a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models Logo
AmpDB2.h
Go to the documentation of this file.
1/*
2 * Copyright (C) 2012 HEPfit Collaboration
3 *
4 *
5 * For the licensing terms see doc/COPYING.
6 */
7
8#ifndef AMPDB2_H
9#define AMPDB2_H
10
11class StandardModel;
12#include "StandardModel.h"
13#include "OrderScheme.h"
14#include "gslpp.h"
15
36class AmpDB2
37{
38public:
44 AmpDB2(const StandardModel &SM_i, int BMeson_i, bool flag_fixmub = false, bool flag_RI = false);
45
51 gslpp::complex getM21(orders order)
52 {
53 if (BMeson == 0)
54 {
55 return M21_Bd(order);
56 }
57 else
58 {
59 return M21_Bs(order);
60 }
61 }
62
64 enum quark {d,s}; /*quark index i used for $B_i$*/
65 enum quarks {cc, cu, uu}; /*combinations of u- and c- quarks in diagrams */
66
73 gslpp::complex getGamma21overM21_tradBasis(orders order)
74 {
75 if (BMeson == 0)
76 {
77 return Gamma21overM21_tradBasis(order, d);
78 }
79 else
80 {
81 return Gamma21overM21_tradBasis(order, s);
82 }
83 }
84
91 gslpp::complex getGamma21overM21(orders order, mass_schemes mass_scheme = MSbar)
92 {
93 return Gamma21overM21(order, mass_scheme, BMeson);
94 }
95
96 gslpp::complex getPB()
97 {
98 if (BMeson == 0)
99 {
100 return PBd();
101 }
102 else
103 {
104 return PBs();
105 }
106 }
107 gslpp::complex getRB(orders order)
108 {
109 if (BMeson == 0)
110 {
111 return RBd(order);
112 }
113 else
114 {
115 return RBs(order);
116 }
117 }
118
119protected:
125 gslpp::complex M21_Bd(orders order);
126
132 gslpp::complex M21_Bs(orders order);
133
142 gslpp::complex Gamma21overM21(orders order, mass_schemes mass_scheme, int BMeson);
143
151 gslpp::complex Gamma21overM21_tradBasis(orders order, quark q);
152
158 gslpp::complex RBs(orders order);
164 gslpp::complex RBd(orders order);
165 gslpp::complex PBd();
166 gslpp::complex PBs();
167
168private:
171 int BMeson;
173 gslpp::complex C_1_SM;
175 // mathematical constants
176private:
177 //mathematical constants
178 const double M_PI2 = M_PI * M_PI;
179 const double M_PI3 = M_PI2 * M_PI;
180 const double M_PI4 = M_PI2 * M_PI2;
181 const double zeta2 = gslpp_special_functions::zeta(2);
182 const double zeta3 = gslpp_special_functions::zeta(3);
183 const double zeta4 = gslpp_special_functions::zeta(4);
184 const double zeta5 = gslpp_special_functions::zeta(5);
185 const double log2 = log(2);
186 const double log2_2 = log2 * log2;
187 const double log2_4 = log2_2 * log2_2;
188 const double log3 = log(3);
189 const double sqrt3 = sqrt(3);
190 const double sqrt5 = sqrt(5);
191 const double log12sqrt52 = log(0.5 + sqrt5 / 2.);
192 const double t_2 = -0.389011713; // Im(Dilog((3 - i*sqrt(3))/6)
193 const double Cl2PI3 = 1.014941606; // Clausen(2, Pi/3)
194 const double polylog4_12 = 0.517479062; //PolyLog[4, 1/2]
195
196 double mu_1; /*matching scale of DB=1 theory for leading order in 1/mb */
197 double mu_1_overm; /*matching scale of DB=1 theory for subleading order in 1/mb */
198 double mu_2; /*matching scale of DB=2 theory */
199 double mu_b; /*scale the running MSbar mass of the bottom quark */
200
201 gslpp::vector<double> me = gslpp::vector<double>(5, 0.); /*DB=2 matrix elements in SUSY basis (arXiv:1907.01025v2) */
202 gslpp::vector<double> meoverme0 = gslpp::vector<double>(3, 0.); /*DB=2 matrix elements me(1),me(2),me(3) */
203 gslpp::vector<double> me_R = gslpp::vector<double>(5, 0.); /*subleading DB=2 matrix elements R_0 to R_3 (Gerlach thesis) and R_4 (hep-ph/0308029v2) */
204 gslpp::vector<double> me_Rtilde = gslpp::vector<double>(3, 0.); /*subleading DB=2 matrix elements R_1 to R_3 (Gerlach thesis) */
205
206 // resummation to use z_bar instead of z and and eliminate z ln z terms (hep-ph/0612167)
208
209 // transformation matrix to switch to the RI scheme for the 5 matrix elements (hep-ph/0606197 eq. 5.10)
210 gslpp::matrix<double> meMStoRI;
211 // transformation matrix to switch to the RI scheme for the three DB=2 Wilson coefficients (hep-ph/0606197 eq. 5.10)
212 gslpp::matrix<double> coeffsMStoRI;
213 bool flag_fixmub; // flag to fix mu_b=mu_c to 4.2 GeV
214 bool flag_RI; // flag to signal if transformation to RI is applied
215
221 void computeCKMandMasses(orders order = NNLO, mass_schemes mass_scheme = MSbar);
222
229 void compute_matrixelements(quark q, orders order);
230
231 // returns position in our array parameterization of the corresponding coefficient function
232 int index_deltas(quarks qq, quark q);
233
234 // often used values
235 double Gf2;
236 double z;
237 double z2; //z^2
238 double z3; //z^3
239 double z4; //z^4
240 double sqrtz; //sqrt(z)
241 double logz; //log(z)
242 double log2z; //log(z^2)
243 double log1minusz; //log(1-z)
244 double log1minus4z; //log(1-4z)
245 double oneminusz2; //(1 - z)^2
246 double sqrt1minus4z; //(1-4z)^(1/2)
247 double sigma; //(1 - sqrt1minus4z)/(1 + sqrt1minus4z)
248 double logsigma; //log(sigma)
249 double log2sigma; //log^2(sigma)
250 double x_1; //mu_1/Mb
251 double x_2; //mu_2/Mb
252 double logx_1; //log(x_1)
253 double logx_2; //log(x_2)
254 double Dilogz; //Li_2(z)
255 double Dilogsigma; //Li_2(sigma)
256 double Dilogsigma2; //Li_2(sigma^2)
257 double as_4pi_mu1; //[alpha_s/(4Pi)](mu_1)
258 double as_4pi_mu2; //[alpha_s/(4Pi)](mu_2)
259 double as_4pi; //[alpha_s/(4Pi)](mb(mb))
260
261 // z for 1/mb corrections
262 double z_1overm;
263 double z_1overm2; // z^2
264 double oneminusz_1overm2; //(1 - z)^2
265 double sqrt1minus4z_1overm; //(1-4z)^(1/2)
266
267 double Md; // mass of the down quark in GeV
268 double Ms; // mass of the strange quark in GeV
269 double Mc; // mass of the charm quark in GeV
270 double Mb; // mass of the bottom quark in GeV
271 double MB; // mass of the $B_d$ meson in GeV
272 double MB_s; // mass of the $B_s$ meson in GeV
273 double Mb2_prefactor; // overall Mb^2 prefactor of @f$\Gamma_{21}@f$
274 double Mb2_prefactor_1overm; // Mb^2 prefactor of the 1/mb part of @f$\Gamma_{21}@f$
275 double Mb_Mb; // MSbar mass of bottom
276 double Mb_pole; // pole mass of bottom
277 double Mb_PS; // PS mass of bottom
278
279 // parameters to calculate the bottom quark mass in the PS scheme (hep-ph/9804241)
280 double mu_f = 2.;
281 double nl = 4.;
282 double a1 = 31./3. - 10./9. * nl;
283 double a2 = (4343./162. + 6.*M_PI2 - M_PI4/4. + 22./3. * zeta3) * 3. * 3. - (1798./81. + 56./3. * zeta3) * 3. * 0.5 * nl
284 - (55./3. - 16. * zeta3) * 4./3. * 0.5 * nl + 400./81. * 0.25 * nl * nl;
285 double b0 = 11. - 2. * nl/3.;
286 double b0_2 = b0 * b0;
287 double b1 = 102. - 38. * nl/3.;
288
289/********** DB=1 Wilson coefficients ************/
290
291
292 //Method to compute the DB=1 Wilson coefficients in the Buras basis to NNLO (arXiv:0401041)
294
295 //Method to compute the DB=1 Wilson coefficients in the Misiak basis to NNLO (hep-ph/9711280)
297
298 gslpp::complex cacheC[8] = { 0., 0., 0., 0., 0., 0., NAN, 0.}; /*FULLNNLO DB=1 Wilson coefficients C_i, i=1-6,8 */
299 gslpp::complex C_Misiak_LO[8] = { 0., 0., 0., 0., 0., 0., NAN, 0.}; /*LO DB=1 Wilson coefficients in Misiak basis C_i, i=1-6,8 */
300 gslpp::complex C_Misiak_NLO[8] = { 0., 0., 0., 0., 0., 0., NAN, 0.}; /*NLO DB=1 Wilson coefficients in Misiak basis C_i, i=1-6,8 */
301 gslpp::complex C_Misiak_NNLO[8] = { 0., 0., 0., 0., 0., 0., NAN, 0.}; /*NNLO DB=1 Wilson coefficients in Misiak basis C_i, i=1-6,8 */
302 gslpp::complex C_Buras_LO[8] = { 0., 0., 0., 0., 0., 0., NAN, 0.}; /*LO DB=1 Wilson coefficients in Buras basis C_i, i=1-6,8 */
303 gslpp::complex C_Buras_NLO[8] = { 0., 0., 0., 0., 0., 0., NAN, 0.}; /*NLO DB=1 Wilson coefficients in Buras basis C_i, i=1-6,8 */
304 gslpp::complex C_Buras_NNLO[8] = { 0., 0., 0., 0., 0., 0., NAN, 0.}; /*NNLO DB=1 Wilson coefficients in Buras basis C_i, i=1-6,8 */
305
306
307
308 /*******************************************************************************
309 * @f$\Gamma_{21}@f$ in NLO from Ciuchini (hep-ph/0308029v2) *
310 * ****************************************************************************/
311
312 //Values of the products of CKM elements
313 gslpp::complex VtbVtd;
314 gslpp::complex VtbVts;
315 gslpp::complex VtbVtd2;
316 gslpp::complex VtbVts2;
317 gslpp::complex VcbVcd;
318 gslpp::complex VcbVcs;
319 gslpp::complex VcbVcd2;
320 gslpp::complex VcbVcs2;
321
322 // values of coefficient functions needed for DB=2 Wilson coefficients (hep-ph/0308029v2)
323 double F0(quarks qq, int k, int i, int j);
324 double F1(quarks qq, int k, int i, int j);
325 double F(quarks qq, int k, int i, int j);
326 double P(quarks qq, int k, int i, int j);
327 gslpp::complex D(quarks qq, int k);
328
329 double cacheF0[24] = {0.};
330 double cacheF1[24] = {0.};
331 double cacheP[84] = {0.};
332 gslpp::complex cacheD[6] = {0.};
333
334 // Methods to compute coefficient functions needed for DB=2 Wilson coefficients (hep-ph/0308029v2)
335 void computeF0();
336 void computeF1(); // requires "F0"
337 void computeP();
338 void computeD(orders order); // requires "F" and "P"
339
340 // returns position in our array parameterization of the corresponding coefficient function
341 int indexF(quarks qq, int k, int i, int j);
342 int indexP(quarks qq, int k, int i, int j);
343 int indexD(quarks qq, int k);
344
352 gslpp::vector<gslpp::complex> c(quark q, orders order);
353
359 gslpp::complex delta_1overm_tradBasis(quark q);
360
361 // Values of the contributions to the 1/mb corrections of @f$\Gamma_{21}@f$ (hep-ph/0308029v2)
362 gslpp::complex deltas_1overm_tradBasis(quarks qq, quark q); // require computeCKMandMasses
363
364 gslpp::complex cache_deltas_1overm_tradBasis[6] = {0.};
365
366 // Method to compute the contributions to the 1/mb corrections of @f$\Gamma_{21}@f$ (hep-ph/0308029v2)
367 void compute_deltas_1overm_tradBasis(quark q); // require Wilson and computeCKMandMasses
368
369 /*******************************************************************************
370 * @f$\Gamma_{21}@f$ in NNLO from Marvin Gerlach (2205.07907 and thesis) *
371 * ****************************************************************************/
372
373 // Values of the products of CKM elements
374 gslpp::complex lambda_c_d; /* V_cd* V_cb */
375 gslpp::complex lambda_u_d; /* V_ud* V_ub */
376 gslpp::complex lambda_c_s; /* V_cs* V_cb */
377 gslpp::complex lambda_u_s; /* V_us* V_ub */
378
379 gslpp::vector<gslpp::complex> transformation(gslpp::vector< gslpp::complex > result, orders order);
380
381 //Values of DB=2 Wilson coefficients (Gerlach thesis)
382 gslpp::vector<gslpp::complex> c_H(quark q, orders order); //require compute_pp_s and Wilson coefficients in Misiak basis
383 gslpp::complex H(quarks qq, orders order); /*Values of contributions to the DB=2 Wilson coefficients for B_d (Gerlach thesis) */
384 gslpp::complex H_s(quarks qq, orders order); /*Values of contributions to the DB=2 Wilson coefficients for B_s (Gerlach thesis) */
385
386 // Values of DB=2 Wilson coefficients (Gerlach thesis) separated for
387 // C-12-12 (LO, NLO, NNLO), C-12-36 (LO, NLO), C-36-36 (LO, NLO),C-12-8 (LO, NLO), C-36-8 (LO, NLO), C-8-8 (LO)
388 gslpp::vector<gslpp::complex> c_H_partial(quark q, int i);
389 gslpp::vector<gslpp::complex> H_allpartial(quarks qq); /*Values of partial contributions to the DB=2 Wilson coefficients for B_d (Gerlach thesis) */
390 gslpp::vector<gslpp::complex> H_s_allpartial(quarks qq); /*Values of partial contributions to the DB=2 Wilson coefficients for B_s (Gerlach thesis) */
391 gslpp::complex H_partial(quarks qq, int i_start, int i_end, int j_start, int j_end, int n);
392 gslpp::complex H_s_partial(quarks qq, int i_start, int i_end, int j_start, int j_end, int n);
393
394 // Values of the coefficient functions needed for DB=2 Wilson coefficients (Gerlach thesis)
395 double p(quarks qq, int i, int j, int n, bool flag_LOz = false);
396 double p_s(quarks qq, int i, int j, int n, bool flag_LOz = false);
397 //double lastInput_compute_pp_s[4] = {NAN, NAN, NAN, NAN};
398
399 //Values of the coefficient functions needed for DB=2 Wilson coefficients (Gerlach thesis)
400 double cache_p[768] = { 0. };
401 double cache_ps[768] = { 0. };
402 //Values of the coefficient functions in LO in z needed for DB=2 Wilson coefficients (Gerlach thesis)
403 bool flag_LOz = true;
404 double cache_p_LO[576] = {0.};
405 double cache_ps_LO[576] = {0.};
406
407 // Method to compute coefficient functions needed for DB=2 Wilson coefficients (Gerlach thesis)
408 void compute_pp_s();
409
410 // returns position in our array parameterization of p and p_s
411 int index_p(quarks qq, int i, int j, int n);
412
413 // A Method to adapt the DB=2 coefficient functions for the MSbar scheme (2106.05979 eq. (33))
414 void poletoMSbar_pp_s();
416 //constants from hep-ph/9912391v2 eq. (11)
420 double PoletoMS_as2_z0; //0th order in z
421 double PoletoMS_as2_z1; //1st order in z
422
423 //A Method to adapt the DB=2 coefficient functions for the PS scheme (analog to 2106.05979 eq. (33))
424 void poletoPS_pp_s();
426 //constants from hep-ph/9804241v2 eq. (21)
430
431 //A Method to discard true NNLO contributions from the DB=1 and DB=2 Wilson coefficients (like with partialN3LO)
432 void compute_partialNNLO();
433
434
435 /*******************************************************************************
436 * 1/mb corrections of @f$\Gamma_{21}@f$ from Lenz (hep-ph/0612167) *
437 * ****************************************************************************/
438
444 gslpp::complex delta_1overm(quark q);
445
446 // Method to compute the contributions to the 1/mb corrections of @f$\Gamma_{21}@f$ (hep-ph/0612167)
448
449 // Values of the contributions to the 1/mb corrections of @f$\Gamma_{21}@f$ (hep-ph/0612167)
450 gslpp::complex deltas_1overm(quarks qq, quark q);
451
452 gslpp::complex cache_deltas_1overm[6] = {0.};
453
454 // A method to compute the coefficients for the 1/mb corrections of @f$\Gamma_{21}@f$ (hep-ph/0612167)
455 void compute_g();
456
457 // Values of the coefficients for the 1/mb corrections of @f$\Gamma_{21}@f$ (hep-ph/0612167)
458 gslpp::complex g(quarks qq, int i);
459 gslpp::complex gtilde(quarks qq, int i);
460 gslpp::complex cacheg[12] = {0.};
461 gslpp::complex cachegtilde[12] = {0.};
462
463 // returns position in our array parameterization of the corresponding coefficient function
464 int indexg(quarks qq, int i);
465
466 //LO DB=1 Wilson coefficients for 1/mb corrections
467 gslpp::complex C1_LO_1overm;
468 gslpp::complex C2_LO_1overm;
469 //combinations of LO DB=1 Wilson coefficients
470 gslpp::complex K_1; //3*C_1^2 + 2*C_1 * C_2
471 gslpp::complex K_2; //C_2^2
472};
473
478#endif /* AMPDB2_H */
@ NNLO
Definition: OrderScheme.h:36
Amplitude Class
Definition: AmpDB2.h:37
gslpp::vector< double > me
Definition: AmpDB2.h:201
int index_deltas(quarks qq, quark q)
Definition: AmpDB2.cpp:980
double PoletoMS_as1
Definition: AmpDB2.h:417
gslpp::complex deltas_1overm(quarks qq, quark q)
Definition: AmpDB2.cpp:974
double mu_f
Definition: AmpDB2.h:280
double Mb2_prefactor
Definition: AmpDB2.h:273
gslpp::complex C1_LO_1overm
Definition: AmpDB2.h:467
gslpp::vector< gslpp::complex > c_H(quark q, orders order)
Definition: AmpDB2.cpp:1188
gslpp::complex VcbVcd2
Definition: AmpDB2.h:319
double Ms
Definition: AmpDB2.h:268
gslpp::complex getGamma21overM21_tradBasis(orders order)
The value of in the traditional basis.
Definition: AmpDB2.h:73
double cacheP[84]
Definition: AmpDB2.h:331
gslpp::complex getRB(orders order)
Definition: AmpDB2.h:107
double p(quarks qq, int i, int j, int n, bool flag_LOz=false)
Definition: AmpDB2.cpp:1427
double z4
Definition: AmpDB2.h:239
gslpp::matrix< double > meMStoRI
Definition: AmpDB2.h:210
void computeCKMandMasses(orders order=NNLO, mass_schemes mass_scheme=MSbar)
A method to compute CKM elements, quark masses and alpha_s.
Definition: AmpDB2.cpp:317
double Mc
Definition: AmpDB2.h:269
double z
Definition: AmpDB2.h:236
void compute_deltas_1overm(quark q)
Definition: AmpDB2.cpp:1006
gslpp::complex lambda_u_d
Definition: AmpDB2.h:375
void poletoPS_pp_s()
Definition: AmpDB2.cpp:2372
double sigma
Definition: AmpDB2.h:247
const double zeta2
Definition: AmpDB2.h:181
gslpp::vector< gslpp::complex > H_allpartial(quarks qq)
Definition: AmpDB2.cpp:1295
double Mb2_prefactor_1overm
Definition: AmpDB2.h:274
gslpp::complex Gamma21overM21_tradBasis(orders order, quark q)
A method to compute in the traditional basis @detail source: Ciuchini (hep-ph/0308029v2)
Definition: AmpDB2.cpp:256
gslpp::complex M21_Bd(orders order)
A method to compute .
Definition: AmpDB2.cpp:163
double PoletoPS_as1
Definition: AmpDB2.h:427
gslpp::vector< double > me_R
Definition: AmpDB2.h:203
int indexF(quarks qq, int k, int i, int j)
Definition: AmpDB2.cpp:764
const double log2_2
Definition: AmpDB2.h:186
void compute_pp_s()
Definition: AmpDB2.cpp:1457
double cache_p[768]
Definition: AmpDB2.h:400
double log1minusz
Definition: AmpDB2.h:243
double MB_s
Definition: AmpDB2.h:272
gslpp::complex cache_deltas_1overm[6]
Definition: AmpDB2.h:452
double mu_1_overm
Definition: AmpDB2.h:197
double a1
Definition: AmpDB2.h:282
double sqrtz
Definition: AmpDB2.h:240
double b0
Definition: AmpDB2.h:285
double Mb_pole
Definition: AmpDB2.h:276
double F1(quarks qq, int k, int i, int j)
Definition: AmpDB2.cpp:748
const double sqrt5
Definition: AmpDB2.h:190
int indexP(quarks qq, int k, int i, int j)
Definition: AmpDB2.cpp:769
double z_1overm
Definition: AmpDB2.h:262
quarks
Definition: AmpDB2.h:65
@ cc
Definition: AmpDB2.h:65
@ cu
Definition: AmpDB2.h:65
@ uu
Definition: AmpDB2.h:65
double mu_2
Definition: AmpDB2.h:198
double log1minus4z
Definition: AmpDB2.h:244
gslpp::complex cacheC[8]
Definition: AmpDB2.h:298
gslpp::complex getM21(orders order)
The value of for mesons.
Definition: AmpDB2.h:51
double PoletoMS_as3
Definition: AmpDB2.h:419
double F(quarks qq, int k, int i, int j)
Definition: AmpDB2.cpp:753
gslpp::complex C_Misiak_NLO[8]
Definition: AmpDB2.h:300
double b0_2
Definition: AmpDB2.h:286
void computeF0()
Definition: AmpDB2.cpp:490
double PoletoMS_as2
Definition: AmpDB2.h:418
void compute_partialNNLO()
Definition: AmpDB2.cpp:2562
gslpp::complex PBd()
Definition: AmpDB2.cpp:2589
gslpp::complex g(quarks qq, int i)
Definition: AmpDB2.cpp:1063
double PoletoMS_as2_z0
Definition: AmpDB2.h:420
double as_4pi
Definition: AmpDB2.h:259
double oneminusz_1overm2
Definition: AmpDB2.h:264
double Dilogz
Definition: AmpDB2.h:254
double cache_ps[768]
Definition: AmpDB2.h:401
const double log2_4
Definition: AmpDB2.h:187
gslpp::complex delta_1overm(quark q)
Value of 1/mb corrections of (hep-ph/0612167)
Definition: AmpDB2.cpp:985
gslpp::complex K_2
Definition: AmpDB2.h:471
gslpp::complex H_s_partial(quarks qq, int i_start, int i_end, int j_start, int j_end, int n)
Definition: AmpDB2.cpp:1379
gslpp::complex C_Misiak_LO[8]
Definition: AmpDB2.h:299
const double zeta4
Definition: AmpDB2.h:183
gslpp::complex M21_Bs(orders order)
A method to compute .
Definition: AmpDB2.cpp:209
bool flag_resumz
Definition: AmpDB2.h:207
const double M_PI3
Definition: AmpDB2.h:179
double PoletoPS_as3
Definition: AmpDB2.h:429
double sqrt1minus4z_1overm
Definition: AmpDB2.h:265
double F0(quarks qq, int k, int i, int j)
Definition: AmpDB2.cpp:743
gslpp::complex H(quarks qq, orders order)
Definition: AmpDB2.cpp:1232
double logx_2
Definition: AmpDB2.h:253
double z2
Definition: AmpDB2.h:237
gslpp::complex PBs()
Definition: AmpDB2.cpp:2614
gslpp::complex VcbVcs
Definition: AmpDB2.h:318
const StandardModel & mySM
Definition: AmpDB2.h:169
gslpp::complex cachegtilde[12]
Definition: AmpDB2.h:461
double Md
Definition: AmpDB2.h:267
double P(quarks qq, int k, int i, int j)
Definition: AmpDB2.cpp:758
gslpp::complex H_partial(quarks qq, int i_start, int i_end, int j_start, int j_end, int n)
Definition: AmpDB2.cpp:1331
gslpp::complex cacheg[12]
Definition: AmpDB2.h:460
double logsigma
Definition: AmpDB2.h:248
gslpp::complex C_Buras_LO[8]
Definition: AmpDB2.h:302
gslpp::complex cacheD[6]
Definition: AmpDB2.h:332
gslpp::complex gtilde(quarks qq, int i)
Definition: AmpDB2.cpp:1068
double cacheF1[24]
Definition: AmpDB2.h:330
double Mb_PS
Definition: AmpDB2.h:277
double sqrt1minus4z
Definition: AmpDB2.h:246
gslpp::complex lambda_c_s
Definition: AmpDB2.h:376
void compute_g()
Definition: AmpDB2.cpp:1025
const double sqrt3
Definition: AmpDB2.h:189
double PoletoMS_as2_z1
Definition: AmpDB2.h:421
void computeD(orders order)
Definition: AmpDB2.cpp:640
double MB
Definition: AmpDB2.h:271
void computeP()
Definition: AmpDB2.cpp:588
void poletoMSbar_pp_s_partialN3LO()
Definition: AmpDB2.cpp:2426
double mu_b
Definition: AmpDB2.h:199
double logz
Definition: AmpDB2.h:241
int BMeson
Definition: AmpDB2.h:171
double Gf2
Definition: AmpDB2.h:235
double logx_1
Definition: AmpDB2.h:252
double as_4pi_mu2
Definition: AmpDB2.h:258
void poletoPS_pp_s_partialN3LO()
Definition: AmpDB2.cpp:2502
bool flag_LOz
Definition: AmpDB2.h:403
const double polylog4_12
Definition: AmpDB2.h:194
double x_1
Definition: AmpDB2.h:250
gslpp::complex VtbVtd
Definition: AmpDB2.h:313
int index_p(quarks qq, int i, int j, int n)
Definition: AmpDB2.cpp:1452
gslpp::complex lambda_c_d
Definition: AmpDB2.h:374
double z3
Definition: AmpDB2.h:238
gslpp::complex VcbVcd
Definition: AmpDB2.h:317
double x_2
Definition: AmpDB2.h:251
double Dilogsigma2
Definition: AmpDB2.h:256
double PoletoPS_as2
Definition: AmpDB2.h:428
gslpp::complex VcbVcs2
Definition: AmpDB2.h:320
gslpp::complex C_Buras_NNLO[8]
Definition: AmpDB2.h:304
double Mb
Definition: AmpDB2.h:270
mass_schemes
Definition: AmpDB2.h:63
@ MSbar_partialN3LO
Definition: AmpDB2.h:63
@ MSbar
Definition: AmpDB2.h:63
@ PS
Definition: AmpDB2.h:63
@ PS_partialN3LO
Definition: AmpDB2.h:63
@ pole
Definition: AmpDB2.h:63
@ MSbar_partialNNLO
Definition: AmpDB2.h:63
@ only1overmb
Definition: AmpDB2.h:63
@ PS_partialNNLO
Definition: AmpDB2.h:63
double Dilogsigma
Definition: AmpDB2.h:255
const double log3
Definition: AmpDB2.h:188
double z_1overm2
Definition: AmpDB2.h:263
const double zeta5
Definition: AmpDB2.h:184
gslpp::complex C2_LO_1overm
Definition: AmpDB2.h:468
gslpp::complex getPB()
Definition: AmpDB2.h:96
double Mb_Mb
Definition: AmpDB2.h:275
quark
Definition: AmpDB2.h:64
@ d
Definition: AmpDB2.h:64
gslpp::complex delta_1overm_tradBasis(quark q)
Value of 1/mb corrections of (hep-ph/0308029v2)
Definition: AmpDB2.cpp:945
AmpDB2(const StandardModel &SM_i, int BMeson_i, bool flag_fixmub=false, bool flag_RI=false)
Constructor.
Definition: AmpDB2.cpp:13
const double Cl2PI3
Definition: AmpDB2.h:193
double cache_ps_LO[576]
Definition: AmpDB2.h:405
gslpp::complex Gamma21overM21(orders order, mass_schemes mass_scheme, int BMeson)
A method to compute @detail source: Marvin Gerlach (2205.07907 and thesis) with 1/mb corrections fro...
Definition: AmpDB2.cpp:1082
gslpp::vector< gslpp::complex > transformation(gslpp::vector< gslpp::complex > result, orders order)
double cacheF0[24]
Definition: AmpDB2.h:329
gslpp::complex RBs(orders order)
A method to compute the ratio of the absolute value of the $B_s$ mixing amplitude over the Standard M...
Definition: AmpDB2.cpp:57
gslpp::complex RBd(orders order)
A method to compute the ratio of the absolute value of the $B_d$ mixing amplitude over the Standard M...
Definition: AmpDB2.cpp:110
gslpp::complex D(quarks qq, int k)
Definition: AmpDB2.cpp:926
double b1
Definition: AmpDB2.h:287
const double t_2
Definition: AmpDB2.h:192
void computeWilsonCoeffsBuras()
Definition: AmpDB2.cpp:467
double as_4pi_mu1
Definition: AmpDB2.h:257
int indexD(quarks qq, int k)
Definition: AmpDB2.cpp:932
int indexg(quarks qq, int i)
Definition: AmpDB2.cpp:1073
gslpp::complex deltas_1overm_tradBasis(quarks qq, quark q)
Definition: AmpDB2.cpp:969
gslpp::complex lambda_u_s
Definition: AmpDB2.h:377
gslpp::complex C_Buras_NLO[8]
Definition: AmpDB2.h:303
const double M_PI4
Definition: AmpDB2.h:180
gslpp::complex VtbVtd2
Definition: AmpDB2.h:315
gslpp::vector< double > me_Rtilde
Definition: AmpDB2.h:204
double log2z
Definition: AmpDB2.h:242
const double log12sqrt52
Definition: AmpDB2.h:191
double a2
Definition: AmpDB2.h:283
gslpp::matrix< double > coeffsMStoRI
Definition: AmpDB2.h:212
void computeF1()
Definition: AmpDB2.cpp:523
gslpp::complex cache_deltas_1overm_tradBasis[6]
Definition: AmpDB2.h:364
void compute_matrixelements(quark q, orders order)
A method to compute all DB=2 Wilson coefficients (me, me_R, me_Rtilde)
Definition: AmpDB2.cpp:774
double oneminusz2
Definition: AmpDB2.h:245
double p_s(quarks qq, int i, int j, int n, bool flag_LOz=false)
Definition: AmpDB2.cpp:1439
const double log2
Definition: AmpDB2.h:185
gslpp::complex VtbVts2
Definition: AmpDB2.h:316
gslpp::vector< gslpp::complex > c(quark q, orders order)
Values of DB=2 Wilson coefficients from (hep-ph/0308029v2) transformed to the new basis.
Definition: AmpDB2.cpp:875
double mu_1
Definition: AmpDB2.h:196
const double zeta3
Definition: AmpDB2.h:182
gslpp::complex H_s(quarks qq, orders order)
Definition: AmpDB2.cpp:1248
const double M_PI2
Definition: AmpDB2.h:178
double cache_p_LO[576]
Definition: AmpDB2.h:404
gslpp::vector< double > meoverme0
Definition: AmpDB2.h:202
gslpp::complex VtbVts
Definition: AmpDB2.h:314
gslpp::complex C_1_SM
Definition: AmpDB2.h:173
gslpp::vector< gslpp::complex > c_H_partial(quark q, int i)
Definition: AmpDB2.cpp:1265
bool flag_fixmub
Definition: AmpDB2.h:213
gslpp::vector< gslpp::complex > H_s_allpartial(quarks qq)
Definition: AmpDB2.cpp:1313
double log2sigma
Definition: AmpDB2.h:249
double nl
Definition: AmpDB2.h:281
void computeWilsonCoeffsMisiak()
Definition: AmpDB2.cpp:1173
bool flag_RI
Definition: AmpDB2.h:214
void poletoMSbar_pp_s()
Definition: AmpDB2.cpp:2324
gslpp::complex C_Misiak_NNLO[8]
Definition: AmpDB2.h:301
gslpp::complex getGamma21overM21(orders order, mass_schemes mass_scheme=MSbar)
The value of from Gerlach (2205.07907 and thesis)
Definition: AmpDB2.h:91
gslpp::complex K_1
Definition: AmpDB2.h:470
void compute_deltas_1overm_tradBasis(quark q)
Definition: AmpDB2.cpp:960
A model class for the Standard Model.
Test Observable.
orders
An enum type for orders in QCD.
Definition: OrderScheme.h:33