12:
RGEvolutor(dim_i, scheme, order, order_qed), model(model), V(dim_i, 0.),
Vi(dim_i, 0.),
13gs(dim_i, 0.), Js(dim_i, 0.), ge0(dim_i, 0.), K0(dim_i, 0.), ge11(dim_i, 0.), K11(dim_i, 0.),
14JsK0V(dim_i, 0.), ViK0Js(dim_i, 0.), Gamma_s0T(dim_i, 0.), Gamma_s1T(dim_i, 0.),
15Gamma_eT(dim_i, 0.), Gamma_seT(dim_i, 0.), JsV(dim_i, 0.), ViJs(dim_i, 0.), K0V(dim_i, 0.),
16ViK0(dim_i, 0.), ge0sing(dim_i, 0.), K0sing(dim_i, 0.), K0singV(dim_i, 0.), K11V(dim_i, 0.),
17ViK11(dim_i, 0.), ge11sing(dim_i, 0.), K11sing(dim_i, 0.),K11singV(dim_i, 0.),
18JsK0singV(dim_i, 0.), e(dim_i, 0.), dim(dim_i)
22 double b0 = 0., b1 = 0.;
25 for (
int L = 3; L>-1; L--) {
56 for (
unsigned int i = 0; i <
dim; i++) {
57 a[L][i] =
e(i).real() / 2. / b0;
58 for (
unsigned int j = 0; j <
dim; j++) {
59 for (
unsigned int k = 0; k <
dim; k++) {
60 b[L][i][j][k] =
V(i, k).real() *
Vi(k, j).real();
66 for (
unsigned int i = 0; i <
dim; i++) {
67 for (
unsigned int j = 0; j <
dim; j++) {
68 gs.assign(i, j,
gs(i, j) / (1. +
a[L][i] -
a[L][j]));
76 for (
unsigned int i = 0; i <
dim; i++) {
77 for (
unsigned int j = 0; j <
dim; j++) {
78 for (
unsigned int k = 0; k <
dim; k++) {
79 c[L][i][j][k] =
JsV(i, k).real() *
Vi(k, j).real();
80 d[L][i][j][k] = -
V(i, k).real() *
ViJs(k, j).real();
86 for (
unsigned int i = 0; i <
dim; i++) {
87 for (
unsigned int j = 0; j <
dim; j++) {
88 if (fabs(
a[L][j] + 1. -
a[L][i]) > 0.00000000001) {
89 ge0.assign(i, j,
ge0(i, j) / (1. -
a[L][i] +
a[L][j]));
103 for (
unsigned int i = 0; i <
dim; i++) {
104 for (
unsigned int j = 0; j <
dim; j++) {
105 for (
unsigned int k = 0; k <
dim; k++) {
106 m[L][i][j][k] =
K0V(i, k).real() *
Vi(k, j).real();
107 n[L][i][j][k] = -
V(i, k).real() *
ViK0(k, j).real();
108 mn[L][i][j][k] =
K0singV(i, k).real() *
Vi(k, j).real();
116 for (
unsigned int i = 0; i <
dim; i++) {
117 for (
unsigned int j = 0; j <
dim; j++) {
118 if (fabs(
a[L][j] -
a[L][i]) > 0.00000000001) {
119 ge11.assign(i, j,
ge11(i, j) / (2. * b0 * (
a[L][j] -
a[L][i])));
122 ge11.assign(i, j, 0.);
132 for (
unsigned int i = 0; i <
dim; i++) {
133 for (
unsigned int j = 0; j <
dim; j++) {
134 for (
unsigned int k = 0; k <
dim; k++) {
135 o[L][i][j][k] =
K11V(i, k).real() *
Vi(k, j).real();
136 p[L][i][j][k] = -
V(i, k).real() *
ViK11(k, j).real();
137 op[L][i][j][k] =
K11singV(i, k).real() *
Vi(k, j).real();
146 for (
unsigned int i = 0; i <
dim; i++) {
147 for (
unsigned int j = 0; j <
dim; j++) {
148 for (
unsigned int k = 0; k <
dim; k++) {
149 q[L][i][j][k] =
JsK0V(i, k).real() *
Vi(k, j).real();
150 r[L][i][j][k] =
V(i, k).real() *
ViK0Js(k, j).real();
151 s[L][i][j][k] = -
JsV(i, k).real() *
ViK0(k, j).real();
152 t[L][i][j][k] = -
K0V(i, k).real() *
ViJs(k, j).real();
172 unsigned int nf = n_u + n_d;
173 gslpp::matrix<double> gammaDF1(
dim, 0.);
179 gammaDF1(0, 0) = -2.;
184 gammaDF1(1, 1) = -2.;
185 gammaDF1(1, 2) = -2. / 9.;
186 gammaDF1(1, 3) = 2. / 3.;
187 gammaDF1(1, 4) = -2. / 9.;
188 gammaDF1(1, 5) = 2. / 3.;
190 gammaDF1(2, 2) = -22. / 9.;
191 gammaDF1(2, 3) = 22. / 3.;
192 gammaDF1(2, 4) = -4. / 9.;
193 gammaDF1(2, 5) = 4. / 3.;
195 gammaDF1(3, 2) = 6. - 2. / 9. * nf;
196 gammaDF1(3, 3) = -2. + 2. / 3. * nf;
197 gammaDF1(3, 4) = -2. / 9. * nf;
198 gammaDF1(3, 5) = 2. / 3. * nf;
201 gammaDF1(4, 5) = -6.;
203 gammaDF1(5, 2) = -2. / 9. * nf;
204 gammaDF1(5, 3) = 2. / 3. * nf;
205 gammaDF1(5, 4) = -2. / 9. * nf;
206 gammaDF1(5, 5) = -16. + 2. / 3. * nf;
209 gammaDF1(6, 7) = -6.;
211 gammaDF1(7, 2) = -2. / 9. * (n_u - n_d / 2.);
212 gammaDF1(7, 3) = 2. / 3. * (n_u - n_d / 2.);
213 gammaDF1(7, 4) = -2. / 9. * (n_u - n_d / 2.);
214 gammaDF1(7, 5) = 2. / 3. * (n_u - n_d / 2.);
215 gammaDF1(7, 7) = -16.;
217 gammaDF1(8, 2) = 2. / 9.;
218 gammaDF1(8, 3) = -2. / 3.;
219 gammaDF1(8, 4) = 2. / 9.;
220 gammaDF1(8, 5) = -2. / 3.;
221 gammaDF1(8, 8) = -2.;
224 gammaDF1(9, 2) = -2. / 9. * (n_u - n_d / 2.);
225 gammaDF1(9, 3) = 2. / 3. * (n_u - n_d / 2.);
226 gammaDF1(9, 4) = -2. / 9. * (n_u - n_d / 2.);
227 gammaDF1(9, 5) = 2. / 3. * (n_u - n_d / 2.);
229 gammaDF1(9, 9) = -2.;
235 if (!(nf == 3 || nf == 4 || nf == 5 || nf == 6)) {
236 throw std::runtime_error(
"EvolDF1nlep::AnomalousDimension_nlep_S("
237 "orders order, unsigned int n_u, unsigned int n_d) " " wrong number of flavour");
242 gammaDF1(0, 0) = -21. / 2. - 2. / 9. * nf;
243 gammaDF1(0, 1) = 7. / 2. + 2. / 3. * nf;
244 gammaDF1(0, 2) = 79. / 9.;
245 gammaDF1(0, 3) = -7. / 3.;
246 gammaDF1(0, 4) = -65. / 9.;
247 gammaDF1(0, 5) = -7. / 3.;
250 gammaDF1(1, 0) = 7. / 2. + 2. / 3. * nf;
251 gammaDF1(1, 1) = -21. / 2. - 2. / 9. * nf;
252 gammaDF1(1, 2) = -202. / 243.;
253 gammaDF1(1, 3) = 1354. / 81.;
254 gammaDF1(1, 4) = -1192. / 243.;
255 gammaDF1(1, 5) = 904. / 81.;
257 gammaDF1(2, 2) = -5911. / 486. + 71. / 9. * nf;
258 gammaDF1(2, 3) = 5983. / 162. + 1. / 3. * nf;
259 gammaDF1(2, 4) = -2384. / 243. - 71. / 9. * nf;
260 gammaDF1(2, 5) = 1808. / 81. - 1. / 3. * nf;
262 gammaDF1(3, 2) = 379. / 18. + 56. / 243. * nf;
263 gammaDF1(3, 3) = -91. / 6. + 808. / 81. * nf;
264 gammaDF1(3, 4) = -130. / 9. - 502. / 243. * nf;
265 gammaDF1(3, 5) = -14. / 3. + 646. / 81. * nf;
267 gammaDF1(4, 2) = -61. / 9. * nf;
268 gammaDF1(4, 3) = -11. / 3. * nf;
269 gammaDF1(4, 4) = 71. / 3. + 61. / 9. * nf;
270 gammaDF1(4, 5) = -99. + 11. / 3. * nf;
272 gammaDF1(5, 2) = -682. / 243. * nf;
273 gammaDF1(5, 3) = 106. / 81. * nf;
274 gammaDF1(5, 4) = -225. / 2. + 1676. / 243. * nf;
275 gammaDF1(5, 5) = -1343. / 6. + 1348. / 81. * nf;
277 gammaDF1(6, 2) = -61. / 9. * (n_u - n_d / 2.);
278 gammaDF1(6, 3) = -11. / 3. * (n_u - n_d / 2.);
279 gammaDF1(6, 4) = 83. / 9. * (n_u - n_d / 2.);
280 gammaDF1(6, 5) = -11. / 3. * (n_u - n_d / 2.);
281 gammaDF1(6, 6) = 71. / 3. - 22. / 9. * nf;
282 gammaDF1(6, 7) = -99. + 22. / 3. * nf;
284 gammaDF1(7, 2) = -682. / 243. * (n_u - n_d / 2.);
285 gammaDF1(7, 3) = 106. / 81. * (n_u - n_d / 2.);
286 gammaDF1(7, 4) = 704. / 243. * (n_u - n_d / 2.);
287 gammaDF1(7, 5) = 736. / 81. * (n_u - n_d / 2.);
288 gammaDF1(7, 6) = -225. / 2. + 4 * nf;
289 gammaDF1(7, 7) = -1343. / 6. + 68. / 9. * nf;
291 gammaDF1(8, 2) = 202. / 243. + 73. / 9. * (n_u - n_d / 2.);
292 gammaDF1(8, 3) = -1354. / 81. - 1. / 3. * (n_u - n_d / 2.);
293 gammaDF1(8, 4) = 1192. / 243. - 71. / 9. * (n_u - n_d / 2.);
294 gammaDF1(8, 5) = -904. / 81. - 1. / 3. * (n_u - n_d / 2.);
295 gammaDF1(8, 8) = -21. / 2. - 2. / 9. * nf;
296 gammaDF1(8, 9) = 7. / 2. + 2. / 3. * nf;
298 gammaDF1(9, 2) = -79. / 9. - 106. / 243. * (n_u - n_d / 2.);
299 gammaDF1(9, 3) = 7. / 3. + 826. / 81. * (n_u - n_d / 2.);
300 gammaDF1(9, 4) = 65. / 9. - 502. / 243. * (n_u - n_d / 2.);
301 gammaDF1(9, 5) = 7. / 3. + 646. / 81. * (n_u - n_d / 2.);
302 gammaDF1(9, 8) = 7. / 2. + 2. / 3. * nf;
303 gammaDF1(9, 9) = -21. / 2. - 2. / 9. * nf;
308 std::stringstream out;
310 throw std::runtime_error(
"EvolDF1nlep::AnomalousDimension_nlep_S("
311 "orders order, unsigned int n_u, unsigned int n_d) "
312 + out.str() +
" not implemented");
325 unsigned int nf = n_u + n_d;
326 gslpp::matrix<double> gammaDF1(
dim, 0.);
332 gammaDF1(0, 0) = -8. / 3.;
333 gammaDF1(0, 6) = 16. / 9.;
334 gammaDF1(0, 8) = 16. / 9.;
336 gammaDF1(1, 1) = -8. / 3.;
337 gammaDF1(1, 6) = 16. / 27.;
338 gammaDF1(1, 8) = 16. / 27.;
340 gammaDF1(2, 6) = -16. / 27. + 16. / 9. * (n_u - n_d / 2.);
341 gammaDF1(2, 8) = -88. / 27. + 16. / 9. * (n_u - n_d / 2.);
343 gammaDF1(3, 6) = -16. / 9. + 16. / 27. * (n_u - n_d / 2.);
344 gammaDF1(3, 8) = -16. / 9. + 16. / 27. * (n_u - n_d / 2.);
345 gammaDF1(3, 9) = -8. / 3.;
347 gammaDF1(4, 6) = 8. / 3. + 16. / 9. * (n_u - n_d / 2.);
348 gammaDF1(4, 8) = 16. / 9. * (n_u - n_d / 2.);
350 gammaDF1(5, 6) = 16. / 27. * (n_u - n_d / 2.);
351 gammaDF1(5, 7) = 8. / 3.;
352 gammaDF1(5, 8) = 16. / 27. * (n_u - n_d / 2.);
354 gammaDF1(6, 4) = 4. / 3.;
355 gammaDF1(6, 6) = 4. / 3. + 16. / 9. * (n_u + n_d / 4.);
356 gammaDF1(6, 8) = 16. / 9. * (n_u + n_d / 4.);
358 gammaDF1(7, 5) = 4. / 3.;
359 gammaDF1(7, 6) = 16. / 27. * (n_u + n_d / 4.);
360 gammaDF1(7, 7) = 4. / 3.;
361 gammaDF1(7, 8) = 16. / 27. * (n_u + n_d / 4.);
363 gammaDF1(8, 2) = -4. / 3.;
364 gammaDF1(8, 6) = 8. / 27. + 16. / 9. * (n_u + n_d / 4.);
365 gammaDF1(8, 8) = -28. / 27. + 16. / 9. * (n_u + n_d / 4.);
367 gammaDF1(9, 3) = -4. / 3.;
368 gammaDF1(9, 6) = 8. / 9. + 16. / 27. * (n_u + n_d / 4.);
369 gammaDF1(9, 8) = 8. / 9. + 16. / 27. * (n_u + n_d / 4.);
370 gammaDF1(9, 9) = -4. / 3.;
376 if (!(nf == 3 || nf == 4 || nf == 5 || nf == 6)) {
377 throw std::runtime_error(
"EvolDF1nlep::AnomalousDimension_nlep_EM("
378 "orders order, unsigned int n_u, unsigned int n_d) " " wrong number of flavour");
383 gammaDF1(0, 0) = 194. / 9.;
384 gammaDF1(0, 1) = -2. / 3.;
385 gammaDF1(0, 2) = -88. / 243.;
386 gammaDF1(0, 3) = 88. / 81.;
387 gammaDF1(0, 4) = -88. / 243.;
388 gammaDF1(0, 5) = 88. / 81.;
389 gammaDF1(0, 6) = 152. / 27.;
390 gammaDF1(0, 7) = 40. / 9.;
391 gammaDF1(0, 8) = 136. / 27.;
392 gammaDF1(0, 9) = 56. / 9.;
394 gammaDF1(1, 0) = 25. / 3.;
395 gammaDF1(1, 1) = -49. / 9.;
396 gammaDF1(1, 2) = -556. / 729.;
397 gammaDF1(1, 3) = 556. / 243.;
398 gammaDF1(1, 4) = -556. / 729.;
399 gammaDF1(1, 5) = 556. / 243.;
400 gammaDF1(1, 6) = -484. / 729.;
401 gammaDF1(1, 7) = -124. / 27.;
402 gammaDF1(1, 8) = -3148. / 729.;
403 gammaDF1(1, 9) = 172. / 27.;
405 gammaDF1(2, 2) = 1690. / 729. - 136. / 243. * (n_u - n_d / 2.);
406 gammaDF1(2, 3) = -1690. / 243. + 136. / 81. * (n_u - n_d / 2.);
407 gammaDF1(2, 4) = 232. / 729. - 136. / 243. * (n_u - n_d / 2.);
408 gammaDF1(2, 5) = -232. / 243. + 136. / 81. * (n_u - n_d / 2.);
409 gammaDF1(2, 6) = 3136. / 729. + 104. / 27. * (n_u - n_d / 2.);
410 gammaDF1(2, 7) = 64. / 27. + 88. / 9. * (n_u - n_d / 2.);
411 gammaDF1(2, 8) = 20272. / 729. + 184. / 27. * (n_u - n_d / 2.);
412 gammaDF1(2, 9) = -112. / 27. + 8. / 9. * (n_u - n_d / 2.);
414 gammaDF1(3, 2) = -641. / 243. - 388. / 729. * n_u + 32. / 729. * n_d;
415 gammaDF1(3, 3) = -655. / 81. + 388. / 243. * n_u - 32. / 243. * n_d;
416 gammaDF1(3, 4) = 88. / 243. - 388. / 729 * n_u + 32. / 729. * n_d;
417 gammaDF1(3, 5) = -88. / 81. + 388. / 243. * n_u - 32. / 243. * n_d;
418 gammaDF1(3, 6) = -152. / 27. + 3140. / 729. * n_u + 656. / 729. * n_d;
419 gammaDF1(3, 7) = -40. / 9. - 100. / 27. * n_u - 16. / 27. * n_d;
420 gammaDF1(3, 8) = 170. / 27. + 908. / 729. * n_u + 1232. / 729. * n_d;
421 gammaDF1(3, 9) = -14. / 3. + 148. / 27. * n_u - 80. / 27 * n_d;
423 gammaDF1(4, 2) = -136. / 243. * (n_u - n_d / 2.);
424 gammaDF1(4, 3) = 136. / 81. * (n_u - n_d / 2.);
425 gammaDF1(4, 4) = -2. - 136. / 243. * (n_u - n_d / 2.);
426 gammaDF1(4, 5) = 6. + 136. / 81. * (n_u - n_d / 2.);
427 gammaDF1(4, 6) = -232. / 9. + 104. / 27. * (n_u - n_d / 2.);
428 gammaDF1(4, 7) = 40. / 3. + 88. / 9. * (n_u - n_d / 2.);
429 gammaDF1(4, 8) = 184. / 27. * (n_u - n_d / 2.);
430 gammaDF1(4, 9) = 8. / 9. * (n_u - n_d / 2.);
432 gammaDF1(5, 2) = -748. / 729. * n_u + 212. / 729. * n_d;
433 gammaDF1(5, 3) = 748. / 243. * n_u - 212. / 243. * n_d;
434 gammaDF1(5, 4) = 3. - 748. / 729. * n_u + 212. / 729. * n_d;
435 gammaDF1(5, 5) = 7. + 748. / 243. * n_u - 212. / 243. * n_d;
436 gammaDF1(5, 6) = -2. - 5212. / 729. * n_u + 4832. / 729. * n_d;
437 gammaDF1(5, 7) = 182. / 9. + 188. / 27. * n_u - 160. / 27. * n_d;
438 gammaDF1(5, 8) = -2260. / 729. * n_u + 2816. / 729. * n_d;
439 gammaDF1(5, 9) = -140. / 27. * n_u + 64. / 27. * n_d;
441 gammaDF1(6, 2) = -136. / 243. * (n_u + n_d / 4.);
442 gammaDF1(6, 3) = 136. / 81. * (n_u + n_d / 4.);
443 gammaDF1(6, 4) = -116. / 9. - 136. / 243. * (n_u + n_d / 4.);
444 gammaDF1(6, 5) = 20. / 3. + 136. / 81. * (n_u + n_d / 4.);
445 gammaDF1(6, 6) = -134. / 9. + 104. / 27. * (n_u + n_d / 4.);
446 gammaDF1(6, 7) = 38. / 3. + 88. / 9. * (n_u + n_d / 4.);
447 gammaDF1(6, 8) = 184. / 27. * (n_u + n_d / 4.);
448 gammaDF1(6, 9) = 8. / 9. * (n_u + n_d / 4.);
450 gammaDF1(7, 2) = -748. / 729. * n_u - 106. / 729. * n_d;
451 gammaDF1(7, 3) = 748. / 243. * n_u + 106. / 243. * n_d;
452 gammaDF1(7, 4) = -1. - 748. / 729. * n_u - 106. / 729. * n_d;
453 gammaDF1(7, 5) = 91. / 9. + 748. / 243. * n_u + 106. / 243. * n_d;
454 gammaDF1(7, 6) = 2. - 5212. / 729. * n_u - 2416. / 729. * n_d;
455 gammaDF1(7, 7) = 154. / 9. + 188. / 27. * n_u + 80. / 27. * n_d;
456 gammaDF1(7, 8) = -2260. / 729. * n_u - 1408. / 729. * n_d;
457 gammaDF1(7, 9) = -140. / 27. * n_u - 32. / 27. * n_d;
459 gammaDF1(8, 2) = 7012. / 729. - 136. / 243. * (n_u + n_d / 4.);
460 gammaDF1(8, 3) = 764. / 243. + 136. / 81. * (n_u + n_d / 4.);
461 gammaDF1(8, 4) = -116. / 729. - 136. / 243. * (n_u + n_d / 4.);
462 gammaDF1(8, 5) = 116. / 243. + 136. / 81. * (n_u + n_d / 4.);
463 gammaDF1(8, 6) = -1568. / 729. + 104. / 27. * (n_u + n_d / 4.);
464 gammaDF1(8, 7) = -32. / 27. + 88. / 9. * (n_u + n_d / 4.);
465 gammaDF1(8, 8) = 5578. / 729. + 184. / 27. * (n_u + n_d / 4.);
466 gammaDF1(8, 9) = 38. / 27. + 8. / 9. * (n_u + n_d / 4.);
468 gammaDF1(9, 2) = 1333. / 243. - 388. / 729. * n_u - 16. / 729. * n_d;
469 gammaDF1(9, 3) = 107. / 81. + 388. / 243. * n_u + 16. / 243. * n_d;
470 gammaDF1(9, 4) = -44. / 243. - 388. / 729. * n_u - 16. / 729. * n_d;
471 gammaDF1(9, 5) = 44. / 81. + 388. / 243. * n_u + 16. / 243. * n_d;
472 gammaDF1(9, 6) = 76. / 27. + 3140. / 729. * n_u - 328. / 729. * n_d;
473 gammaDF1(9, 7) = 20. / 9. - 100. / 27. * n_u + 8. / 27. * n_d;
474 gammaDF1(9, 8) = 140. / 27. + 908. / 729. * n_u - 616. / 729. * n_d;
475 gammaDF1(9, 9) = -28. / 9. + 148. / 27. * n_u + 40. / 27. * n_d;
480 std::stringstream out;
482 throw std::runtime_error(
"EvolDF1nlep::AnomalousDimension_nlep_EM("
483 "orders order, unsigned int n_u, unsigned int n_d) "
484 + out.str() +
" not implemented");
495 gslpp::matrix <double> delta_rsT(
dim, 0.);
497 delta_rsT(2, 3) = 5. / 27.;
498 delta_rsT(2, 5) = 5. / 27.;
499 delta_rsT(3, 3) = -5. / 9.;
500 delta_rsT(4, 5) = -5. / 9.;
501 delta_rsT(4, 3) = 5. / 27.;
502 delta_rsT(4, 5) = 5. / 27.;
503 delta_rsT(5, 3) = -5. / 9.;
504 delta_rsT(5, 5) = -5. / 9.;
506 if (nf == 3. || nf == 5.) {
508 delta_rsT(2, 7) = -5. / 54.;
509 delta_rsT(2, 9) = -5. / 54.;
510 delta_rsT(3, 7) = 5. / 18.;
511 delta_rsT(3, 9) = 5. / 18.;
512 delta_rsT(4, 7) = -5. / 54.;
513 delta_rsT(4, 9) = -5. / 54.;
514 delta_rsT(5, 7) = 5. / 18.;
515 delta_rsT(5, 9) = 5. / 18.;
522 delta_rsT(2, 7) = 5. / 27.;
523 delta_rsT(2, 9) = 5. / 27.;
524 delta_rsT(3, 7) = -5. / 9.;
525 delta_rsT(3, 9) = -5. / 9.;
526 delta_rsT(4, 7) = 5. / 27.;
527 delta_rsT(4, 9) = 5. / 27.;
528 delta_rsT(5, 7) = -5. / 9.;
529 delta_rsT(5, 9) = -5. / 9.;
540 gslpp::matrix<double> delta_reT(
dim, 0.);
542 if (nf == 3. || nf == 5.) {
544 delta_reT(6, 2) = 20. / 27.;
545 delta_reT(6, 4) = 20. / 81.;
546 delta_reT(6, 4) = 20. / 27.;
547 delta_reT(6, 5) = 20. / 81.;
548 delta_reT(6, 6) = -10. / 27.;
549 delta_reT(6, 7) = -10. / 81.;
550 delta_reT(6, 8) = -10. / 27.;
551 delta_reT(6, 9) = -10. / 81.;
552 delta_reT(8, 2) = 20. / 27.;
553 delta_reT(8, 3) = 20. / 81.;
554 delta_reT(8, 4) = 20. / 27.;
555 delta_reT(8, 5) = 20. / 81.;
556 delta_reT(8, 6) = -10. / 27.;
557 delta_reT(8, 7) = -10. / 81.;
558 delta_reT(8, 8) = -10. / 27.;
559 delta_reT(8, 9) = -10. / 81.;
564 delta_reT(6, 2) = -40. / 27.;
565 delta_reT(6, 3) = -40. / 81.;
566 delta_reT(6, 4) = -40. / 27.;
567 delta_reT(6, 5) = -40. / 81.;
568 delta_reT(6, 5) = -40. / 27.;
569 delta_reT(6, 6) = -40. / 81.;
570 delta_reT(6, 7) = -40. / 27.;
571 delta_reT(6, 8) = -40. / 81.;
572 delta_reT(8, 2) = -40. / 27.;
573 delta_reT(8, 3) = -40. / 81.;
574 delta_reT(8, 4) = -40. / 27.;
575 delta_reT(8, 5) = -40. / 81.;
576 delta_reT(8, 6) = -40. / 27.;
577 delta_reT(8, 7) = -40. / 81.;
578 delta_reT(8, 8) = -40. / 27.;
579 delta_reT(8, 9) = -40. / 81.;
596 std::stringstream out;
598 throw std::runtime_error(
"EvolDF1nlep::Df1Evolnlep_EM(): scheme " + out.str()
599 +
" not implemented ");
617 std::stringstream out;
618 out <<
"M = " <<
M <<
" < mu = " <<
mu;
650 gslpp::matrix<double> resLO(
dim, 0.), resNLO(
dim, 0.), resLO_ew(
dim, 0.), resNLO_QED(
dim, 0.);
652 int L = 6 - (int) nf;
657 double eta = alsM / alsmu;
661 for (
unsigned int k = 0; k <
dim; k++) {
662 double etap = pow(eta,
a[L][k]);
663 for (
unsigned int i = 0; i <
dim; i++) {
664 for (
unsigned int j = 0; j <
dim; j++) {
666 resLO(i, j) +=
b[L][i][j][k] * etap;
668 resNLO(i, j) +=
c[L][i][j][k] * etap * alsmu;
669 resNLO(i, j) +=
d[L][i][j][k] * etap * alsM;
671 resLO_ew(i, j) +=
m[L][i][j][k] * etap * ale / alsmu;
672 resLO_ew(i, j) +=
n[L][i][j][k] * etap * ale / alsM;
673 resLO_ew(i, j) +=
mn[L][i][j][k] * etap * ale / alsM * log(eta);
675 resNLO_QED(i, j) +=
o[L][i][j][k] * etap * ale;
676 resNLO_QED(i, j) +=
p[L][i][j][k] * etap * ale;
677 resNLO_QED(i, j) +=
op[L][i][j][k] * etap * ale * log(eta);
679 resNLO_QED(i, j) +=
q[L][i][j][k] * etap * ale;
680 resNLO_QED(i, j) +=
r[L][i][j][k] * etap * ale;
681 resNLO_QED(i, j) +=
s[L][i][j][k] * etap * ale / eta;
682 resNLO_QED(i, j) +=
t[L][i][j][k] * etap * ale * eta;
683 resNLO_QED(i, j) +=
qq[L][i][j][k] * etap * ale * log(eta);
684 resNLO_QED(i, j) +=
rr[L][i][j][k] * etap * ale * log(eta);
688 if((i==6) and (j==6)){
689 resNLO_QED(i, j) -=
op[L][i][j][k] * etap * ale * log(eta);
690 resNLO_QED(i, j) -=
qq[L][i][j][k] * etap * ale * log(eta);
691 resNLO_QED(i, j) -=
rr[L][i][j][k] * etap * ale * log(eta);
693 if((i==7) and ((j==6) or (j==7))){
694 resNLO_QED(i, j) -=
op[L][i][j][k] * etap * ale * log(eta);
695 resNLO_QED(i, j) -=
qq[L][i][j][k] * etap * ale * log(eta);
696 resNLO_QED(i, j) -=
rr[L][i][j][k] * etap * ale * log(eta);
712 throw std::runtime_error(
"Error in EvolDF1nlep::Df1Evolnlep()");
724 throw std::runtime_error(
"Error in EvolDF1nlep::Df1Evolnlep()");
731 gslpp::matrix<double> drsT(
dim, 0.), dreT(
dim, 0.);
744 throw std::runtime_error(
"Error in EvolDF1nlep::Df1threshold_nlep()");
754 throw std::runtime_error(
"Error in EvolDF1nlep::Df1threshold_nlep()");
768 std::stringstream out;
770 throw std::runtime_error(
"EvolDF1nlep::Df1Evolnlep_EM(): scheme " + out.str()
771 +
" not implemented ");
gslpp::matrix< gslpp::complex > K0singV
gslpp::matrix< gslpp::complex > K0sing
gslpp::matrix< gslpp::complex > Gamma_eT
gslpp::matrix< gslpp::complex > K0V
gslpp::matrix< gslpp::complex > ge11sing
const StandardModel & model
gslpp::matrix< gslpp::complex > JsK0singV
gslpp::matrix< gslpp::complex > Gamma_s1T
gslpp::matrix< gslpp::complex > Vi
gslpp::matrix< gslpp::complex > ViJs
gslpp::matrix< double > Df1threshold_deltareT(double nf) const
a method returning the matrix threshold for the QED penguins at the NLO
gslpp::matrix< gslpp::complex > V
gslpp::matrix< gslpp::complex > Gamma_seT
gslpp::matrix< double > & Df1Evolnlep3flav(double mu, double M, orders order, orders_qed order_qed, schemes scheme=NDR)
gslpp::matrix< gslpp::complex > K11V
gslpp::matrix< double > & Df1Evolnlep(double mu, double M, orders order, orders_qed order_qed, schemes scheme=NDR)
a method returning the evolutor related to the high scale and the low scale
gslpp::matrix< gslpp::complex > gs
gslpp::matrix< double > AnomalousDimension_nlep_EM(orders order, unsigned int n_u, unsigned int n_d) const
a method returning the anomalous dimension matrix given in the standard basis
gslpp::matrix< gslpp::complex > K11
gslpp::matrix< gslpp::complex > ge0
gslpp::matrix< gslpp::complex > JsK0V
gslpp::matrix< gslpp::complex > ViK0
EvolDF1nlep(unsigned int dim, schemes scheme, orders order, orders_qed order_qed, const StandardModel &model)
EvolDF1nlep constructor.
gslpp::matrix< gslpp::complex > ge11
virtual ~EvolDF1nlep()
EvolDF1nlep destructor.
gslpp::matrix< gslpp::complex > JsV
gslpp::matrix< gslpp::complex > K11singV
gslpp::matrix< gslpp::complex > Js
gslpp::matrix< gslpp::complex > ViK11
gslpp::matrix< gslpp::complex > ViK0Js
gslpp::vector< gslpp::complex > e
void Df1threshold_nlep(double M, double nf)
a void type method for the implementation of the NLO threshold effects in the evolutor
gslpp::matrix< double > AnomalousDimension_nlep_S(orders order, unsigned int n_u, unsigned int n_d) const
a method returning the anomalous dimension matrix given in the standard basis
gslpp::matrix< gslpp::complex > K0
gslpp::matrix< gslpp::complex > ge0sing
gslpp::matrix< gslpp::complex > K11sing
gslpp::matrix< gslpp::complex > Gamma_s0T
gslpp::matrix< double > Df1threshold_deltarsT(double nf) const
a method returning the matrix threshold for the QCD penguins at the NLO
const double Beta1(const double nf) const
The coefficient for a certain number of flavours .
const double Beta0(const double nf) const
The coefficient for a certain number of flavours .
const double AboveTh(const double mu) const
The active flavour threshold above the scale as defined in QCD::Thresholds().
const double Nf(const double mu) const
The number of active flavour at scale .
A class for the RG evolutor of the Wilson coefficients.
void setScales(double mu, double M)
Sets the upper and lower scale for the running of the Wilson Coefficients.
gslpp::matrix< double > * Evol(orders order)
Evolution matrix set at a fixed order of QCD coupling.
A model class for the Standard Model.
const double getMz() const
A get method to access the mass of the boson .
const double getAlsMz() const
A get method to access the value of .
const double Als(const double mu, const orders order, const bool Nf_thr, const bool qed_flag) const
The running QCD coupling in the scheme including QED corrections.
const double getAle() const
A get method to retrieve the fine-structure constant .
gslpp::matrix< double > * elem[MAXORDER_QED+1]
orders
An enum type for orders in QCD.
schemes
An enum type for regularization schemes.
orders_qed
An enum type for orders in electroweak.
StdVectorFiller< int > Vi