30 gslpp::complex i = gslpp::complex::i();
54 gslpp::complex B1 = -3.*la1Q + 9.*beta1/2. + (i*M_PI - 1.)*(9.*la1Q*la1Q +
55 (2.*la3Q + la4Q)*(2.*la3Q + la4Q))/16./M_PI/M_PI -
56 3.*la1Q*WFRc1/32./M_PI/M_PI;
58 gslpp::complex B2 = -3.*la2Q + 9.*beta2/2. + (i*M_PI - 1.)*(9.*la2Q*la2Q +
59 (2.*la3Q + la4Q)*(2.*la3Q + la4Q))/16./M_PI/M_PI -
60 3.*la2Q*(-WFRc1 + 2.*WFRc2)/32./M_PI/M_PI;
62 gslpp::complex B3 = -2.*la3Q - la4Q + 3.*(2.*beta3 + beta4)/2. + 3.*(i*M_PI -
63 1.)*(la1Q + la2Q)*(2.*la3Q + la4Q)/16./M_PI/M_PI -
64 (2.*la3Q + la4Q)*WFRc2/32./M_PI/M_PI;
66 return ((B1 + B2 + sqrt((B1 - B2)*(B1 - B2) + 4.*B3*B3))/32./M_PI - i/2.).abs();
75 gslpp::complex i = gslpp::complex::i();
99 gslpp::complex B1 = -3.*la1Q + 9.*beta1/2. + (i*M_PI - 1.)*(9.*la1Q*la1Q +
100 (2.*la3Q + la4Q)*(2.*la3Q + la4Q))/16./M_PI/M_PI -
101 3.*la1Q*WFRc1/32./M_PI/M_PI;
103 gslpp::complex B2 = -3.*la2Q + 9.*beta2/2. + (i*M_PI - 1.)*(9.*la2Q*la2Q +
104 (2.*la3Q + la4Q)*(2.*la3Q + la4Q))/16./M_PI/M_PI -
105 3.*la2Q*(-WFRc1 + 2.*WFRc2)/32./M_PI/M_PI;
107 gslpp::complex B3 = -2.*la3Q - la4Q + 3.*(2.*beta3 + beta4)/2. + 3.*(i*M_PI -
108 1.)*(la1Q + la2Q)*(2.*la3Q + la4Q)/16./M_PI/M_PI -
109 (2.*la3Q + la4Q)*WFRc2/32./M_PI/M_PI;
111 return ((B1 + B2 - sqrt((B1 - B2)*(B1 - B2) + 4.*B3*B3))/32./M_PI - i/2.).abs();
125 gslpp::complex i = gslpp::complex::i();
143 double beta3 =
myGTHDM.
betalambda3_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
144 double beta4 =
myGTHDM.
betalambda4_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
145 double beta5 =
myGTHDM.
betalambda5_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
147 gslpp::complex B4 = -la3Q - 2.*la4Q + 3.*(beta3 + 2.*beta4)/2. + (i*M_PI - 1.)*(la3Q*la3Q +
148 4.*la3Q*la4Q + 4.*la4Q*la4Q + 9.*la5Q*la5Q)/16./M_PI/M_PI -
149 (la3Q + la4Q + la5Q)*WFRc2/32./M_PI/M_PI;
151 gslpp::complex B6 = -3.*la5Q + 9.*beta5/2. + 6.*(i*M_PI - 1.)*(la3Q + 2.*la4Q)*la5Q/16./M_PI/M_PI -
152 (la4Q + 2.*la5Q)*WFRc2/32./M_PI/M_PI;
154 return ((B4 + B6)/16./M_PI - i/2.).abs();
163 gslpp::complex i = gslpp::complex::i();
181 double beta3 =
myGTHDM.
betalambda3_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
182 double beta4 =
myGTHDM.
betalambda4_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
183 double beta5 =
myGTHDM.
betalambda5_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
185 gslpp::complex B4 = -la3Q - 2.*la4Q + 3.*(beta3 + 2.*beta4)/2. + (i*M_PI - 1.)*(la3Q*la3Q +
186 4.*la3Q*la4Q + 4.*la4Q*la4Q + 9.*la5Q*la5Q)/16./M_PI/M_PI -
187 (la3Q + la4Q + la5Q)*WFRc2/32./M_PI/M_PI;
189 gslpp::complex B6 = -3.*la5Q + 9.*beta5/2. + 6.*(i*M_PI - 1.)*(la3Q + 2.*la4Q)*la5Q/16./M_PI/M_PI -
190 (la4Q + 2.*la5Q)*WFRc2/32./M_PI/M_PI;
192 return ((B4 - B6)/16./M_PI - i/2.).abs();
206 gslpp::complex i = gslpp::complex::i();
227 double beta4 =
myGTHDM.
betalambda4_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
229 gslpp::complex B7 = -la1Q + 3.*beta1/2. + (i*M_PI - 1.)*(la1Q*la1Q + la4Q*la4Q)/16./M_PI/M_PI -
230 la1Q*WFRc1/32./M_PI/M_PI;
232 gslpp::complex B8 = -la2Q + 3.*beta2/2. + (i*M_PI - 1.)*(la2Q*la2Q + la4Q*la4Q)/16./M_PI/M_PI -
233 la2Q*(-WFRc1 + 2.*WFRc2)/32./M_PI/M_PI;
235 gslpp::complex B9 = -la4Q + 3.*beta4/2. + (i*M_PI - 1.)*(la1Q + la2Q)*la4Q/16./M_PI/M_PI -
236 la4Q*WFRc2/32./M_PI/M_PI;
238 return ((B7 + B8 + sqrt((B7 - B8)*(B7 - B8) + 4.*B9*B9))/32./M_PI - i/2.).abs();
247 gslpp::complex i = gslpp::complex::i();
268 double beta4 =
myGTHDM.
betalambda4_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
270 gslpp::complex B7 = -la1Q + 3.*beta1/2. + (i*M_PI - 1.)*(la1Q*la1Q + la4Q*la4Q)/16./M_PI/M_PI -
271 la1Q*WFRc1/32./M_PI/M_PI;
273 gslpp::complex B8 = -la2Q + 3.*beta2/2. + (i*M_PI - 1.)*(la2Q*la2Q + la4Q*la4Q)/16./M_PI/M_PI -
274 la2Q*(-WFRc1 + 2.*WFRc2)/32./M_PI/M_PI;
276 gslpp::complex B9 = -la4Q + 3.*beta4/2. + (i*M_PI - 1.)*(la1Q + la2Q)*la4Q/16./M_PI/M_PI -
277 la4Q*WFRc2/32./M_PI/M_PI;
279 return ((B7 + B8 - sqrt((B7 - B8)*(B7 - B8) + 4.*B9*B9))/32./M_PI - i/2.).abs();
293 gslpp::complex i = gslpp::complex::i();
311 double beta3 =
myGTHDM.
betalambda3_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
312 double beta5 =
myGTHDM.
betalambda5_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
314 gslpp::complex B13 = -la3Q + 3.*beta3/2. + (i*M_PI - 1.)*(la3Q*la3Q + la5Q*la5Q)/16./M_PI/M_PI -
315 (la3Q + la4Q - la5Q)*WFRc2/32./M_PI/M_PI;
317 gslpp::complex B15 = -la5Q + 3.*beta5/2. + 2.*(i*M_PI - 1.)*la3Q*la5Q/16./M_PI/M_PI -
318 (la4Q - 2.*la5Q)*WFRc2/32./M_PI/M_PI;
320 return ((B13 + B15)/16./M_PI - i/2.).abs();
329 gslpp::complex i = gslpp::complex::i();
347 double beta3 =
myGTHDM.
betalambda3_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
348 double beta5 =
myGTHDM.
betalambda5_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
350 gslpp::complex B13 = -la3Q + 3.*beta3/2. + (i*M_PI - 1.)*(la3Q*la3Q + la5Q*la5Q)/16./M_PI/M_PI -
351 (la3Q + la4Q - la5Q)*WFRc2/32./M_PI/M_PI;
353 gslpp::complex B15 = -la5Q + 3.*beta5/2. + 2.*(i*M_PI - 1.)*la3Q*la5Q/16./M_PI/M_PI -
354 (la4Q - 2.*la5Q)*WFRc2/32./M_PI/M_PI;
356 return ((B13 - B15)/16./M_PI - i/2.).abs();
370 gslpp::complex i = gslpp::complex::i();
388 double beta3 =
myGTHDM.
betalambda3_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
389 double beta4 =
myGTHDM.
betalambda4_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
391 gslpp::complex B19 = -la3Q + la4Q + 3.*(beta3 - beta4)/2. + (i*M_PI - 1.)*(la3Q -
392 la4Q)*(la3Q - la4Q)/16./M_PI/M_PI - (la3Q - la5Q)*WFRc2/32./M_PI/M_PI;
394 return (B19/16./M_PI - i/2.).abs();
408 gslpp::complex i = gslpp::complex::i();
431 double beta5 =
myGTHDM.
betalambda5_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
433 gslpp::complex B20 = -la1Q + 3.*beta1/2. + (i*M_PI - 1.)*(la1Q*la1Q + la5Q*la5Q)/16./M_PI/M_PI -
434 la1Q*(WFRc1 - 2.*WFRc2 + WFRc3 + 2.*WFRc4)/32./M_PI/M_PI;
436 gslpp::complex B21 = -la2Q + 3.*beta2/2. + (i*M_PI - 1.)*(la2Q*la2Q + la5Q*la5Q)/16./M_PI/M_PI -
437 la2Q*(-WFRc1 + 2.*WFRc2 - WFRc3 + 2.*WFRc4)/32./M_PI/M_PI;
439 gslpp::complex B22 = -la5Q + 3.*beta5/2. + (i*M_PI - 1.)*(la1Q + la2Q)*la5Q/16./M_PI/M_PI -
440 la5Q*2.*WFRc4/32./M_PI/M_PI;
442 return ((B20 + B21 + sqrt((B20 - B21)*(B20 - B21) + 4.*B22*B22))/32./M_PI - i/2.).abs();
451 gslpp::complex i = gslpp::complex::i();
474 double beta5 =
myGTHDM.
betalambda5_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
476 gslpp::complex B20 = -la1Q + 3.*beta1/2. + (i*M_PI - 1.)*(la1Q*la1Q + la5Q*la5Q)/16./M_PI/M_PI -
477 la1Q*(WFRc1 - 2.*WFRc2 + WFRc3 + 2.*WFRc4)/32./M_PI/M_PI;
479 gslpp::complex B21 = -la2Q + 3.*beta2/2. + (i*M_PI - 1.)*(la2Q*la2Q + la5Q*la5Q)/16./M_PI/M_PI -
480 la2Q*(-WFRc1 + 2.*WFRc2 - WFRc3 + 2.*WFRc4)/32./M_PI/M_PI;
482 gslpp::complex B22 = -la5Q + 3.*beta5/2. + (i*M_PI - 1.)*(la1Q + la2Q)*la5Q/16./M_PI/M_PI -
483 la5Q*2.*WFRc4/32./M_PI/M_PI;
485 return ((B20 + B21 - sqrt((B20 - B21)*(B20 - B21) + 4.*B22*B22))/32./M_PI - i/2.).abs();
499 gslpp::complex i = gslpp::complex::i();
517 double beta3 =
myGTHDM.
betalambda3_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
518 double beta4 =
myGTHDM.
betalambda4_Z2(la1Q, la2Q, la3Q, la4Q, la5Q, YtQ, Yb1Q, Yb2Q, Ytau1Q, Ytau2Q);
520 gslpp::complex B30 = -la3Q - la4Q + 3.*(beta3 + beta4)/2. + (i*M_PI - 1.)*(la3Q +
521 la4Q)*(la3Q + la4Q)/16./M_PI/M_PI - (la3Q + la4Q)*2.*WFRc4/32./M_PI/M_PI;
523 return (B30/16./M_PI - i/2.).abs();
const GeneralTHDM & myGTHDM
double betalambda2_Z2(double la2, double la3, double la4, double la5, double Yt, double Yb2, double Ytau2)
The beta function of appearing in unitarity conditions.
gslpp::matrix< double > getGTHDMZ2_at_Q()
The public function which contains all relevant GTHDMZ2 parameter after running.
double betalambda3_Z2(double la1, double la2, double la3, double la4, double la5, double Yt, double Yb1, double Yb2, double Ytau1, double Ytau2)
The beta function of appearing in unitarity conditions.
double betalambda1_Z2(double la1, double la3, double la4, double la5, double Yb1, double Ytau1)
The beta function of appearing in unitarity conditions.
double betalambda5_Z2(double la1, double la2, double la3, double la4, double la5, double Yt, double Yb1, double Yb2, double Ytau1, double Ytau2)
The beta function of appearing in unitarity conditions.
double betalambda4_Z2(double la1, double la2, double la3, double la4, double la5, double Yt, double Yb1, double Yb2, double Ytau1, double Ytau2)
The beta function of appearing in unitarity conditions.
A model class for the Standard Model.
A class for a model prediction of an observable.
unitarity00eveM_Z2(const StandardModel &SM_i)
unitarity00eveM_Z2 constructor.
unitarity00eveP_Z2(const StandardModel &SM_i)
unitarity00eveP_Z2 constructor.
unitarity00oddM_Z2(const StandardModel &SM_i)
unitarity00oddM_Z2 constructor.
unitarity00oddP_Z2(const StandardModel &SM_i)
unitarity00oddP_Z2 constructor.
unitarity01eveM_Z2(const StandardModel &SM_i)
unitarity01eveM_Z2 constructor.
unitarity01eveP_Z2(const StandardModel &SM_i)
unitarity01eveP_Z2 constructor.
unitarity01oddM_Z2(const StandardModel &SM_i)
unitarity01oddM_Z2 constructor.
unitarity01oddP_Z2(const StandardModel &SM_i)
unitarity01oddP_Z2 constructor.
unitarity10odd_Z2(const StandardModel &SM_i)
unitarity10odd_Z2 constructor.
unitarity11eveM_Z2(const StandardModel &SM_i)
unitarity11eveM_Z2 constructor.
unitarity11eveP_Z2(const StandardModel &SM_i)
unitarity11eveP_Z2 constructor.
unitarity11odd_Z2(const StandardModel &SM_i)
unitarity11odd_Z2 constructor.
An observable class for NLO perturbative unitarity conditions to the THDM with a Z2 symmetry.
unitarity_Z2(const StandardModel &SM_i)
unitarity_Z2 constructor.
gslpp::matrix< double > myZ2_at_Q
GeneralTHDMZ2Runner myGTHDM