8#include <gsl/gsl_sf_zeta.h>
15:
RGEvolutor(dim_i, scheme, order), model(model),
16 v(dim_i,0.), vi(dim_i,0.), js(dim_i,0.), h(dim_i,0.), gg(dim_i,0.),s_s(dim_i,0.),
17 jssv(dim_i,0.), jss(dim_i,0.), jv(dim_i,0.), vij(dim_i,0.), e(dim_i,0.), dim(dim_i)
22 for(
int L=2; L>-1; L--){
27 if(L == 1){
nd = 3;
nu = 2;}
28 if(L == 0){
nd = 3;
nu = 3;}
34 for(
unsigned int i = 0; i <
dim; i++){
35 a[L][i] =
e(i).real();
36 for (
unsigned int j = 0; j <
dim; j++) {
37 for (
unsigned int k = 0; k <
dim; k++) {
38 b[L][i][j][k] =
v(i, k).real() *
vi(k, j).real();
48 for (
unsigned int i = 0; i <
dim; i++){
49 for (
unsigned int j = 0; j <
dim; j++){
50 s_s.assign( i, j, (b1 / b0) * (i==j) *
e(i).real() -
gg(i,j));
51 if(fabs(
e(i).real() -
e(j).real() + 2. * b0)>0.00000000001){
52 h.assign( i, j,
s_s(i,j) / (2. * b0 +
e(i) -
e(j)));
61 for (
unsigned int i = 0; i <
dim; i++){
62 for (
unsigned int j = 0; j <
dim; j++){
63 if(fabs(
e(i).real() -
e(j).real() + 2. * b0) > 0.00000000001){
64 for(
unsigned int k = 0; k <
dim; k++){
65 c[L][i][j][k] =
jv(i, k).real() *
vi(k, j).real();
66 d[L][i][j][k] = -
v(i, k).real() *
vij(k, j).real();
70 for(
unsigned int k = 0; k <
dim; k++){
71 c[L][i][j][k] = (1./(2. * b0)) *
jssv(i, k).real() *
vi(k, j).real();
92 unsigned int nf = n_u + n_d;
94 gslpp::matrix<double> gammaDF1(
dim,
dim, 0.);
100 gammaDF1(0,0) = -4. ;
101 gammaDF1(0,1) = 8./3. ;
106 gammaDF1(1,3) = 4./3.;
107 gammaDF1(1,8) = -8./9.;
108 gammaDF1(0,3) = -2./9.;
109 gammaDF1(0,8) = -32./27.;
112 gammaDF1(2,3) = -52./3.;
114 gammaDF1(2,8) = 8./9. + (8.*n_d)/3. - (16.*n_u)/3.;
116 gammaDF1(3,2) = -40./9.;
117 gammaDF1(3,3) = -160./9. + 4./3.*nf;
118 gammaDF1(3,4) = 4./9.;
119 gammaDF1(3,5) = 5./6.;
120 gammaDF1(3,8) = 32./27.;
122 gammaDF1(4,3) = -256./3.;
124 gammaDF1(4,8) = 128./9.+(80.*n_d)/3. - (160.*n_u)/3.;
126 gammaDF1(5,2) = -256./9.;
127 gammaDF1(5,3) = -544./9. + (40./3.)*nf;
128 gammaDF1(5,4) = 40./9.;
129 gammaDF1(5,5) = -2./3.;
130 gammaDF1(5,8) = 512./27.;
134 gammaDF1(7,6) = -32./9.;
146 if (!(nf == 3 || nf == 4 || nf == 5 || nf == 6)){
147 throw std::runtime_error(
"EvolDF1::AnomalousDimension_M(): wrong number of flavours");
152 gammaDF1(0,0) = -145./3. + (16./9.)*nf;
153 gammaDF1(0,1) = -26. + (40./27.)*nf;
154 gammaDF1(1,0) = -45. + (20./3.)*nf;
155 gammaDF1(1,1) = -28./3.;
158 gammaDF1(0,2) = -1412./243.;
159 gammaDF1(0,3) = -1369./243.;
160 gammaDF1(0,4) = 134./243.;
161 gammaDF1(0,5) = -35./162.;
162 gammaDF1(0,6) = -232./243.;
163 gammaDF1(0,7) = +167./162.;
164 gammaDF1(0,8) = -2272./729.;
166 gammaDF1(1,2) = -416./81.;
167 gammaDF1(1,3) = 1280./81.;
168 gammaDF1(1,4) = 56./81.;
169 gammaDF1(1,5) = 35./27.;
170 gammaDF1(1,6) = 464./81.;
171 gammaDF1(1,7) = 76./27.;
172 gammaDF1(1,8) = 1952./243.;
175 gammaDF1(2,2) = -4468./81.;
176 gammaDF1(2,3) = -29129./81. - (52./9.)*nf;
177 gammaDF1(2,4) = 400./81.;
178 gammaDF1(2,5) = 3493./108. - (2./9.)*nf;
179 gammaDF1(2,6) = 64./81.;
180 gammaDF1(2,7) = 368./27.;
181 gammaDF1(2,8) = -4160./243. + (32.*n_d)/3. - (64.*n_u)/3.;
183 gammaDF1(3,2) = -13678./243. + (368.*nf)/81.;
184 gammaDF1(3,3) = -79409./243. + (1334.*nf)/81.;
185 gammaDF1(3,4) = 509./486. - (8.*nf)/81.;
186 gammaDF1(3,5) = 13499./648. - (5.*nf)/27.;
187 gammaDF1(3,6) = -680./243. + (32.*nf)/81;
188 gammaDF1(3,7) = -427./81. - (37.*nf)/54.;
189 gammaDF1(3,8) = 784./729. - (2272.*n_d)/243. + (2912.*n_u)/243.;
191 gammaDF1(4,2) = -244480./81. - (160./9.)*nf;
192 gammaDF1(4,3) = -29648./81. - (2200./9.)*nf;
193 gammaDF1(4,4) = 23116./81. + (16./9.)*nf;
194 gammaDF1(4,5) = 3886./27. + (148./9.)*nf;
195 gammaDF1(4,6) = -6464./81.;
196 gammaDF1(4,7) = 8192./27. + 36.*nf;
197 gammaDF1(4,8) = -58112./243. + (320.*n_d)/3. - (640.*n_u)/3.;
199 gammaDF1(5,2) = 77600./243. - (1264./81.)*nf;
200 gammaDF1(5,3) = -28808./243. + (164./81.)*nf;
201 gammaDF1(5,4) = -20324./243. + (400./81.)*nf;
202 gammaDF1(5,5) = -21211./162.+ (622./27.)*nf;
203 gammaDF1(5,6) = -20096./243. - (976.*n_d)/81. + (2912.*n_u)/81.;
204 gammaDF1(5,7) = -6040./81. + (220./27.)*nf;
205 gammaDF1(5,8) = -22784./729. - (20704.*n_d)/243. + (28544.*n_u)/243.;
207 gammaDF1(6,6) = 1936./9.-224./27.*nf-2.*
model.
Beta1(nf);
209 gammaDF1(7,6) = -368./9.+224./81.*nf;
210 gammaDF1(7,7) = 1456./9.-61./27.*nf-2.*
model.
Beta1(nf);
219 throw std::runtime_error(
"EvolDF1bsg::AnomalousDimension_M(): order not implemented");
231 gslpp::matrix<double> mat(
dim, 0.);
232 gslpp::matrix<double> mat1(
dim, 0.);
233 unsigned int nf = n_u + n_d;
234 double z3 = gsl_sf_zeta_int(3);
236 mat1(0,6) = - 13454./2187. + 44./2187.*nf;
237 mat1(1,6) = 20644./729. - 88./729.*nf;
238 mat1(2,6) = 119456./729. + 5440./729.*n_d -21776./729.*n_u;
239 mat1(3,6) = - 202990./2187. + 32./729.*n_d*n_d + n_d*(16888./2187. + 64./729.*n_u)
240 - 17132./2187.*n_u + 32./729.*n_u*n_u;
241 mat1(4,6) = 530240./243. + 300928./729.*n_d - 461120./729.*n_u;
242 mat1(5,6) = - 1112344./729. + 5432./729.*n_d*n_d + n_d*(419440./2187. -
243 2744./729.*n_u) + 143392./2187.*n_u - 8176./729.*n_u*n_u;
245 mat1(0,7) = 25759./5832. + 431./5832.*nf;
246 mat1(1,7) = 9733./486. - 917./972.*nf;
247 mat1(2,7) = 82873./243. - 3361./243.*nf;
248 mat1(3,7) = - 570773./2916. - 253./486.*n_d*n_d +n_d*(-40091./5832. -
249 253./243.*n_u) - 40091./5832.*n_u - 253./486.*n_u*n_u;
250 mat1(4,7) = 838684./81. - 14.*n_d*n_d + n_d*(129074./243. - 28.*n_u) +
251 129074./243.*n_u - 14.*n_u*n_u;
252 mat1(5,7) = - 923522./243. - 6031./486.*n_d*n_d + n_d*(-13247./1458. - 6031./243.*n_u)
253 -13247./1458.*n_u - 6031./486.*n_u*n_u;
255 mat1(0,8) = - 22357278./19683. + 14440./6561.*n_d + 144688./6561.*n_u + 6976./243.*z3;
256 mat1(1,8) = - 200848./6561. - 23696./2187.*n_d + 30736./2187.*n_u - 3584./81.*z3;
257 mat1(2,8) = - 1524104./6561. - 176./27.*n_d*n_d + 352./27.*n_u*n_u +
258 n_d*(257564./2187. + 176./27.*n_u - 128./3.*z3) - 256./81.*z3 +
259 n_u*(-382984./2187. + 256./3.*z3);
260 mat1(3,8) = 1535926./19683. + 1984./2187.*n_d*n_d - 5792./2187.*n_u*n_u +
261 n_d*(-256901./6561. - 3808./2187.*n_u - 2720./81.*z3) -
262 5056./243.*z3 + n_u*(34942./6561. + 1600./81.*z3);
263 mat1(4,8) = - 31433600./6561. - 2912./27.*n_d*n_d + 5824./27.*n_u*n_u +
264 n_d*(- 3786616./2187. + 2912./27.*n_u - 1280./3.*z3) -
265 4096./81.*z3 + n_u*(7525520./2187. + 2560./3.*z3);
266 mat1(5,8) = - 48510784./19683. -51296./2187.*n_d*n_d + 54976./2187.*n_u*n_u +
267 n_u*(-11231648./6561. - 22016./81.*z3) + n_d*(340984./6561. +
268 3680./2187.*n_u - 8192./81.*z3) - 80896./243.*z3;
274 for (
int i=0; i<6; i++){
275 for (
unsigned int j=6; j<
dim; j++){
276 mat(i,j) = mat1(i,j);
279 for (
unsigned int i=6; i<
dim; i++){
280 for (
unsigned int j=6; j<
dim; j++){
281 mat(i,j) = mat(i,j) + 2. * (i==j) *
model.
Beta1(nf);
287 for (
int i=0; i<6; i++){
288 for (
unsigned int j=6; j<
dim; j++){
292 for (
unsigned int i=6; i<
dim; i++){
293 for (
unsigned int j=6; j<
dim; j++){
294 mat(i,j) = mat(i,j) + 2. * (i==j) *
model.
Beta0(nf);
299 throw std::runtime_error(
"change to rescaled operator basis: order not implemented");
307 gslpp::matrix<double> y(
dim, 0.);
330 return( (y.inverse()).transpose() * mat * y.transpose() );
342 std::stringstream out;
344 throw std::runtime_error(
"EvolDC1::Df1EvolDC1(): scheme " + out.str() +
" not implemented ");
350 if (
mu == this->mu &&
M == this->M &&
scheme == this->scheme)
357 std::stringstream out;
358 out <<
"M = " <<
M <<
" < mu = " <<
mu;
382 gslpp::matrix<double> resLO(
dim, 0.), resNLO(
dim, 0.), resNNLO(
dim, 0.);
384 int L = 6 - (int) nf;
388 double eta = alsM / alsmu;
390 for (
unsigned int k = 0; k <
dim; k++) {
391 double etap = pow(eta,
a[L][k] / 2. /
model.
Beta0(nf));
392 for (
unsigned int i = 0; i <
dim; i++){
393 for (
unsigned int j = 0; j <
dim; j++) {
396 if(fabs(
e(i).real() -
e(j).real() + 2. *
model.
Beta0(nf))>0.000000000001) {
397 resNLO(i, j) +=
c[L][i][j][k] * etap * alsmu;
398 resNLO(i, j) +=
d[L][i][j][k] * etap * alsM;
401 resNLO(i, j) += -
c[L][i][j][k] * etap * alsmu * log(eta);
403 resLO(i, j) +=
b[L][i][j][k] * etap;
419 throw std::runtime_error(
"Error in EvolDC1::DC1Evol()");
gslpp::matrix< gslpp::complex > vi
gslpp::matrix< gslpp::complex > jss
gslpp::matrix< double > & DC1Evol(double mu, double M, orders order, schemes scheme=NDR)
a method returning the evolutor related to the high scale and the low scale
virtual ~EvolDC1()
EvolDC1 destructor.
const StandardModel & model
gslpp::matrix< double > ToRescaledBasis(orders order, unsigned int n_u, unsigned int n_d) const
a method returning the anomalous dimension in the Chetyrkin, Misiak and Munz operator basis
gslpp::matrix< gslpp::complex > v
gslpp::matrix< gslpp::complex > s_s
gslpp::matrix< gslpp::complex > js
gslpp::vector< gslpp::complex > e
EvolDC1(unsigned int dim, schemes scheme, orders order, const StandardModel &model)
EvolDC1 constructor.
gslpp::matrix< gslpp::complex > jssv
gslpp::matrix< gslpp::complex > h
gslpp::matrix< gslpp::complex > jv
gslpp::matrix< gslpp::complex > gg
gslpp::matrix< gslpp::complex > vij
gslpp::matrix< double > ToEffectiveBasis(gslpp::matrix< double > mat) const
a method returning the anomalous dimension for the evolution of the effective Wilson coefficients
gslpp::matrix< double > AnomalousDimension_M(orders order, unsigned int n_u, unsigned int n_d) const
a method returning the anomalous dimension matrix given in the Misiak basis
const double Beta1(const double nf) const
The coefficient for a certain number of flavours .
const double Beta0(const double nf) const
The coefficient for a certain number of flavours .
const double AboveTh(const double mu) const
The active flavour threshold above the scale as defined in QCD::Thresholds().
const double Nf(const double mu) const
The number of active flavour at scale .
A class for the RG evolutor of the Wilson coefficients.
void setScales(double mu, double M)
Sets the upper and lower scale for the running of the Wilson Coefficients.
gslpp::matrix< double > * Evol(orders order)
Evolution matrix set at a fixed order of QCD coupling.
A model class for the Standard Model.
const double getMz() const
A get method to access the mass of the boson .
const double getAlsMz() const
A get method to access the value of .
const double Als(const double mu, const orders order, const bool Nf_thr, const bool qed_flag) const
The running QCD coupling in the scheme including QED corrections.
gslpp::matrix< double > * elem[MAXORDER_QED+1]
orders
An enum type for orders in QCD.
schemes
An enum type for regularization schemes.