960 for and subtracting...
Definition: bsgamma.cpp:1805
double Y2(double E0, double mu)
The function from arXiv:0805.3911v2 and arXiv:1005.5587v1.
Definition: bsgamma.cpp:1516
double zdz_Phi28_1(double z, double E0)
Derivative of the function Phi28_1() used to compute effects of massive quark loops on gluon lines.
Definition: bsgamma.cpp:1739
double overall
Definition: bsgamma.h:1766
double getKc_re_Kb_t_1mt(double t)
The function .
Definition: bsgamma.h:649
double Phi25_1_4body(double E0)
The function obtained from .
Definition: bsgamma.cpp:917
gslpp::complex V_ub
Definition: bsgamma.h:1761
double Y2NV_PHI4(double rho)
The function from arXiv:0805.3911v2.
Definition: bsgamma.cpp:1470
gslpp::complex C2_1
Definition: bsgamma.h:1791
double ff7_sMP(double E0)
The 4-body NLO correction due to and s, , from .
Definition: bsgamma.cpp:784
double Y2NV_PHI2(double rho)
The function from arXiv:0805.3911v2.
Definition: bsgamma.cpp:1448
double zdz_Phi22_1(double E0)
Derivative of the function Phi22_1() used to compute effects of massive quark loops on gluon lines.
Definition: bsgamma.cpp:1720
double getKc_re_Kb_1mt2(double t)
The function .
Definition: bsgamma.h:627
double Int_b4(double E0)
Integral of the functions getKb_re_t2_1mt() and getKb_re_t2_1mt2().
Definition: bsgamma.cpp:429
double getKc_im_Kb_t_1mt2(double t)
The function .
Definition: bsgamma.h:682
gslpp::complex C5_1
Definition: bsgamma.h:1794
gslpp::complex Phi46_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:1048
gslpp::complex Phi14_1(double E0)
The function obtained using the prescription of .
Definition: bsgamma.cpp:859
double Vub_NLO_2body()
The 2 body NLO Vub part of the as defined in , .
Definition: bsgamma.cpp:2191
double Int_b2(double E0)
Integral of the functions getKb_re_t_1mt() and getKb_re_t_1mt2().
Definition: bsgamma.cpp:381
gslpp::complex Int_bc1(double E0)
Integral of the functions getKc_re_Kb_1mt(), getKc_im_Kb_1mt() and getKc_re_Kb_1mt2(),...
Definition: bsgamma.cpp:525
unsigned int Intbb4Cached
Definition: bsgamma.h:1819
double Int_b1(double E0)
Integral of the functions getKb_re_1mt() and getKb_re_1mt2().
Definition: bsgamma.cpp:358
double Phi48_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:1059
gslpp::vector< gslpp::complex > ** allcoeffprime
Definition: bsgamma.h:1779
bool SMEFT_NP_btos
Definition: bsgamma.h:1744
QCD::quark quark
Definition: bsgamma.h:1739
gslpp::complex C7_1
Definition: bsgamma.h:1796
double AleatMztilde
Definition: bsgamma.h:1747
double P21_CPodd(double E0, double mu)
The CP odd part of the perturbative part of the BR as defined in .
Definition: bsgamma.cpp:2083
gslpp::complex C6_0
Definition: bsgamma.h:1786
gslpp::complex C6_1
Definition: bsgamma.h:1795
double BLNPcorr
Definition: bsgamma.h:1771
gslpp::complex Int_c3(double E0)
Integral of the functions getKc_re_t(), getKc_im_t() and getKc_re_t_1mt(), getKc_im_t_1mt().
Definition: bsgamma.cpp:669
double Y2CF(double E0, double mu)
The function from arXiv:1005.5587v1.
Definition: bsgamma.cpp:1364
double getKb_re_1mt2(double t)
The function .
Definition: bsgamma.h:594
gslpp::complex V_cb
Definition: bsgamma.h:1762
double Int_bb1(double E0)
Integral of the functions getKb_abs2_1mt() and getKb_abs2_1mt2().
Definition: bsgamma.cpp:453
gslpp::complex Phi68_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from .
Definition: bsgamma.cpp:1127
gslpp::complex C8_0
Definition: bsgamma.h:1788
void checkCache()
The caching method for bsgamma.
Definition: bsgamma.cpp:86
double rho_LS3
Definition: bsgamma.h:1770
double mu_G2
Definition: bsgamma.h:1768
gslpp::complex b(double z)
The funcion as defined in .
Definition: bsgamma.cpp:261
double getKc_im_Kb_t_1mt(double t)
The function .
Definition: bsgamma.h:660
gslpp::complex CacheIntc1
Definition: bsgamma.h:1840
double rho(double E0)
The cutoff energy function as defined in .
Definition: bsgamma.cpp:109
gslpp::complex C4_0
Definition: bsgamma.h:1784
double Y2NH(double E0, double mu)
The function from arXiv:0805.3911v2.
Definition: bsgamma.cpp:1505
double Phi12_1(double E0)
The function from .
Definition: bsgamma.cpp:849
double getKb_abs2_t2_1mt2(double t)
The function .
Definition: bsgamma.h:517
double getKc_im_t(double t)
The function .
Definition: bsgamma.h:363
double getKc_im_1mt(double t)
The function .
Definition: bsgamma.h:429
double Int_cc1(double E0)
Integral of the functions getKc_abs2_1mt() and getKc_abs2_1mt^().
Definition: bsgamma.cpp:729
double getKb_re_1mt(double t)
The function .
Definition: bsgamma.h:583
gslpp::complex C4_1
Definition: bsgamma.h:1793
double getKb_re_t_1mt2(double t)
The function .
Definition: bsgamma.h:572
double alsUps
Definition: bsgamma.h:1748
double CacheIntbb2
Definition: bsgamma.h:1836
double mu_c
Definition: bsgamma.h:1751
double getKc_re_Kb_1mt(double t)
The function .
Definition: bsgamma.h:605
gslpp::complex C7p_1
Definition: bsgamma.h:1804
double T3(double E0, double t)
The cutoff energy function as defined in .
Definition: bsgamma.cpp:157
gslpp::complex CacheIntbc1
Definition: bsgamma.h:1838
double N_77(double E0, double mu)
The non perturbative part of the due to interference as defined in arXiv:0911.2175,...
Definition: bsgamma.cpp:2350
double CacheIntb1
Definition: bsgamma.h:1831
double f_c(double z)
The function from arXiv:1503.01791.
Definition: bsgamma.cpp:1694
double Vub_NLO_4body(double E0)
The 4 body NLO Vub part of the obtained from , .
Definition: bsgamma.cpp:2251
gslpp::complex CacheIntc2
Definition: bsgamma.h:1841
gslpp::vector< gslpp::complex > ** allcoeff
Definition: bsgamma.h:1778
gslpp::complex Phi15_1(double E0)
The function obtained using the prescription of .
Definition: bsgamma.cpp:864
quark
An enum type for quarks.
Definition: QCD.h:323
A model class for the Standard Model.
A class for a model prediction of an observable.
Definition: ThObservable.h:25
Test Observable.
orders
An enum type for orders in QCD.
Definition: OrderScheme.h:33